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Introduction: rare events and dependability

In telecommunication networks: loss probability of a small unit of
information (a packet, or a cell in ATM networks), connectivity of a
set of nodes,

in dependability analysis: probability that a system is failed at a given
time, availability, mean-time-to-failure,

in air control systems: probability of collision of two aircrafts,

in particle transport: probability of penetration of a nuclear shield,

in biology: probability of some molecular reactions,

in insurance: probability of ruin of a company,

in finance: value at risk (maximal loss with a given probability in a
predefined time),

...
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Context: Time To Failure (TTF) estimation
Dependability analysis is of primary importance in many areas

I nuclear power plants
I telecommunications
I manufacturing
I transport systems
I computer science

Focus on the time to failure (TTF): random time to reach failure

Even for Markov chains, models usually so large
⇒ computation by simulation
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Example: Highly Reliable Markovian Systems (HRMS)

System with c types of
components. X = (S1, . . . ,Xc)
with Xi number of up
components.

Markov chain. Failure rates are
O(ε), but not repair rates. Failure
propagations possible.

System down when in grey
state(s)

Goal:

I compute p probability from
(2, 2) to hit failure before
being back (2, 2): small if ε
small.

I compute TTF: long time if ε
small.

B. Tuffin (Inria) Hitting times MCM 2019 5 / 44



S-valued regenerative process X = (X (t) : t ≥ 0)
Goal: Compute α = E[T ] , where

T = inf{t ≥ 0 : X (t) ∈ A}
is the hitting time of subset A

Regeneration times 0 = Γ(0) < Γ(1) < · · · ,
with iid cycles ((τ(k), (X (Γ(k − 1) + s) : 0 ≤ s < τ(k)) : k ≥ 1)
τ(k) = Γ(k)− Γ(k − 1), length of the kth regenerative cycle

Ratio expression: α =
E[T ∧ τ ]

P(T < τ)
.

α = E[T ;T < τ ] + E[τ + T − τ ;T > τ ]

= E[T ;T < τ ] + E[τ ;T > τ ] + E[T − τ ;T > τ ]

= E[T ∧ τ ;T < τ ] + E[T ∧ τ ;T > τ ] + E[T − τ | T > τ ]P(T > τ)

= E[T ∧ τ ] + α(1− P(T < τ))
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Regenerative simulation

W (k) = inf{t ≥ 0 : X (Γ(k − 1) + t) ∈ A} first hitting to A after
regeneration Γ(k − 1)

I (k) = I(W (k) < τ(k)) with I(·) is the indicator function

Definition (Ratio estimator)

α̂(n) =
(1/n)

∑n
k=1[W (k) ∧ τ(k)]

(1/n)
∑n

k=1 I (k)
.

Proposition (Central Limit Theorem)

n1/2[α̂(n)− α]⇒ σ2N (0, 1)

as n→∞, where σ2
2 = E[(T∧τ)2]

p2 − 2αE[TI(T<τ)]
p2 + α2

p .
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Rare events: hitting A rarely occurs before τ

Denominator p in α = E[T∧τ ]
P(T<τ) a small probability

=⇒ requires an acceleration technique

Fraction β of cycles used to estimate the numerator with crude MC

Fraction 1− β to estimate the denominator with a variance reduction
technique
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Inefficiency of crude Monte Carlo for the denominator
Compute the denominator/probability p = E[1[T<τ ]] << 1

n iiid Yi Bernoulli r.v.: 1 if the event is hit and 0 otherwise.

To get a single occurence, we need in average 1/p replications (109

for p = 10−9), and more to get a confidence interval.

In most cases, you will get (0, 0) as a confidence interval.

nȲn Binomial with parameters (n, p) and the confidence interval is(
Ȳn −

cβ
√

p(1− p)√
n

, Ȳn +
cβ
√

p(1− p)√
n

)
.

Relative half width cβσ/(
√
np) = cβ

√
(1− p)/p/n→∞ as p → 0.

For a given relative error RE , the required value of

n = (cβ)2 1− p

RE 2p
,

inversely proportional to p.
Two main families of techniques:

I Splitting (also called subset simulation) and Importance Sampling.
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Robustness properties

In rare-event simulation models, we often parameterize with a rarity
parameter ε > 0 such that µ = E[Y (ε)]→ 0 as ε→ 0.

An estimator Y (ε) is said to have bounded relative variance (or
bounded relative error) if σ2(Y (ε))/µ2(ε) is bounded uniformly in ε.

I Interpretation: estimating µ(ε) with a given relative accuracy can be
achieved with a bounded number of replications even if ε→ 0.

Weaker property: asymptotic optimality (or logarithmic efficiency) if
limε→0 ln(E[Y 2(ε)])/ ln(µ(ε)) = 2.

Stronger property: vanishing relative variance: σ2(Y (ε))/µ2(ε)→ 0
as ε→ 0. Asymptotically, we get the zero-variance estimator.

Other robustness measures exist (based on higher degree moments,
on the Normal approximation, on simulation time...).

L’Ecuyer, Blanchet, T., Glynn, ACM ToMaCS 2010
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Importance Sampling (IS)
Let Y = h(X ) for some function h where Y obeys some probability
law P.

IS replaces P by another probability measure P̃, using

E [Y ] =

∫
h(x)dP(x) =

∫
h(x)

dP(x)

d P̃(x)
d P̃(x) = Ẽ [h(x)L(x)]

I L = dP/d P̃ likelihood ratio,
I Ẽ is the expectation associated to probability law P.

Required condition: d P̃(x) 6= 0 when h(x)dP(x) 6= 0.

Unbiased estimator:
1

n

n∑
i=1

h(Xi )L(Xi ) with (Xi , 1 ≤ i ≤ n) i.i.d;

copies of X , according to P̃.

Goal: select probability law P̃ such that

σ̃2[h(X )L(X )] = Ẽ[(h(X )L(X ))2]− µ2 < σ2[h(X )].
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Example

We want to estimate the probability that a random variable exceeds T (area
in grey under the density f (t)).

0 1 2 3 4 5 6

T

f (t)

t

d
en

si
ty

f
(t

)

Reminder: the probability to be in an interval [a, b] is the measure of the area
under the density between a and b.
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Rare event problem

Draw values ti (the red crosses X on the t-axis) according to density f

Very few points (none) are > T .

0 1 2 3 4 5 6

T

f (t)

t

d
en

si
ty

f
(t

)
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Importance sampling

Sample according to another density f̃ increasing the probability to be > T .

Rare set reached!

0 1 2 3 4 5 6

T

f (t)

f̃ (t)

t

d
en

si
ty

f
(t

)
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Biased estimated probability then:
I i.e., the proportion of points is the probability under the new density

does not correspond to the grey area, but to the blue one.

How to obtain a “valid” estimation?
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Instead of counting 1 each time we are > T and look at the average value

for each sample value ti , we count 1(ti > T ) f (ti )

f̃ (ti )
(ratio of heights under

densities at ti ) and look again at the average value
⇒ unbiased estimation: the true probability is estimated.

3 3.2 3.4 3.6 3.8 4

f̃ (ti )

f (ti )

t

d
en

si
ty

f
(t

)
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IS for a discrete-time Markov chain (DTMC) {Xj , j ≥ 0}
Y = h(X0, . . . ,XT ) function of the sample path with

I P = (P(x , z))x,z∈S transition matrix, π0(x) = P[X0 = x ], initial
probabilities

I up to a stopping time T
I µ(x) = Ex [Y ].

IS replaces the probabilities of paths (x0, . . . , xn),

P[(X0, . . . ,XT ) = (x0, . . . , xn)] = π0(x0)
n−1∏
j=1

P(xj−1, xj),

by P̃[(X0, . . . ,XT ) = (x0, . . . , xn)] st Ẽ[T ] <∞.

For convenience, the IS measure remains a DTMC, replacing P(x , z)
by P̃(x , z) and π0(x) by π̃0(x).

Then L(X0, . . . ,XT ) =
π0(X0)

π̃0(X0)

T−1∏
j=1

P(Xj−1,Xj)

P̃(Xj−1,Xj)
.
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Zero-variance IS estimator for Markov chains simulation
Restrict to an additive (positive) cost

Y =
T∑
j=1

c(Xj−1,Xj)

I For hitting proba: c(x , z) = 1 if z ∈ A, 0 otherwise, µ(x) ≡ p(x)
I For hitting time: c(x , z) avg time in x .

Is there a Markov chain change of measure yielding zero-variance?

We have zero variance with

P̃(x , z) =
P(x , z)(c(x , z) + µ(z))∑
w P(x ,w)(c(x ,w) + µ(w))

=
P(x , z)(c(x , z) + µ(z))

µ(x)
.

Implementing it requires knowing µ(x) ∀x ∈ S, the quantities we wish
to compute.
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Zero-variance approximation

Use a heuristic approximation µ̂(·) and plug it into the zero-variance
change of measure instead of µ(·)

P̃(y , z) =
P(y , z)(c(y , z) + µ̂(z))∑
w P(y ,w)(c(y ,w) + µ̂(w))
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Highly Reliable Markovian Systems (HRMS)

System with c types of components. X = (X1, . . . ,Xc) with Xi

number of up components.

1: state with all components up.

Failure rates are O(ε), but not repair rates. Failure propagations
possible.

System down (in A) when some combinations of components are
down.

Goal: compute µ(1) ≡ p(1) with p(y) probability to hit A before 1
starting from y (denominator of the ratio est. of MTTF)

Simulation using the embedded DTMC. Failure probabilities are O(ε)
(except from 1). How to improve (accelerate) this?

Existing method: ∀y 6= 1, increase the probability of the set of
failures to constant 0.5 < q < 0.9 and use individual probabilities
proportional to the original ones (SFB), or uniformly (BFB).

Failures not rare anymore. BRE property verified for BFB.
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HRMS Example, and IS

Figure: Original probabilities Figure: Probabilities under IS/BFB
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HRMS, Zero-variance IS L’Ecuyer & T., ANOR, 2011

Recall the zero-variance approximation:

P̃(x , z) =
P(x , z)(c(x , z) + p̂(z))∑
w P(y ,w)(c(x ,w) + p̂(w))

The idea is to approach p(y) by the probability p̂(y) of the path from
y to A with the largest probability

Intuition: as ε→ 0, we get a good idea of the probability.

Proposition

Bounded Relative Error proved (as ε→ 0) in general.
Even Vanishing Relative Error if p̂(y) contains all the paths with the
smallest degree in ε.

Other simple version: approach p(y) by the (sum of) probability of
paths from y with only failure components of a given type.

Gain of several orders of magnitudes + stability of the results with
respect to the literature.
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HRMS: numerical illustrations

Comparison of BFB and Zero-Variance Approximation (ZVA).

c = 3 types of components, ni of type i

failure rates ε, 1.5ε, and 2ε2, repair rate 1

System is down whenever fewer than two components of any one type are
operational.

ni ε µ0 BFB est ZVA est BFB σ2 ZVA σ2

3 0.001 2.6× 10−3 2.7× 10−3 2.6× 10−3 6.2× 10−5 2.2× 10−8

6 0.01 1.8× 10−7 1.9× 10−7 1.8× 10−7 6.3× 10−11 2.0× 10−14

6 0.001 1.7× 10−11 1.8× 10−11 1.7× 10−11 8.8× 10−19 1.2× 10−23

12 0.1 6.0× 10−8 4.8× 10−8 6.0× 10−8 8.1× 10−10 1.6× 10−10

12 0.001 3.9× 10−28 (1.8× 10−40) 3.9× 10−28 (3.2× 10−74) 1.4× 10−55
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Main ideas Glynn, Nakayama & T., WSC, 2017

Two potential estimators:
I Direct estimator: repeat experiments up to failure of the system, and

compute the average value
I Literature, regenerative estimator: expresses the MTTF as a ratio of

quantities over regenerative cycles

Question:
Is there a reason why the regenerative estimator is used?
Which one is “better”?

Contributions

I
Crude (direct and regenerative) estimators are asymptotically similar
in performance, in rare event settings

I
For Importance Sampling estimators, the regenerative one
yield a efficient estimator when the crude can not.
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Crude estimators of MTTF
Notations for an S-valued regenerative process X = (X (t) : t ≥ 0)

I Compute α = E[T ], where T = inf{t ≥ 0 : X (t) ∈ A} is the hitting time of
subset A

I Regeneration times 0 = Γ(0) < Γ(1) < · · · ,
with iid cycles ((τ(k), (X (Γ(k − 1) + s) : 0 ≤ s < τ(k)) : k ≥ 1)

I τ(k) = Γ(k)− Γ(k − 1), length of the kth regenerative cycle
I W (k) = inf{t ≥ 0 : X (Γ(k − 1) + t) ∈ A} first hitting to A after

regeneration Γ(k − 1)
I I (k) = I(W (k) < τ(k)) with I(·) is the indicator function

Ratio expression: α =
E[T ∧ τ ]

P(T < τ)
.

Definition

Direct estimator α1(m) =
1

m

m∑
j=1

T (j).

Ratio estimator α2(n) =
(1/n)

∑n
k=1[W (k) ∧ τ(k)]

(1/n)
∑n

k=1 I (k)
.

B. Tuffin (Inria) Hitting times MCM 2019 27 / 44



Crude estimators of MTTF
Notations for an S-valued regenerative process X = (X (t) : t ≥ 0)

I Compute α = E[T ], where T = inf{t ≥ 0 : X (t) ∈ A} is the hitting time of
subset A

I Regeneration times 0 = Γ(0) < Γ(1) < · · · ,
with iid cycles ((τ(k), (X (Γ(k − 1) + s) : 0 ≤ s < τ(k)) : k ≥ 1)

I τ(k) = Γ(k)− Γ(k − 1), length of the kth regenerative cycle
I W (k) = inf{t ≥ 0 : X (Γ(k − 1) + t) ∈ A} first hitting to A after

regeneration Γ(k − 1)
I I (k) = I(W (k) < τ(k)) with I(·) is the indicator function

Ratio expression: α =
E[T ∧ τ ]

P(T < τ)
.

Definition

Direct estimator α1(m) =
1

m

m∑
j=1

T (j).

Ratio estimator α2(n) =
(1/n)

∑n
k=1[W (k) ∧ τ(k)]

(1/n)
∑n

k=1 I (k)
.

B. Tuffin (Inria) Hitting times MCM 2019 27 / 44



Crude estimators of MTTF
Notations for an S-valued regenerative process X = (X (t) : t ≥ 0)

I Compute α = E[T ], where T = inf{t ≥ 0 : X (t) ∈ A} is the hitting time of
subset A

I Regeneration times 0 = Γ(0) < Γ(1) < · · · ,
with iid cycles ((τ(k), (X (Γ(k − 1) + s) : 0 ≤ s < τ(k)) : k ≥ 1)

I τ(k) = Γ(k)− Γ(k − 1), length of the kth regenerative cycle
I W (k) = inf{t ≥ 0 : X (Γ(k − 1) + t) ∈ A} first hitting to A after

regeneration Γ(k − 1)
I I (k) = I(W (k) < τ(k)) with I(·) is the indicator function

Ratio expression: α =
E[T ∧ τ ]

P(T < τ)
.

Definition

Direct estimator α1(m) =
1

m

m∑
j=1

T (j).

Ratio estimator α2(n) =
(1/n)

∑n
k=1[W (k) ∧ τ(k)]

(1/n)
∑n

k=1 I (k)
.

B. Tuffin (Inria) Hitting times MCM 2019 27 / 44



(Known) Central limit theorems

If p = P(T < τ) > 0:

Proposition (Direct estimator)

m1/2[α1(m)− α]⇒ σ1N (0, 1)

as m→∞, where

σ2
1 = α2 +

E[(T ∧ τ)2]

p
− 2α

E[TI(T < τ)]

p
.

Proposition (Ratio-based estimator)

n1/2[α2(n)− α]⇒ σ2N (0, 1)

as n→∞, where

σ2
2 =

E[(T ∧ τ)2]

p2
− 2α

E[TI(T < τ)]

p2
+
α2

p
.
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Question: which estimator is “more efficient”?

Estimators α1(m) and α2(n) are actually very similar

If N(j) = inf{k > N(j − 1) : I (k) = 1} index k of the cycle
corresponding to the jth cycle in which A is hit

Proposition

For m ≥ 1, we have α2(N(m)) = α1(m).

Is an estimator more efficient than the other?

Two asymptotic settings
I Decreasing reachable sets: sequence (Ab : b ≥ 1) of subsets of S for

which pb ≡ P(Tb < τ)→ 0 as b →∞
I Highly reliable systems: fixed A but transitions decomposed between

failures and repairs with failures getting more and more rare (index ε)
with respect to repairs
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failures and repairs with failures getting more and more rare (index ε)
with respect to repairs
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Asymptotic result with a decreasing sequence of reachable
sets

Let α̂1,b(c) and α̂2,b(c) be the estimators obtained after c units of
computational time

To hope for consistency and CLTs, we need a computational budget
tb for which tbpb →∞ as b →∞

Theorem (Both estimators asymptotically identical)

Assume E[τ3] <∞. If tbpb →∞ as b →∞, then we have that as
b →∞,

√
tbpb

(
α̂i ,b(tb)

E[Tb]
− 1

)
⇒
√

E[τ ]N (0, 1), i = 1, 2, and

√
tbpb

(
α̂1,b(tb)

E[Tb]
−
α̂2,b(tb)

E[Tb]

)
⇒ 0.
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Numerical results for HRMS
System with 3 component types, with ni = 3, failure rates ε, repair rates 1, and
system is down whenever fewer than two components of any one type are
operational.
Direct:

m ε Confidence Interval Variance CPU Work Norm. Var.

107 0.1 ( 8.764e+00 , 8.774e+00) 5.879e+01 17.7 1.0e-04

107 0.01 (5.838e+02 , 5.845e+02) 3.343e+05 134 4.5e+00

107 0.001 (5.581e+04 , 5.588e+04) 3.117e+09 1316.5 4.1e+05

Regenerative :

n ε Confidence Interval Variance CPU Work Norm. Var.

107 0.1 (8.762e+00 , 8.782e+00) 2.484e+02 4.283 1.1e-04

107 0.01 (5.788e+02 , 5.837e+02) 1.586e+07 2.917 4.6e+00

107 0.001 (5.459e+04 , 5.611e+04) 1.510e+12 2.800 4.2e+05

Similar asymptotic performance

Direct estimator: bounded relative variance, but computational time issue

Regenerative estimator: rather a rare event issue.
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Efficient Regenerative IS estimators extensively studied.

Question:

What about the direct estimator?
Can its combination with IS yield an efficient estimator?

We will play with the toy example:

0 1 2

2ε ε

1 with embedded DTMC

0 1 2

1 ε/(1 + ε)

1/(1 + ε)

Eε(Tε) =
∞∑
n=0

(n + 1)

(
1

2ε
+

1

1 + ε

)(
1

1 + ε

)n ε

1 + ε
=

1 + 3ε

2ε2

Eε[(Tε)2] =
∞∑
n=0

(n + 1)2

(
1

2ε
+

1

1 + ε

)2 ( 1

1 + ε

)n ε

1 + ε
=

(2 + ε)(1 + 3ε)2

4(1 + ε)ε4

Eε(N) =
∞∑
n=0

(2 + 2n)

(
1

1 + ε

)n ε

1 + ε
=

2(1 + ε)

ε
with N:# transitions in a run.
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Failure biasing

Change the probability of making a failure transition to be ρ,
independent of ε

0 1 2

1 ρ

1− ρ

Ẽε[(TεL)2] = Eε[(Tε)2L] =
∞∑
n=0

(n + 1)2

(
1

2ε
+

1

1 + ε

)2

((
1

1+ε

)n
ε

1+ε

)2

(1− ρ)nρ

Converging sum iff 1/((1 + ε)2(1− ρ)) < 1, i.e., ρ small enough

ρ < 1− 1

(1 + ε)2
= 2ε− 3ε2 + o(ε2).

But Ẽε(N) =
∞∑
n=0

(2 + 2n)(1− ρ)nρ =
2

ρ
.

The average simulation time for a single run will increase to infinity as
ε→ 0!
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But Ẽε(N) =
∞∑
n=0

(2 + 2n)(1− ρ)nρ =
2

ρ
.

The average simulation time for a single run will increase to infinity as
ε→ 0!

B. Tuffin (Inria) Hitting times MCM 2019 33 / 44



Zero-variance approximation
For a CTMC with transition matrix (Px ,y )x ,y∈S , if Eε,x expectation
starting from x ,

P̃x ,y = Px ,y
1/λ(x) + Eε,y (Tε)

Eε,x(Tε)

yields an estimator with variance zero.

On our toy example, the only probability we can change is from 1

0 1 2

1 ρ

1− ρ

ρ =
ε

1 + ε

1
1+ε + 0

1+2ε
2ε2

=
2ε3

(1 + ε)2(1 + 2ε)
yields variance 0.

But the estimation takes on average longer time, 2
ρ = Θ(ε−3), as ε

gets closer to zero.

An approximation of the zero-variance IS can be inefficient, producing
an unbounded work-normalized relative variance.
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Discussion on the impact of the approximation

For ρ = 2ε3

(1+ε)2(1+2ε)
, we retrieve a variance zero.

For ρ = ε3 (approximation of good asymptotic order), the variance is
Θ(ε−2), but the work-normalized relative variance is unbounded due
to the computational time.

For ρ = 2ε3 (exact first-order term), the variance is Θ(1), which is
better but still not sufficient to yield a bounded work-normalized
variance.

Much better than an exact first-order approximation is required.
Hard to obtain in practice.
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Conclusions on MTTF estimation

We have compared two standard estimators of the MTTF for regenerative
processes

a direct one expressed as the average of simulated times to failure

one making use of the regenerative structure

1 Crude direct and ratio-based estimators are asymptotically equivalent
(in two asymptotic contexts)

2 When IS is used, the regenerative expression is rather advised.
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Basic idea

Let F be the cumulative distribution function of T

Goal: For fixed 0 < q < 1, estimate the q-quantile (0 < q < 1)

ξ = F−1(q) ≡ inf{t : F (t) ≥ q}

and the conditional tail expectation (CTE)

γ = E [T | T > ξ].

Assumption: X is (classically) regenerative
with 0 = Γ0 < Γ1 < Γ2 < · · · sequence of regeneration times
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Decomposition

Using τi = Γi − Γi−1 and M the number of first cycles not reaching A

T =
M∑
i=1

τi + TM+1

with Ti = inf{t ≥ 0 : X (Γi−1 + t) ∈ A} time to the next hit to A
after Γi−1.

M geometric r.v. with P(M = k) = p(1− p)k where

p = P(T < τ).

Recall that the regenerative structure of X allows to express

α = E [T ] =
E [T ∧ τ ]

p
≡ ζ

p
.
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Asymptotic regimes/exponential approximation

Introduction of a rarity parameter ε

Assumption: p ≡ pε → 0 as ε→ 0.

I Ex HRMS: Probability of reaching a failed state before coming back to
the initial (perfectly working) state goes to 0 with failure rates

I Ex GI/G/1 queue: considering a receding set of states (number of
customers) A ≡ Aε = {bε, bε + 1, bε + 2, . . .}.

Theorem (Known result)

The scaled hitting time Tε/αε converges weakly to an exponential: for
each x ≥ 0,

Pε(Tε/αε ≤ x)→ 1− e−x as ε→ 0.
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Quantile and CTE estimators based on the exponential
approximation
From

F (t) = P(T ≤ t) = P(T/α ≤ t/α) ≈ 1− e−t/α ≡ F̃exp(t),

we get

ξ̃exp = F̃−1
exp(q) = −α ln(1− q)

γ̃exp = ξ̃exp + α = α[1− ln(1− q)].

Using the ZVA efficient estimator α̂ of α, we get

ξ̂exp = F̂−1
exp(q) = −α̂ ln(1− q) and γ̂exp = ξ̂exp + α̂ = α̂[1− ln(1− q)]

Efficient estimators

...but biased

Other more involved estimators available in our WSC’2018 paper.
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Numerical example
HRMS with three component types

five components of each type

15 repairmen

system up whenever at least two components of each type work

Each component has failure rate ε and repair rate 1.

With ε = 10−2
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Numerical results

Quantile estimators
ε q Empirical 95% CI CPU Expon. Est. Expon. 95% CI CPU

0.01 0.1 (1.701e+05, 1.971e+05) 890 sec 1.830e+05 (1.764e+05, 1.896e+05) 0.3 sec
0.01 0.5 (1.206e+06, 1.271e+06) 890 sec 1.204e+06 (1.161e+06, 1.247e+06) 0.3 sec
0.01 0.9 (3.958e+06, 4.135e+06) 890 sec 4.000e+06 (3.856e+06, 4.143e+06) 0.3 sec

10−4 0.1 N/A N/A 1.757e+13 (1.756e+13, 1.758e+13) 0.3 sec

10−4 0.5 N/A N/A 1.155e+14 (1.154e+14, 1.157e+14) 0.3 sec

10−4 0.9 N/A N/A 3.840e+14 (3.838e+14, 3.842e+14) 0.3 sec

CTE estimators
ε q Empir. Est. CPU Expon. Est. Expon. 95% CI CPU

0.01 0.1 1.964e+06 890 sec 1.920e+06 (1.851e+06, 1.989e+06) 0.3 sec
0.01 0.5 3.011e+06 890 sec 2.941e+06 (2.836e+06, 3.046e+06) 0.3 sec
0.01 0.9 5.915e+06 890 sec 5.737e+06 (5.531e+06, 5.942e+06) 0.3 sec

10−4 0.1 N/A N/A 1.839e+14 (1.834e+14, 1.845e+14) 0.3 sec

10−4 0.5 N/A N/A 2.817e+14 (2.809e+14, 2.826e+14) 0.3 sec

10−4 0.9 N/A N/A 5.495e+14 (5.479e+14, 5.512e+14) 0.3 sec

I Very efficient
I But biased.... for small ε, does not seem a problem in practice
I Other less biased estimators studied in our WSC’2018 paper.
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