
HAL Id: hal-02190656
https://inria.hal.science/hal-02190656

Submitted on 22 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Interactive Runtime Verification: Formal Models,
Algorithms, and Implementation

Raphaël Jakse, Yliès Falcone, Jean-François Méhaut

To cite this version:
Raphaël Jakse, Yliès Falcone, Jean-François Méhaut. Interactive Runtime Verification: Formal Mod-
els, Algorithms, and Implementation. [Research Report] UGA (Université Grenoble Alpes); LIG
(Laboratoire informatique de Grenoble); Inria Grenoble Rhône-Alpes, Université de Grenoble. 2019.
�hal-02190656�

https://inria.hal.science/hal-02190656
https://hal.archives-ouvertes.fr


1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

Interactive Runtime Verification: Formal Models, Algorithms, and
Implementation

RAPHAËL JAKSE, Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, LIG, 38000 Grenoble France

YLIÈS FALCONE, Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, LIG, 38000 Grenoble France

JEAN-FRANÇOIS MÉHAUT, Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, LIG, 38000 Grenoble France

Interactive runtime verification (i-RV) combines runtime verification and interactive debugging. Runtime verification consists in

studying a system at runtime, looking for input and output events to discover, check or enforce behavioral properties. Interactive

debugging consists in studying a system at runtime in order to discover and understand its bugs and fix them, inspecting its internal

state interactively. We define an efficient and convenient way to check behavioral properties automatically on a program using a

debugger. We aim at helping bug discovery and understanding by guiding classical interactive debugging approaches using runtime

verification.

In this paper, we provide a formal model for interactively runtime verified programs. For this, we model how of a program

executes under a debugger composed with a monitor (for verdict emission) and a scenario (for steering the debugging session). We

provide guarantees on the soundness of the verdicts issued by the monitor by exhibiting a weak simulation (relation) between the

initial program and the interactively runtime verified program. Moreover, we provide an algorithmic view of this model suitable for

producing implementations. We present Verde, an implementation based on GDB to interactively runtime verify C programs. We

report on a set of experiments using Verde assessing the usefulness of Interactive Runtime Verification and the performance of our

implementation. Our results show that, even though debugger-based instrumentation incurs non-trivial performance costs, i-RV is

applicable performance-wise in a variety of cases and helps to study bugs.

CCS Concepts: • Software and its engineering → Software testing and debugging.

Additional Key Words and Phrases: runtime verification, property, monitoring, debugging

1 INTRODUCTION

When developing software, detecting and fixing bugs as early as possible is important. This can be difficult: an error

does not systematically lead to a crash, it can remain undetected during the development. Besides, when detected, a

bug can be hard to understand, especially if the method of detection does not provide methods to study the bug. In this

paper, we lay down the foundations for interactive runtime verification, an approach addressing the aforementioned

challenges by combining two verification approaches, namely interactive debugging and runtime verification. We

briefly recall the features of interactive debugging and runtime verification as well as their shortcomings.

Interactive Debugging. Interactive Debugging aims at studying and understanding a bug [34]. Fixing bugs is usually

performed by observing a bad behavior and starting a debugging session to find the cause. The program is seen as a

white box and its execution as a sequence of program states that the developer inspects step by step using a debugger in

order to understand the cause of misbehavior. A debugging session generally consists in repeating the following steps:

executing the program in a debugger, setting breakpoints on statements or function calls executed before the suspected

cause of the bug. These steps aim to find the point in the execution where it starts being erratic and inspecting the

internal state (call stack, values of variables) and to determine the cause of the problem. The execution is seen at a low

Authors’ addresses: Raphaël Jakse, Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, LIG, 38000 Grenoble France, Raphael.Jakse@univ-grenoble-alpes.fr;

Yliès Falcone, Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, LIG, 38000 Grenoble France, Ylies.Falcone@univ-grenoble-alpes.fr; Jean-François Méhaut,

Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, LIG, 38000 Grenoble France, Jean-Francois.Mehaut@univ-grenoble-alpes.fr.

Manuscript submitted to ACM 1



53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

2 Raphaël Jakse, Yliès Falcone, and Jean-François Méhaut

level (assembly code, sometimes mapped to the source code) while the software developer reasons at the source level

and thus would ideally want the execution to be abstracted. The debugger links the binary code to the programming

language. The program state can be modified at runtime: variables can be edited, functions can be called, the execution

can be restored to a previous state. This lets the developer test hypotheses on a bug without having to modify the code,

recompile and rerun the whole program, which would be time consuming. However, this process can be tedious and

prone to a lot of trials and errors. Moreover, observing a bug does not guarantee that this bug will appear during the

debugging session, especially if the misbehavior is caused by a race condition or a special input that was not recorded

when the bug was observed. Interactive debugging does not target bug discovery: usually, a developer already knows

the bug existence and tries to understand it.

Runtime Verification. Runtime verification (aka monitoring) [1, 20, 28, 38] aims at checking the correctness of an

execution w.r.t. a specification. The execution is abstracted into a sequence of events of program-state updates. Runtime

verification aims at detecting misbehaviors of a black-box system: its internal behavior is not accessible and its internal

state generally cannot be altered. Information on the internal state can be retrieved by instrumenting the execution of

the program. The execution trace can be analyzed offline (i.e., after the termination of the program) as well as online (i.e.,

during the execution) and constitutes a convenient abstraction on which it is possible to check runtime properties.

While runtime verification is a versatile and effective method in providing formal guarantees on the correctness of

program executions, it still remains an approach used by experts in this technique. Runtime verification is not yet

integrated in developer tools nor used by developers.

Challenges and contributions. We introduce Interactive Runtime Verification (i-RV). i-RV aims at easing bug study by

allowing both bug discovery and bug understanding at the same time. To fulfill this goal, i-RV combines interactive

debugging and runtime verification by augmenting debuggers with runtime verification approaches, making i-RV a

practical debugging method backed with a strong formal background. Gathering interactive debugging and runtime

verification is challenging for several reasons. To the best of our knowledge, interactive debugging has not been

formalized in previous work. In this paper, we therefore provide an abstraction of the execution of a program being

debugged that is compatible with formalisms used in runtime verification. Moreover, instrumentation techniques

traditionally used in runtime verification, like aspects or dynamic binary instrumentation do not allow controlling

the execution and the set of monitored events is often static. Therefore, an important aspect of interactive runtime

verification is the way the richness and expressiveness of the instrumentation as well as the control provided by the

debugger are leveraged. Usage of verdicts issued by the monitor for guiding the interactive debugging session also has

to be specified.

The key idea of interactive runtime verification is to use runtime verification as a guide to interactive debugging. The

program is run in an interactive debugger, allowing the developer to use traditional approaches to study the internal

state of the program. The debugger is also used as a means of instrumentation to produce the execution trace evaluated

using runtime verification. We introduce the notion of scenarios in i-RV. Scenarios are a way to guide and automate the

interactive debugging session by reacting to verdicts produced by the monitor and modify the execution or the control

flow of the program. Scenarios are a means to separate the concerns of evaluating and controlling the execution of the

program. Scenarios make use of checkpoints that allow saving and restoring the program state. They are a powerful

way to explore the behavior of programs by trying different execution paths.

We aim to provide the foundations of a formal verification approach combining runtime verification and interactive

debugging. We describe i-RV at several abstraction levels. First, we formally describe our execution model using natural

Manuscript submitted to ACM



105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

Interactive Runtime Verification: Formal Models, Algorithms, and Implementation 3

operational semantics. This model provides a solid and precise theoretical framework. In defining the model, we assume

that programs are sequential, deterministic, and do not communicate with the outside. The model does not account for

timing issues. We detail these assumptions in Sec. 5.1.

This framework provides a basis for reasoning and to ensure the correctness of our approach. Second, we give an

algorithmic description using pseudo-code based on this operational view. This algorithmic view aims at helping build

an actual implementation of i-RV. Developers using the approach are not required to have a full understanding of these

descriptions. Finally, we provide and present a full-featured implementation for i-RV, Verde, written in Python as a GDB

extension, facilitating its integration to developers’ traditional environment. Verde also provides an optional animated

view of the current state of the monitor. We give a detailed evaluation of i-RV using Verde. This evaluation asserts the

usefulness of i-RV and its applicability in terms of performances. Verde can be retrieved at [24].

A this point, we mention that this paper is an extended version of a paper that appeared in the proceedings of the

28th IEEE International Symposium on Software Reliability Engineering (ISSRE 2017) [23]. This paper significantly

extends the original conference version with the following additional contributions:

• a formal operational model of the behavior of interactive runtime verification expressed as a formal composition

of the behavior of an interactive debugger, a monitor, and a scenario with the program under scrutiny (Sec. 6);

• a theorem (with its proof) stating that the debugged program is observationally equivalent to the original

program and that verdicts from the monitor are guaranteed to correspond to an execution of the initial program

(Sec. 7);

• algorithms implementing the operational semantics model of the interactively runtime verified model (Sec. 8);

• we provide additional and updated experiments to evaluate and validate the effectiveness of interactive runtime

verification (Sec. 10).

Paper organization. In Sec. 2, we overview interactive runtime verification. In Sec. 3, we present existing approaches

for finding and studying bugs and compare them to our work. In Sec. 4, we define some notations used in this paper. In

Sec. 5, we define some notions related to interactive runtime verification. In Sec. 6, we give an operational view of our

model. In Sec. 7, we give guarantees on our model. Proofs of these guarantees are given in Appendix A In Sec. 8, we

present an algorithmic view of our model. In Sec. 9, we present our proof-of-concept implementation of this approach,

Verde. In Sec. 10, we evaluate our approach. In Sec. 11, we conclude and outline avenues for future work.

2 OVERVIEW OF INTERACTIVE RUNTIME VERIFICATION

In i-RV (Fig. 1), the program to be interactively verified at runtime is run alongside a debugger, a monitor and a scenario.

The developer can drive the debugger as usual, like in an interactive debugging session. The debugger also provides

tools to control and instrument the program execution, mainly breakpoints and watchpoints. The monitor evaluates a

developer-provided property against the program execution trace and produce a sequence of verdicts. See Fig. 2 for an

example of such a property. To evaluate the property, the monitor requests events (function calls and memory accesses)

to the debugger. The debugger instruments the program by setting breakpoints and watchpoints at relevant locations

and notifies the monitor whenever such an event happens, effectively producing a trace of the execution that is relevant

for the property being evaluated. When an event stops influencing the evaluation of the property, the corresponding

instrumentation (breakpoints, watchpoints) becomes useless and is therefore removed: the instrumentation is dynamic.

The developer-provided scenario defines what actions should be taken during the execution according to the

evaluation of the property. Examples of scenarios are: when the verdict given by the monitor becomes false (e.g., when

Manuscript submitted to ACM



157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

4 Raphaël Jakse, Yliès Falcone, and Jean-François Méhaut

Developer

Debugger Program

Monitor Scenario

Issues

commands Controls

Instruments

Produces

events

Requests

events

Produces

verdicts

Issues

commands

Shows

verdicts

Fig. 1. Overview of Interactive Runtime Verification. The developer issues commands to the debugger, the debugger controls and
instruments the program, the monitor requests program events to the debugger and issues verdicts to the scenario and the scenario
applies developer-defined reactions.

Fig. 2. Property for the absence of overflow for each queue q in a program. When a queue is created, the automaton is in state
queue_ready for this queue. Pushes and pops are tracked. When a push (resp. pop) causes an overflow (resp. underflow) of the
queue, the property is in state sink.

the queue overflows), the execution is suspended to let the developer inspect and debug the program in the usual way,

interactively; save the current program state (e.g., using a checkpoint, a feature provided by the debugger) while the

property holds (e.g., while the queue has not overflown) and restore this state later, when the property does not hold

anymore (e.g., at the moment the queue overflows). When an event is generated — when a breakpoint or a watchpoint

is reached — at runtime, the monitor updates its state. Monitor updates are seen as input events for the scenario.

Examples of these events are “the monitor enters state X”, “state X has been left”, “an accepting state has been entered”,

“a non-accepting state has been left”.

Comparison with interactive debugging. Fig. 3 depicts a comparison between a traditional interactive debugging

session and an interactive runtime verification session. In using any of the approaches, we have a program and a

specification. The specification and the program are related in that the program is either written from the specification

or the specification describe (part of) the expected behavior of the program. During the execution of the program, the

developer observes a fault; this can be a crash, an incorrect result, a failing test case, etc. Using this observation, the call

stack trace, and the specifications, the developer makes hypotheses on the error that led to the fault. Making hypothesis

consists in identifying events (function call, variable accesses, etc.) that are involved in the error. Events can carry data

from the program, e.g., the effective parameter of a function call. The developer usually believes that something went

wrong with these events during the execution (absence/presence of an (un)expected event, wrong ordering between

events, etc.).

Manuscript submitted to ACM



209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

Interactive Runtime Verification: Formal Models, Algorithms, and Implementation 5

Fig. 3. Interactive Debugging versus Interactive Runtime Verification

During an interactive debugging session, the developer explores the execution manually, from the observation

of the fault up to the cause, by (i) using the call stack trace (ii) manually setting breakpoints and watchpoints (iii)

inspecting values and stepping through the program. This process is iterative. While studying the program behavior, the

developer has some information: the currently active breakpoints and watchpoints, the values of manually inspected

variables, and the set of manually set checkpoints.

During an interactive runtime verification session, properties are chosen among those provided with the APIs

used by the program or written from the specifications. Each property formally expresses an expected behavior of the

program, which is selected from the specification. A property formally defines the events and their expected ordering

during an execution and associates each sequence of events with a verdict indicating whether the behavior is desirable.

The monitors of the properties are typically finite-state machines that serve as decision procedures (for the properties).

The program is automatically instrumented by adding the breakpoints and watchpoints so that the monitor can observe

the events involved in the properties. Hence, the execution is monitored at runtime, relieving the developer from

the corresponding manual exploration in classical interactive debugging. When a property is violated, the developer

analyzes the bug and is provided with a trace containing several pieces of information that are automatically produced:

Manuscript submitted to ACM



261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

6 Raphaël Jakse, Yliès Falcone, and Jean-François Méhaut

events relevant to the property that happened during the execution, the states through which the monitor went, as

well as the taken checkpoints. These checkpoints can be seen as bookmarks in the execution. Contrarily to interactive

runtime verification, during a classical interactive debugging session, no information is automatically produced: any

piece of information comes from manual inspection by the developer.

1 #define size 16

2

3 #include <stdio.h>

4 #include <stdlib.h>

5 #include <string.h>

6 #include <strings.h>

7

8 typedef struct {

9 int pos_c;

10 int pos_v;

11 char consonants[size / 2];

12 char vowels[size / 2];

13 } double_queue_t;

14

15 double_queue_t∗ queue_new() {

16 double_queue_t∗ queue = malloc(sizeof(double_queue_t));

17 queue−>pos_c = 0;

18 queue−>pos_v = 0;

19 bzero(queue−>consonants, size / 2);

20 bzero(queue−>vowels, size / 2);

21 return queue;

22 }

23

24 void queue_destroy(double_queue_t∗ queue) {

25 free(queue);

26 }

27

28 void queue_push(double_queue_t∗ queue, char c) {

29 if (strchr("aeyuio", c))

30 queue−>vowels[queue−>pos_v++] = c;

31 else if (strchr("zrtpqsdfghjklmwxcvbn", c))

32 queue−>consonants[queue−>pos_c++] = c;

33 }

34

35 void queue_push_str(double_queue_t∗ queue, char∗ s) {

36 while (s[0] != '\0')

37 queue_push(queue, (s++)[0]);

38 }

39

40 void queue_display_result(double_queue_t∗ queue) {

41 printf("Consonants: ");

42 for (int i = 0; i < queue−>pos_v; i++)

43 putchar(queue−>consonants[i]);

44 printf("\nVowels: ");

45 for (int i = 0; i < queue−>pos_v; i++)

46 putchar(queue−>vowels[i]);

47 puts("");

48 }

49

50 int main() {

51 double_queue_t∗ queue = queue_new();

52 queue_push_str(queue, "oh, a nasty bug is here!");

53 queue_display_result(queue);

54 queue_destroy(queue);

55 return 0;

56 }

Fig. 4. Faulty C program. Vowels and consonants are supposed to be split in two separate arrays. However, according to the program
output (Consonants: hnstbgsh and Vowels: raayuiee), the split is not done correctly.

Illustrative example. We compare a traditional interactive debugging session with an interactive runtime verification

session using a sample C program depicted in Fig. 4. This program purposely contains a fault. The program splits the

vowels and consonants from a given string in a custom queue structure which consists of two arrays. When run, the

program displays a consonant among the vowels.

In an interactive debugging session (reproduced in Fig. 29, p. 60), the developer tracks the bug by running a debugger

and may study the bug as follows. First, to check that the problem does not come from the function that displays the

queue, setting a breakpoint at line 53 allows the developer to print the value of q->vowels. The debugger displays
"raayuiee". A consonant was indeed put in the array of the structure that is dedicated to vowels. To study how the

vowels are added to the queue, the developer may restart the program and put a breakpoint on line 30. When the

execution is suspended, the developer types command display c to show the character being added to the vowels. The

breakpoint is reached 8 times and no consonant is added to the array vowels. The developer may want to know how

the first cell of array vowels was filled with a consonant. For this purpose, setting a breakpoint after the declaration of

the queue in function main allows the developer to set a watchpoint on q->vowels[0]. The watchpoint is reached a

first time. A vowel (“o”) is stored in this cell at line 32, which is an expected behavior. After continuing the execution,

the watchpoint is reached a second time at line 32 and “o” is replaced by “r”. This line is supposed to write in array

Manuscript submitted to ACM



313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

Interactive Runtime Verification: Formal Models, Algorithms, and Implementation 7

consonants. Command print q->pos_c - 1 displays 8. Array consonants is defined on line 11 with size 16/2 = 8.

Value 8 is therefore out of bounds. Since array vowels is defined right after array consonants, this overflow leads to a

rewrite of the first cell of array vowels.
In an interactive runtime verification session, the developer thinks about which properties should be verified in the

code and may use the one depicted in Fig. 2 (the queue should not overflow). When the program is interactively runtime

verified with this property
1
, a breakpoint is automatically put at the beginning of function queue_new and another at

the beginning of function queue_push. The first breakpoint is reached once and the second one 17 times, without

interrupting the execution, saving the developer from having to carry out a manual inspection. The non-accepting state

of the property is reached and the execution is suspended. In the debugger prompt, the developer can display the stack

trace and observe that the fault happened at line 37 in queue_push_str, called in function main at line 52.

In both cases, the developer deduces that checks should be added in the program code to avoid overflows. In the latter

case, the typical exploration phase of interactive debugging is avoided: breakpoints are set and handled automatically

and the property state gives an higher-level explanation of the bug (too many letters were pushed in the queue, causing

the cell to be rewritten later), and the bug is located earlier in the execution, before the cell is rewritten. This example

features a typical array overflow, a common fault in C programs. Such overflows often have security implications.

Unfortunately, they are not always easily noticed because array accesses are not automatically checked at runtime

when using C. Here, interactive runtime verification helps the detection of this fault, caused by the misuse of a data

structure, by checking a property over this data structure.

3 RELATEDWORK

i-RV is related to several families of approaches for finding and fixing bugs. In this section, we overview some of these

approaches, their drawbacks and benefits, and how they are suitable for discovering different sorts of bugs in different

situations. Their relevance is also related to a phase of the program life cycle. We note already that none of them

combines bug discovery and understanding, as i-RV does.

3.1 Testing

Manual testing. Most obvious bugs can easily be spotted this way during the development of the software. Modifica-

tions to the code are manually tested, possibly by a team responsible for testing the software [22]. Bugs are also spotted

by final users of the software, which may be undesirable. Manual testing can be tedious. i-RV aims at reducing manual

and tedious human intervention by guiding and partly automating the exploration of misbehaviors.

Automatic testing. Among the numerous automated testing approaches, unit testing is one of the most popular

and adopted ones. Unit tests aim to limit regressions and to check the correctness of the code for a restricted set of

inputs [21]. Many unit testing frameworks exist, including for instance JUnit and CppUnit. Some research efforts

have been carried out on the automatic generation of unit tests. For instance, [8] generates test oracles from formal

specifications of the expected behavior of a Java method or class. In that, unit testing uses some form of verification at

runtime of the program execution. i-RV is complementary to automatic testing as it is more focused on getting insight

on the program behavior. Thanks to the debugger, i-RV offers some interactivity and more accurate information in case

of a breakage (while automatic testing generally issues verdicts).

1
With Verde: verde –prop queue.prop ./faulty, where the contents of file queue.prop is given in Fig. 25 (p. 46). A session is reproduced in Fig. 30

(p. 61). The program is compiled with gcc -g3.

Manuscript submitted to ACM



365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

8 Raphaël Jakse, Yliès Falcone, and Jean-François Méhaut

3.2 Heavyweight Verification

With heavyweight verification approaches (e.g., static analysis [11]), the source code of the software is analyzed without

being run in order to find issues. Properties can also be proven over the behavior of the software. Unfortunately,

these approaches can be slow, limited to certain classes of bugs or safety properties and can produce false positives

because of the required abstractions on the verified software. Model checking [16] is an automatic verification approach

for finite-state reactive systems. Model checking consists in checking that a model of the system verifies temporal

properties [9].

Heavyweight verification approaches are usually limited in the expressiveness of the properties they can check.

Heavyweight verification approaches are complementary to dynamic verification approaches. Acknowledging the

incompleteness of dynamic verification approaches allows checking more complex behavioral properties and thus i-RV

can be used to cover the cases and situations left uncovered by heavyweight verification approaches. In particular, any

verdict produced by the monitors corresponds to the associated evaluation of the property and thus any bug leading to

the violation of a property will be spotted.

3.3 Interactive and Reverse Debugging

Tools used in interactive debugging [34, 35] are mainly debuggers such as GDB, LLDB and the Visual Studio debugger.

GDB is a cross-platform free debugger from the Free Software Foundation. LLDB is the cross-platform free debugger of

the LLVM project, started by the University of Illinois, now supported by various firms such as Apple and Google. The

Visual Studio debugger is Microsoft’s debugger. Reverse debugging [17, 19, 37] is a complementary debugging method.

A first execution of the program showing the bug is recorded. Then, the execution can be replayed and reversed in a

deterministic way, guaranteeing that the bug is observed and the same behavior is reproduced in each replay. UndoDB

and rr are GDB-based tools allowing record and replay and reverse debugging with a small overhead. Reverse debugging

is still akin to a traditional, manually driven interactive debugging session. i-RV also allows to restore the execution in

a previous state using checkpoints, with the help of the monitor and the scenario, adding a level of automation. We

provide i-RV with an execution model sufficiently detailed for the purpose of ensuring guarantees about its correctness

(see Sec. 7). Work has been done to focus on the modelizsation of program execution, compilers, and debuggers, to

ensure correct and intuitive behavior of the debugger [13], more suitable to implement and reason about interactive

debuggers.

3.4 Runtime Verification

Runtime verification consists in checking properties at runtime. Checks are performed on the sequence of events

produced during the execution. Producing events requires instrumentation. Different instrumentation techniques exist.

In this section, we give some of the most important ones. Compared to runtime verification, i-RV adds interactivity

and access to the internal state of the program, and provides a way to use verdicts issued by the monitor. Runtime

verification is a building block of i-RV.

Compile-Time Instrumentation. RiTHM [32] is an implementation of a time-triggered monitor, i.e., a monitor ensuring

predictable and evenly distributedmonitoring overhead by handlingmonitoring at predictablemoments. Instrumentation

is added to the code of the program to monitor. i-RV does not modify the code of the program nor does it requires

recompiling the program.

Manuscript submitted to ACM



417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

Interactive Runtime Verification: Formal Models, Algorithms, and Implementation 9

Dynamic Binary Instrumentation. DBI allows detecting cache-related performance and memory usage related prob-

lems. The monitored program is instrumented by dynamically adding instructions to its binary code at runtime and run

in a virtual machine-like environment. Valgrind [33] is a tool that leverages DBI and can interface with GDB. It provides

a way to detect memory-related defects. Dr. Memory [3] is another similar tool based on DynamoRIO [4]. DynamoRIO

and Intel Pin [29] are both DBI frameworks that allow to write dynamic instrumentation-based analysis tools. DBI

provides a more comprehensive detection of memory-related defects than using the instrumentation tools provided by

the debugger. However, it is also less efficient and implies greater overheads when looking for particular defects like

memory leaks caused by the lack of a call to a function like free. DBI also does not provide a straightforward way to

suspend the execution and add interactivity.

Instrumentation Based on the VM of the Language. For some languages like Java, the Virtual Machine provides

introspection and features like aspects [26, 27] used to capture events. The Jassda framework [2], which uses CSP-like

specifications, LARVA [10] and JavaMOP [6] are monitoring tools for programming languages based on a virtual

machine (mainly Java). This is different from our model which rather depends on the features of the debugger.

JavaMOP [25] is a tool that allows monitoring Java programs. However, it is not designed for inspecting their internal

state. JavaMOP also implements trace slicing as described in [7]. In our work, events are dispatched in slices in a similar

way. We do not implement all the concepts defined by [7] but this is sufficient for our purpose. In monitoring, the

execution of the program can also be affected by modifying the sequence of input or output events to make it comply

with some properties [18]. This differs from i-RV which applies earlier in the development cycle. We rather modify the

execution from inside and fix the program than its observable behavior from outside.

Debugger-Based Instrumentation. Morphine [14], Opium [15] and Coca are three automated trace analyzers. The

analyzed program is run in another process than the monitor, like in our approach. The monitor is connected to a

tracer. Like in our approach, trace analyzers rely on the debugger to generate events. However, they do not provide

interactivity and do not permit affecting the execution.

Frama-C [12]. Frama-C is a modular platform aiming at analyzing source code written in C and provides plugins for

static analysis, abstract interpretation, deductive verification, testing and monitoring programs. It is a comprehensive

platform for verification. It does not support interactive debugging nor programs written in other programming

languages.

With these runtime verification approaches, the conceptual frameworks as well as the implementations do not

provide much information to the developer in case of error. In best cases, a runtime verification framework indicates

the line in the source code at which a violation occurred, as well as the abstract sequence of events that lead to the error.

With i-RV, the provided information is much more detailed: the whole internal state of the program can be inspected

thanks to the debugger.

4 NOTATIONS AND DEFINITIONS

In this section, we define some notations and concepts used throughout the paper.

4.1 Sets and Functions

Definition and image domains. For two sets E and F , a function from E to F is denoted by f : E → F . We denote

the set of functions from E to F by [E → F ]. Let f : E → F be a function. We denote the domain of function f by

Manuscript submitted to ACM



469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

10 Raphaël Jakse, Yliès Falcone, and Jean-François Méhaut

Dom(f ), the subset of E on which the function is defined. We denote the image of function f by Im(f ), defined by

Im(f ) = { f (x) | ∃x ∈ E}. Let X be a set and e an expression. We denote by {x 7→ e | x ∈ X } the function f such that

Dom(f ) = X and f (x) = e .

Function substitution. Function substitution is used to lighten notation in proofs, especially when proving equalities.

Let f and д be two functions. We denote by f † д the function h such that: ∀x ∈ Dom(д), h(x) = д(x) and ∀x <

Dom(д), h(x) = f (x). Let f : E −→ F , for x1 ∈ X and v ∈ F , function f [x1 7→ v] denotes function f ′ such that

f ′(x) = f (x) for any x , x1, and f ′(x1) = v .

Powerset. The powerset of a set E is denoted by P(E). Let f be a function. Function f\E is such that ∀e ∈ Dom(f ) \

E, f\E (e) = f (e) and Dom(f\E ) = Dom(f ) \ E (this function is undefined on elements in E).

Sequences. Moreover, ϵ is the empty sequence. E∗ denotes the set of finite sequences over E. Given two sequences s

and s ′, the sequence obtained by concatenating s ′ to s is denoted by s · s ′. We denote the number of elements in a finite

sequence or a set C by |C |. Sequences are used to represent lists of breakpoints or watchpoints in the debugger.

Named tuples. Throughout the paper, we use named tuples to describe configurations of the components of our

architecture, for their readability and explicitness over simple tuples.

Definition 4.1 (Named Tuple). A namedn-tuple r = (t, f
ind
) is pair composed of an-tuple t = (t1, . . . , tn ) ∈ E1×· · ·×En

(for any sets E1, · · · , En ) and a bijection f
ind

: {1, . . . ,n} → Name that maps indexes to names.

The shorthand notation (f1 7→ v1, . . . , fn 7→ vn ) ∈ E1 × · · · × En denotes the named tuple ((v1, . . . ,vn ), [1 7→

f1, . . . ,n 7→ fn ]) such that (v1, . . . ,vn ) ∈ E1 × · · · × En .

Moreover, we shall use the field notation: for field ∈ Im(f
ind
), r .field denotes tf −1

ind
(field), that is r .field is the value in

tuple t at index i such that f
ind
(i) = field.

Substitution for named tuples. We use substitution to describe the evolution of a configuration. Let r = (t, f
ind
)

be a named n-tuple. We denote by r ′ = r [f1 7→ v1, . . . , fk 7→ vk ] the named tuple equal to r , except for fields

f1, . . . , fk , which are equal to values v1, . . .vk , respectively. That is, r
′
is such that ∀i ∈ {1, . . . ,k}, r ′. fi = vi and

∀i < {1, . . . ,k}, r ′. fi = r . fi .

Remark 1. In the remainder of the paper, given a bijection f
ind

, we use a tuple t and the corresponding named tuple

r = (t, f
ind
) interchangeably.

4.2 Notation and Notions Related to Labeled Transition Systems

Labeled transition systems. Later in the paper, we model the components involved in interactive runtime verification

as Labeled Transition Systems (LTSs) and Input-Output Labeled Transition Systems (IOLTS).

Definition 4.2 (LTS). An LTS is a tuple (Q,A,→), where Q is the set of configurations, A is a set of actions and

→⊆ Q ×A ×Q is the transition relation between configurations.

(q,a,q′) ∈→ is denoted by q
a
−→ q′ and q → q′ is a short for ∃a ∈ A : q

a
−→ q′. If q,q′ ∈ Q are two configurations

such that q → q′, the LTS is said to evolve from configuration q to configuration q′. Configuration q′ (resp. q) is said to

be a successor (resp. predecessor) of configuration q (resp. q′).

We also use IOLTSs, which are LTSs with inputs and outputs.

Manuscript submitted to ACM



521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

Interactive Runtime Verification: Formal Models, Algorithms, and Implementation 11

Definition 4.3 (IOLTS). An IOLTS is a tuple (Q,A, I ,O,→). Q is the set of configurations, A is the set of actions, I

and O are the sets of input and output symbols respectively,→⊆ Q ×A × I ×Q ×O is the transition relation between

configurations.

Whenever (q,a, i,q′,o) ∈→, we note it q
a/i/o
−−−−−→ q′ and q

i/o
−−−→ q′ is a short for ∃a ∈ A : q

a/i/o
−−−−−→ q′.

If q,q′ ∈ Q are two configurations, i ∈ I is an input symbol and o ∈ O an output symbol such that q
i/o
−−−→ q′, the

IOLTS is said to output symbol o and evolve from configuration q to configuration q′ when the next input symbol is i .

Vocabulary and notations on the transitions of LTSs are extended to IOLTSs in the natural way.

Semantic rules. We use semantic rules to define the transition relation of LTSs and IOLTSs. More precisely, the

transition relation is the least set of transitions that satisfy semantic rules. Semantic rules are written using the following

standard notation:

r

conditions on q and i

q
i / o
−−−−→ q′

This notation reads as follows: for all q,q′ ∈ Q , i ∈ I , o ∈ O , q
a/i/o
−−−−−→ q′ holds if the conditions on q and i hold, where

a is r , the name of the rule, unless otherwise explicitly specified.

Transitions without an input (resp. output) symbol are permitted. In this case, i (resp. o) is written −.

The set of semantic rules that define a transition relation→ is denoted by Rules(→).

Given states q and q′ and an action a, q
a
−→ q′ means (q,a,q′) ∈→ if → is the transition relation of an LTS,

∃ (i,o) ∈ I ×O : (q,a, i,q′,o) ∈→ if→ is the transition relation of an IOLTS.

Given any two configurations q and q′ and a regular expression E over A, q
E
−→ q′ means: there exists a finite

sequence (a1, . . . ,ak ) of actions of Amatched by E and intermediate configurations such that q
a1
−−→ . . .

ak
−−→ q′.

Selection of configurations by fields. If q is a set of tuples, constraints to the application of a semantic rule can also be

given using the selection notation:

conditions on q

q ⟨f1 7→ v1, . . . , fn 7→ vn⟩
i / o
−−−−→ q′

The application of the semantic rule is limited to configurations q for which fields f1, . . . , fn in q are equal to values

v1, . . .vn , respectively.

Similarly, for any named tuples q,q′ and any relation→, q → q′
〈
f1 7→ v1, . . . , fn 7→ vn

〉
is a short for (q,q′) ∈→

and fields f1, . . . , fv in q′ are equal to values v1, . . . ,vn , respectively.

Simulation relation. We use the simulation relation to express correctness properties on our models. Let S1 =

(Q1,q
1

0
,→1,Obs ∪ Obs) and S2 = (Q2,q

2

0
→2,Obs ∪ Obs) be two LTSs over a common set of actions Obs ∪ Obs where

Obs (resp. Obs) is the set of observable (resp. unobservable) actions. We recall below the notion of weak simulation.

Definition 4.4 (Weak simulation [31]). LTS S1 weakly simulates LTS S2 if there exists a relation R ⊆ Q1 ×Q2 such that:

(1) ∀(q1,q2) ∈ R,∀θ ∈ Obs,∀q
′
1
∈ Q1 :

(
q1

θ
−→ q′

1
=⇒ ∃q′

2
∈ Q2 : (q

′
1
,q′

2
) ∈ R ∧ q2

Obs

∗

−−−−→ q′
2

)
.

Manuscript submitted to ACM



573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

12 Raphaël Jakse, Yliès Falcone, and Jean-François Méhaut

(2) ∀(q1,q2) ∈ R,∀α ∈ Obs,∀q
′
1
∈ Q1 :

(
q1

α
−→ q′

1
=⇒ ∃q′

2
∈ Q2 : (q

′
1
,q′

2
) ∈ R ∧ q2

Obs

∗
·α ·Obs

∗

−−−−−−−−−−→ q′
2

)
.

Relation R is a weak simulation if for any related pair of states (q1,q2):

(1) for any unobservable action θ ∈ Obs, for any state q′
1
that can be reached from q1 with θ , one can find another

state q′
2
that is reached by a sequence of unobservable actions in Obs; and

(2) for any observable action a ∈ Obs, for any state q′
1
that can be reached from q1 with a, one can find another state

q′
2
that is reached by a sequence of actions in Obs

∗
· a · Obs

∗
, i.e., a sequence composed of unobservable actions

in Obs, action a, and unobservable actions in Obs.

5 NOTIONS USED IN INTERACTIVE RUNTIME VERIFICATION

In this section, we present fundamental notions of our approach, namely a formalization of programs, events, and some

concepts related to debuggers.

5.1 Program

We do not aim to give a realistic model of programs. Rather, our model aims for simplicity and minimalism, suitable

for expressing correctness properties on our approach. We first discuss the assumptions applying to our model. We

then define the notions of values, addresses, memory, accesses, symbols, names, events and parameters used in our

representation of a program. We then define the program itself.

Assumptions. We consider deterministic and sequential programs without side effects. In particular, the program

does not communicate with the outside and does not read user input and is not subject to interrupts. We do not account

for physical time as we aim to verify properties with logical (discrete) time. Though i-RV applies to programs that do

communicate, these assumptions simplify the expression of properties of this model. Moreover, we do not consider

mechanisms like Address Space Layout Randomization (ASLR), aiming to mitigate some kinds of attacks relying on

knowing or predicting the location of specific data or functions. Though ASLR is widespread, we note that it is disabled

by debuggers like GDB and LLDB by default to ease debugging. We do not model ASLR. We also do not consider

self-modifying programs and program that execute their data. As a security feature, on many operating systems,

programs run with write protection on their code and execution protection on their data by default. Just-in-Time

compilers execute runtime generated code. Debugging these programs require specific runtime support
2
that we do not

model. We also do not consider programs that read their code to detect that they are executing under a debugger.

Definition 5.1 (Value, address, memory). Value is the set of values that can be stored in variables of a program. Values

are machine words, either data (values of variables) or program instructions. An address is an integer indexing a value

in a memory. Since an address can be stored in a variable, it is also a value. Addr ⊆ Value denotes the set of addresses

in a program. A memory maps addresses to values. Mem

def

= [Addr→ Value] is the set of memories.

Definition 5.2 (Access). Access

def

= Addr × {r,w} × Value × Value is the set of memory accesses. An element

(addr,mode, old, new) ∈ Access represents a read access at address addr if mode = r, or a write access to address

addr if mode = w. old is the value being accessed, and new is the new value in case of a write access (and is not defined

for a read access).

2
https://www.llvm.org/docs/DebuggingJITedCode.html

Manuscript submitted to ACM

https://www.llvm.org/docs/DebuggingJITedCode.html


625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

Interactive Runtime Verification: Formal Models, Algorithms, and Implementation 13

Definition 5.3 (Symbol). A symbol is the name of a variable or a function. Symbol is the set of symbols used in a

program. Symbols are linked to addresses in a program using a symbol table.

Definition 5.4 (Parameter). A grammar describing the set of valid parameters Param is given in Figure 5. A parameter

in Param is: either v ∈ Symbol (a variable or function name), ∗p (the value pointed by p, with p ∈ Param), &p (the

address of variable p), arg i (the current value of parameter of index i ∈ N), ˆp (a parameter p in a deeper frame in the

current call stack) or ret (the “return value” of the function call for function call events).

Example 5.5 (Parameter). We present four examples of parameters.

• arg 2 is a parameter referring to the second argument of the current function in the running program.

• ˆ arg 2 is a parameter referring to the second argument of the caller of the current function in the running

program.

• counter is a parameter referring to the current value of variable counter in the running program.

• ∗ptr is a parameter referring to value stored at the address stored in variable ptr.

We model a program that executes instructions and stops when the end of the code is reached. This matches

the behavior of programs in common operating systems. For the sake of generality, our abstraction of a program is

platform-independent and language-independent. This abstraction assumes a program loaded in memory.

Definition 5.6 (Symbol table). A symbol table Sym is used to get the address of an object in the program memory at

runtime from its description. Sym ∈ SymbolTable

def

= Mem× pc × Param× → Addr maps a memory, a program counter

and a parameter to an address. This parameter may be the name of a variable or a function, or any other parameter.

The symbol table is built at compile time and resolves symbols at runtime.

Definition 5.7 (Program). A program is a 5-tuple (Sym,m0

p , start, runInstr, getAccesses) where:

• Sym ∈ SymbolTable is the symbol table.

• m0

p ∈ Mem is the initial memory,

• start ∈ Addr is an address that points to the first instruction to run in the memory,

• runInstr : (Mem × Addr) → (Mem × Addr) is a function representing and abstracting the instruction set of the

processor on which the program runs. This function takes a memory and a program counter and returns a new

(updated) memory and a new program counter, and

• getAccesses : (Mem × Addr) → Accesses
∗
is a function returning the sequence of accesses that will be made

when running the next instruction.

Example 5.8 (Program). In the remainder of this section, we will use program P given by the following source code

to illustrate the concepts:

a : = 0 ; b : = 1 ; a : = a + b

Definition 5.9 (Configuration of the program). A configuration of the program is a 2-tuple (m 7→ m, pc 7→ pc) ∈

Confp

def

= Mem × Addr, where:

• m is the memory of the program, represented as a sequence of memory cells containing either values of variables

or executable instructions;

Manuscript submitted to ACM



677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

14 Raphaël Jakse, Yliès Falcone, and Jean-François Méhaut

p ::= v (a defined variable)

| ∗p (the value pointed by p)

| &p (the address of variable p)

| ˆp (p, in a deeper frame in the call stack)

| arg i, i ∈ N (the current value of parameter i)

| ret (the return value for call events)

Fig. 5. Grammar of valid parameter names

• pc (the program counter) is an address, that is, an index of a cell in the memorym that is the next instruction to

execute.

Example 5.10 (Configuration of the program). For program P given in Example 5.8, just after the execution of the

second instruction, the configuration of the program is (mp , pc3) where pc3 is the address of the code that corresponds

to the third instruction of P ,mp [Sym(mp , pc,a)] = 0 andmp [Sym(mp , pc,b)] = 1.

Definition 5.11 (Program checkpoint). A program checkpoint is a configuration of a program (m, pc) ∈ ConfP that is

used as a snapshot of the program state, that can be restored later.

Example 5.12 (Program checkpoint). For the program given in Example 5.8, a checkpoint taken when the third

instruction is about to be executed, is (([a 7→ 0,b 7→ 1], pc
3
)) , where pc

3
is the location of the third instruction in the

memory.

5.2 Events

I-RV relies on capturing events from the program execution with the debugger. Events are generated during the

execution of the program. Upon the reception of events, the monitor updates its state and generates verdicts. The

scenario reacts to verdicts by executing actions.

In this section, we define symbolic events, used to describe properties. We then define runtime events, generated

during the execution.

Definition 5.13 (Symbolic event). A symbolic event is a named tuple e = (type 7→ t, name 7→ n, params 7→ p) ∈

EventTypes × Symbol × Param∗ such that:

• t ∈ EventTypes = {BeforeCall,AfterCall,ValueRead,ValueWrite,ValueAccess} is the type of event: before
a function call, after a function call, a value read, a value write or a value access (read or write).

• n ∈ Symbol is the name of the event. For a function call (resp. variable access), the event name is the name of the

considered function (resp. variable) found in the symbol table of the program,

• p ∈ Param∗ is a sequence of parameters.

Example 5.14 (Symbolic event). (BeforeCall, push, (q,v)) is an event triggered when function push is called. Param-

eters q and v are retrieved when producing the event.

Definition 5.15 (Runtime event). A runtime event is a pair (ef ,v) ∈ Event
def

= SymbolicEvent × Value∗ where ef is a

symbolic event and v a sequence of values.

Manuscript submitted to ACM



729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

Interactive Runtime Verification: Formal Models, Algorithms, and Implementation 15

Example 5.16 (Runtime event). (BeforeCall, push, (0x5650653c4260, 42)) is an event triggered when function push is

called with these runtime parameters. Runtime parameters 0x5650653c4260, 42 q are instances of symbolic parameters

q and v .

Remark 2. In practice, BeforeCall and AfterCall events are captured using breakpoints and ValueWrite, ValueRead
and ValueAccess are captured using watchpoints.

Remark 3. Current debuggers allow watching the value of an expression involving several variables by setting several

watchpoints automatically. We do not consider this feature, as well as other kinds of events (e.g., system calls, signals)

in our model for simplicity.

5.3 Instrumentation Provided by the Debugger and Event Handling

The debugger provides two mechanisms to control and instrument the execution of the program: breakpoints and

watchpoints. These primitives can be used by the developer during an interactive debugging session, by the scenario to

automate some action and as a means to generate events for the monitor. A breakpoint stops the execution at a given

address a ∈ Address and a watchpoint when a given address containing data of interest is accessed (read, written, or

both).

5.3.1 Breakpoint

A breakpoint can be intuitively understood as a bookmark on an instruction of the program. When encountered, the

program shall suspend its execution and inform the debugger. Software breakpoints are commonly implemented by

replacing instructions in the program code on which the execution shall be suspended by a special instruction [36].

We denote such a special instruction by BREAK. When setting a breakpoint, the original instruction must be saved

in the configuration of the debugger in order to be able to restore it when this instruction must be run.

A breakpoint may be set either by the developer, or programmatically. When set by the developer, the debugger shall

enter the interactive mode and wait for input from the developer. When a non-developer breakpoint is reached, the

debugger must notify the entity that created this breakpoint.

Definition 5.17 (Breakpoint). A breakpoint is a named tuple (addr 7→ addr, for 7→ f ), where addr is the address

of this breakpoint in the program memory, and b a value that indicates whether this breakpoint is a developer, a

scenario, or an event breakpoint (that is, a breakpoint set for the monitor). The set of breakpoints is defined as:

Breakpoint

def

= Addr × {dev, scn, evt}.

Example 5.18 (Breakpoint). A breakpoint set by the developer on the second instruction of the program given in

Example 5.8 is (pc2, dev) where pc
2
is the memory address at which the second instruction is loaded. The second

instruction is stored as the second element of the tuple and the third component indicates that this breakpoint is set by

the developer.

5.3.2 Watchpoint

A watchpoint can be intuitively understood as a bookmark on a value of the program. When encountered, the program

shall suspend its execution and inform the debugger. Like a breakpoint, a watchpoint can be set by the developer or

programmatically. A watchpoint can be triggered by different kinds of accesses: read, write or both.

Manuscript submitted to ACM



781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

16 Raphaël Jakse, Yliès Falcone, and Jean-François Méhaut

evt2pts(m, pc, Sym, e) =



{(Sym(m, pc, e .name), {r}, evt)} if e .type = ValueRead
{(Sym(m, pc, e .name), {w}, evt)} if e .type = ValueWrite
{(Sym(m, pc, e .name), {r,w}, evt)} if e .type = ValueAccess
{(Sym(m, pc, e .name), evt)} if e .type = BeforeCall
{(a, evt) | a ∈ retPts(Sym,m, pc, e .name)} if e .type = AfterCall

Fig. 6. Event instrumentation: definition of function evt2pts

Definition 5.19 (Watchpoint). A watchpoint is a named tuple (addr 7→ addr, access 7→ a, for 7→ f ) where addr is the

address of this watchpoint, a is the the kind of access (r for read, w for write, rw for both) and f ∈ {dev, scn, evt} a
value that indicates whether this watchpoint is a developer, a scenario or an event watchpoint. The set of watchpoints

is defined as Watchpoint

def

= Addr × (P ({r,w}) \ {∅}) × {dev, scn, evt}.

Example 5.20 (Watchpoint). A watchpoint set by the developer on variable b in the program given in Example 5.8 is

(&b,w), where &b denotes the address of variable b in the program memory. This watchpoint is triggered whenever

variable b is written (but not when it is only read).

Remark 4 (About hardware and software watchpoints). On actual systems, the notification of an access happens

whenever a watchpoint is reached. No access lists are built before running each instruction. There are hardware and

software watchpoints. Hardware watchpoints are handled by the processor. Debuggers ask the processor to watch

some memory cells, and a trap happens whenever a watchpoint is reached. For variables that are stored in registers,

the processor must support register watchpoints. Hardware watchpoints are efficient but their number is limited.

To overcome these limitations, debuggers implement software watchpoints. The program is run step by step by the

debugger. Before the execution of each instruction, the debugger emulates this instruction and computes the list of

accesses done by this instruction. Software watchpoints slow down the execution dramatically.

Depending on the platform, watchpoints are triggered before or after the corresponding access. In our model, we

chose to trigger watchpoints before the access.

5.3.3 Event Instrumentation and Instantiation

We denote the set of breakpoints and watchpoints by Point = Breakpoint∪Watchpoint. An element of Point is referred

to as a point. We present the relations between the instrumentation provided by the debbuger and events.

In Fig. 6, we define function evt2pts : Mem×Addr×SymbolTable×SymbolicEvent→ P (Point) that maps a memory,

a program counter, a symbol table and an event to a set of points.

Function retPts : SymbolTable ×Mem × Addr × Symbol maps a symbol table, a memory, a program counter and a

symbol to the set of address of exist instructions in the function that corresponds to the given symbol. This function

depends on the instruction set of the program and is not defined here for simplicity.

We define instantiate : SymbolTable × SymbolicEvent × Mem × Addr, the function which maps a symbol table,

a symbolic event, a memory and a program counter to a runtime event. instantiate(Sym, ef ,m, pc) = (ef , l) with

lk =m[Sym(m, pc, ef .paramsk )]. That is, at runtime, a symbolic event is instantiated by getting values of its parameters

from the current memory using the symbol table.

Manuscript submitted to ACM



833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

Interactive Runtime Verification: Formal Models, Algorithms, and Implementation 17

Table 1. Debugger Commands

Command Usage

set(s , v) (resp. set(a, v)) set value of symbol s (resp. at addr. a) to v

get(s) (resp. get(a)) get value of symbol s (resp. at addr. a)

getPC get value of the pc

setPC(a) set value of the pc to address a

checkpoint set a checkpoint

restore(n) restore checkpoint n

continue (resp. INT) continue (resp. interrupt) execution

step execute one step of the program

setPoint(p) (resp. rmPoint(p)) set (resp. remove) a point p

6 OPERATIONAL VIEW

In this section, we describe the behavior of a program under i-RV (the i-RV-program) using operational semantics. I-RV

relies on the joint execution of different components: the program, the debugger, the monitor and the scenario.

The program is independent from the other components and describing its own behavior without the other compo-

nents is meaningful. In this model, the program executes instruction by instruction and interrupts its execution when a

breakpoint instruction is encountered or when reaching the program end.

The monitor is also independent from the other components. The monitor issues a verdict whenever it receives an

event. In this model, the monitor is able to save its state and restore a saved state.

The debugger does not depend on the monitor or the scenario, but it depends on the program. Describing the

debugger behavior independently from the program behavior is not meaningful. We describe the behavior of the

program under debug (or debugged program).

The interactively runtime verified program (i-RV program) is composed of these the debugged program, the monitor

and the scenario. We introduce and describe the behavior of the scenario and the i-RV program.

6.1 Interface of the Program Under i-RV

In this section, we present the interface of the i-RV-program, that is, its input and output symbols. We use this interface

when defining the components of the i-RV-program, and its behavior , which implements this interface.

6.1.1 Input symbols.

The i-RV-program initializes its components upon reception of symbol INIT. The developer communicates with the

i-RV-program by issuing debugger commands that are forwarded to the debugged program. The set of debugger

commands is

DbgCmd

def

= {set(s,v), get(s), set(a,v), get(a), getPC, setPC(a) | s ∈ Symbol ∧v ∈ Value ∧ a ∈ Addr}

∪ {checkpoint, continue, INT, step} ∪ {restore(n) | n ∈ N} ∪ {setPoint(p), rmPoint(p) | p ∈ Point}.

The usage of these commands is detailed in Table 1. Input symbols in {scnCmd(c) | c ∈ DbgCmd ∪ {nop}} are also

used internally to handle the scenario. The set of input symbols of the i-RV-program is Ii-RV
def

= {INIT} ∪ DbgCmd ∪

{scnCmd(c) | c ∈ DbgCmd ∪ {nop}}.

Manuscript submitted to ACM



885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

18 Raphaël Jakse, Yliès Falcone, and Jean-François Méhaut

normalExec

m[pc] < {BREAK, STOP} (m′, pc′) = runInstr(m, pc)

P ⟨m 7→m, pc 7→ pc⟩
− / −
−−−−→ P

[
m 7→m′, pc 7→ pc

′
]

bpHit

m[pc] = BREAK

P ⟨m 7→m, pc 7→ pc⟩
− / TRAP
−−−−−−−−−→ P

Fig. 7. Execution of the program

6.1.2 Output symbols.

The i-RV-program outputs values (in Value) requested by the developer and identifiers of checkpoints (in N × N)

set by the developer. Checkpoint identifiers of the i-RV-program are pairs composed of a checkpoint identifier from

the debugged program and a checkpoint identifier from the monitor. The i-RV-program outputs values requested by

the developer and identifiers of checkpoints set by the developer. The set of output symbols of the i-RV-program is

Oi-RV = Value ∪ (N × N).

6.2 The Program

In this section, we present the behavior of a program. We consider a program Pgrm

def

= (Sym,m0

p , start, runInstr,

getAccesses) following Definition 5.7 (see Sec. 5.1, p. 13).

Definition 6.1 (Operational semantics of a program). The operational semantics of Pgrm is the IOLTS (ConfP,AP, ∅,

{TRAP},→P) where ConfP is the set of configurations as per Definition 5.9 and (m 7→m0

p , pc 7→ start) is the initial

configuration, and→P is the least set of transitions abiding by the rules in Fig. 7.

The program has no input symbols: in our model, the program behavior only depends on its initial memory and its

original program counter. The program has one output symbol TRAP, which is output when the execution reaches a

breakpoint. Recall that we do not model the standard input and output nor the communication with the outside. The

evolution of configuration is given by relation→P which follows the two rules given in Fig. 7:

• Rule normalExec. The end of the program code is represented by instruction STOP. When encountering this

instruction, no rule applies, which ends the execution. BREAK is a breakpoint instruction. If current instruction

m[pc] in the program memory is not STOP nor BREAK, rule normalExec applies. During an execution step,

the memory and the program counter of the program are updated by running the current instruction, using

function runInstr. rule normalExec is linked to action (m, pc) such that (m 7→m, pc 7→ pc) is the configuration

of the program to which the rule is applied.

• Rule bpHit. This rules applies when the current instruction is BREAK. When this instruction is reached, symbol

TRAP is output.

Remark 5. The configuration of the program remains unchanged when encountering a breakpoint instruction. The

debugged program temporarily replaces the breakpoint instruction by the original instruction in the program when

this instruction is to be executed (see Sec. 6.3). Without this mechanism, applying rule bpHit would lead to an infinite

loop. This is not possible since without the debugger no breakpoint instruction appears in the code of a program.

Manuscript submitted to ACM



937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

Interactive Runtime Verification: Formal Models, Algorithms, and Implementation 19

6.3 The Debugged Program

In this section, we present the behavior of the debugged program, which models the execution of a program with a

debugger. We consider a program Pgrm

def

= (Sym,m0

p , start, runInstr, getAccesses) following Definition 5.7 (see Sec. 5.1,

p. 13) with initial configuration P0.

The debugged program can receive debugger commands in the set DbgCmd defined in Sec. 6.1.

Definition 6.2 (Operational semantics of a debugged program). The operational semantics of the debugged program

associated with Prgm is the IOLTS (ConfP × ConfD,APD, IPD,OPD,→PD) where:

• ConfP × ConfD is the set of configurations composed of a configuration of the program in ConfP, and a configu-

ration of the debugger in ConfD defined as

{P, I} × P (Breakpoint) × P (Watchpoint) × Checkpoint∗ × [Point→ Event] × P (Point) ×Mem;

• APD is the set of actions defined as{
setBreak(b), rmBreak(b), setWatch(w), rmWatch(w), devBreak, scnBreak(b), evtBreak(e),

devWatch, scnWatch(w), evtWatch(e), int, cont, trapNoBreak, clearEvents, setSym(s,v),

setAddr(a), setPC(a), checkpoint(n), restore(n), exec(m,a)

| w ∈ Watchpoint ∧ b ∈ Breakpoint ∧ e ∈ Event ∧ n ∈ N ∧ m ∈ Mem ∧ a ∈ Addr},

• IPD
def

= DbgCmd∪ {instr(evts) | events ∈ P (Event)} ∪ {clearEvts} is the set of input symbols, where: instr(evts)

is used to add instrumentation for events for the monitor, clearEvts is used to remove all instrumentation set for

events for the monitor

• OPD

def

= P (Point) ∪ P (Event) ∪ Value ∪ N is the set of outputs.

• →PD is the least set of transitions defined by semantics rules described later in the next paragraph.

The initial configuration of the debugged program is ((mode 7→ I, bpts 7→ ϵ, wpts 7→ ϵ, cpts 7→ ϵ, evts 7→ ∅,
hdld 7→ ∅, oi 7→ (addr 7→ BREAK)), P0).

The debugged program receives commands from the developer or the scenario. It also receive requests from the

monitor and answers them. A configuration of the debugger (mode,B,W ,C , evts,h,oi) ∈ ConfD is such that:

• mode ∈ {P, I} indicates the mode of the debugger. In passive mode (P), the program executes normally and the

debugger waits for a breakpoint or a watchpoint to be reached, or for the developer to interrupt the execution.

In interactive mode (I), the debugger waits for the developer to issue commands.

• B (resp. W ) is the set of breakpoints (resp. watchpoints) handled by the debugger.

• C ∈ Checkpoint
∗
is the list of checkpoints saved in the debugger. A checkpoint c ∈ Checkpoint is a pair

(p, events) ∈ ConfP × P (Event) where p is snapshot of the state of the program, containing its entire memory

and the program counter and events is the list of events tracked for the monitor.

• evts is a function that maps points to events. When an event is requested to the debugged program, points that

trigger this event are added.

• h is a set of points that have already been triggered during an execution step. This set is used to ensure that

points are not triggered more than once per execution step.

• oi ∈ Mem is a mapping that stores instructions in the program memory that have been replaced by breakpoint

instructions.

Manuscript submitted to ACM



989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

20 Raphaël Jakse, Yliès Falcone, and Jean-François Méhaut

devWatch

a = getAccesses(P) ∃w ∈ W \ h : ∃k ∈ {0, . . . , |a | − 1} : match(ak ,w) ∧w .for = dev
(m′, oi′) = restoreBP(B, pc, oi,m)(

P ⟨m 7→m⟩ ,D

〈
mode 7→ P, hdld 7→ h, bpts 7→ B,
wpts 7→ W , oi 7→ oi

〉)
− / −
−−−−→

(
P
[
m 7→m′

]
,D

[
mode 7→ I, oi 7→ oi

′,

hdld 7→ h ∪ {w}

] )

scnWatch

a = getAccesses(P) WPs = (W \ h) \ Dom(evts)
f = min({k ∈ {0, . . . , |a | − 1} | ∃w ∈ WPs : match(ak ,w)}) ∃w ∈ WPs : match(af ,w)

(m′, oi′) = restoreBP(B, pc, oi,m)(
P ⟨m 7→m⟩ ,D

〈
mode 7→ P, hdld 7→ h, bpts 7→ B,
wpts 7→ W , oi 7→ oi

〉)
− / w
−−−−−→

(
P
[
m 7→m′

]
,D

[
oi 7→ oi

′,

hdld 7→ h ∪ {w}

] )

evtWatch

a = getAccesses(P) WPs = (Dom(evts) ∩W ) \ h
f = min({k ∈ {0, . . . , |a | − 1} | ∃w ∈ WPs : match(ak ,w)}) ∃w ∈ WPs : match(af ,w)

(m′, oi′) = restoreBP(B, pc, oi,m) e = instantiate(Sym, evts(w),m, pc)(
P

〈
m 7→m,
pc 7→ pc

〉
,D

〈
mode 7→ P, hdld 7→ h, bpts 7→ B,
wpts 7→ W , oi 7→ oi, evts 7→ evts

〉)
− / e
−−−−→

(
P
[
m 7→m′

]
,D

[
oi 7→ oi

′,

hdld 7→ h ∪ {w}

] )
Fig. 8. Handling watchpoints

An output of the debugged program can be either: a set of points pts ∈ P (Point) for the scenario, a set of events

events ∈ P (Event) for the monitor, a value v ∈ Value requested by the developer or the scenario, an integer n ∈ N

when setting a checkpoint, used as an identifier for the checkpoint.

Transition relation (evolution of the debugged program). The behavior of the debugged program depends on the

current debugger mode. In interactive mode, the debugger waits for the developer to issue commands. In passive mode,

program instructions are executed. During the execution, breakpoints and watchpoints can be reached. Points can be

set by the developer, the monitor or the scenario. When a point is reached, the debugged program triggers this point.

When a developer point is triggered, the debugger mode is set to interactive (I). The execution is therefore suspended,

since rules that lead to the execution of an instruction require the debugger to be in passive mode. A non-developer

point is either set for the monitor or by the scenario. Monitor points are mapped to events. Whenever a monitor point

is triggered, the corresponding event is output. Scenario points are output as-is and handled by the scenario. In passive

mode, an execution step consists in executing an instruction, outputting an event, outputting a point or switching to

interactive mode. An instruction can trigger several points. An instruction will only be executed when every point it

triggers has been triggered. Each time a point is triggered, it is saved in field hdld of the debugger. When an instruction

is executed, hdld is emptied.

We first present rules in Fig. 8 related to watchpoints. In these rules, function getAccesses takes the current program

state and returns the list of accesses that will be made when executing the next instruction. For instance, an instruction

that adds two variables and saves the result in a third variable will make two read accesses, then one write access.

Before executing the next instruction, this list of accesses is checked against the set of watchpoints that are registered

in the debugger. Function match : Access ×Watchpoint → B tests whether an access matches a watchpoint and is

defined as match(a,w) = (a.addr = w .addr) ∧ a.mode ∈ w .mode, for any a ∈ Access,w ∈ Watchpoint.

Manuscript submitted to ACM



1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

Interactive Runtime Verification: Formal Models, Algorithms, and Implementation 21

devBreak

P
− / TRAP
−−−−−−−−−→ P ∃b ∈ (B \ h) : b .addr = pc ∧ b .for = dev

(P

〈
m 7→m,
pc 7→ pc

〉
,D ⟨mode 7→ P, hdld 7→ h, bpts 7→ B⟩)

− / −
−−−−→ (P,D [mode 7→ I, hdld 7→ h ∪ {b}])

scnBreak

P
− / TRAP
−−−−−−−−−→ P ∃b ∈ (B \ h) : b .addr = pc ∧ b .for = scn

(P

〈
m 7→m,
pc 7→ pc

〉
,D ⟨mode 7→ P, hdld 7→ h, bpts 7→ B, evts 7→ evts⟩)

− / b
−−−−→ (P,D [hdld 7→ h ∪ {b}])

evtBreak

P
− / TRAP
−−−−−−−−−→ P ∃b ∈ (Dom(evts) \ h) ∩B : b .addr = pc(

P

〈
m 7→m,
pc 7→ pc

〉
,D

〈
mode 7→ P, hdld 7→ h,
bpts 7→ B, evts 7→ evts

〉)
− / instantiate(Sym,evts(b),m,pc)
−−−−−−−−−−−−−−−−−−−−−−−−−−−→ (P,D [hdld 7→ h ∪ {b}])

trapNoBreak

P
− / TRAP
−−−−−−−−−→ P

(P

〈
m 7→m,
pc 7→ pc

〉
,D ⟨mode 7→ P, hdld 7→ h, bpts 7→ B⟩)

− / −
−−−−→ (P [m 7→m[pc 7→ D.oi(pc)]] ,D)

Fig. 9. Handling breakpoints

• Rule devWatch applies when a developer watchpoint is reached. The debugged program performs action

devWatch. The list of access done by the next instruction in the program is computed. A developer watchpoint

known to the debugger (in fieldwpts) matches an access of this list. The debugger becomes interactive and the

watchpoint is marked as handled. If a breakpoint is set at the current address in the debugger, the breakpoint

instruction is restored in the program memory. This ensures that a breakpoint instruction is always set for any

known breakpoint. This is done using function restoreBP : Breakpoint
∗ × Addr ×Mem→ Mem ×Mem defined

as

restoreBP(B, pc, oi,m) =


(m[pc 7→ BREAK], oi[pc 7→m[pc]]) if ∃b ∈ B : b .addr = pc,

(m, oi) otherwise.

• Rule scnWatch applies when rule devWatch does not apply, and thus a scenario watchpoint can be triggered.

The debugged program performs action scnWatch(w), wherew is the output watchpoint. Scenario watchpoints

are watchpoints that are not in the domain of function evts and that are not developer watchpoints. When rule

scnWatch applies, a scenario watchpoint known to the debugger (in fieldwpts) matches an access. This scenario

watchpoint is output and marked as handled.

• Rule evtWatch applies when neither rule devWatch nor rule scnWatch applies. That is, if there is no developer

or scenario watchpoints, rule evtWatch may apply. Rule evtWatch applies when a monitor watchpoint (that

is, a watchpoint in the domain of function evts) matches an access. This watchpoint is marked as handled and

is converted to an instantiated event which is output. The debugged program performs action evtWatch(e),

where e is the produced event.

We now present rules in Fig. 9 related to breakpoints. If the current instruction in the program is BREAK, function

getAccesses returns an empty list. Therefore, no watchpoint is triggered (rules in Fig. 8 do not apply). An execution

step of the program outputs symbol TRAP.

Manuscript submitted to ACM



1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

22 Raphaël Jakse, Yliès Falcone, and Jean-François Méhaut

normalExec

∀a ∈ getAccesses(P),∀w ∈ Watchpoint \ h : ¬match(a,w)

P [m 7→ unInstr(m,bpts, oi)]
− / −
−−−−→ P ′ ⟨m 7→mt ⟩

(m′, oi′) = restoreBPs(B,mt )

o = STOP ifmt [pc] = STOP, nothing (-) otherwise

(P ⟨pc 7→ pc⟩ ,D ⟨mode 7→ P, oi 7→ oi, bpts 7→ B⟩)
− / o
−−−−→ (P ′

[
m 7→m′

]
,D

[
hdld 7→ ∅, oi 7→ oi

′
]
)

Fig. 10. Normal execution and end of execution

• Rule devBreak If a dev breakpoint is set on address pc, the debugger is set to interactive mode (I) and the

breakpoint is marked as handled (rule devBreak). The debugged program performs action devBreak.

• Rule scnBreak If no developer breakpoints match address pc (rule devBreak does not apply), address pc is

checked against scenario breakpoints (rule scnBreak). If such a breakpoint exists, it is output and marked as

handled. The debugged program performs action scnBreak(b), where b is the output breakpoint.

• Rule evtBreak If neither rule devBreak nor rule scnBreak apply, rule evtBreak may apply. Address pc is

checked against monitor breakpoints (that are in the domain of function evts. If such a breakpoint exists, the

corresponding event is instantiated, output and the breakpoint is marked as handled. Rule evtBreak performs

action evtBreak(e), where e is the produced event.

• Rule trapNoBreak If no breakpoints match address pc, all breakpoints at this address have already been handled.

rule trapNoBreak applies. The breakpoint instruction is replaced with the original instruction that was stored in

the debugger when the breakpoint was set (see rule setBreak in Fig. 12). during the next steps, watchpoints for

this instruction may happen, and the instruction will be executed if the scenario does not change the execution

of the program. The breakpoint instruction will be restored each time a watchpoint is triggered, or after the

execution of the instruction. Rule trapNoBreak performs action trapNoBreak.

When no watchpoints and breakpoints are triggered, either because all points have already been triggered for this

instruction, or because the instruction does not trigger any point, rule normalExec in Fig. 10 applies. The program

memory is uninstrumented using function unInstr : Mem×Breakpoint∗×Mem→ Mem defined as unInstr(M,B, oi) =

m † {b .addr 7→ oi(b .addr) | b ∈ B}. One step of the program is executed. breakpoint instructions are restored

using function restoreBPs : Breakpoint
∗ × Mem → Mem × Mem defined as restoreBPs(B,m) = (m † {b .addr 7→

BREAK | b ∈ B}, [b 7→ BREAK ∀b ∈ Addr] † {b .addr 7→ m[b .addr] | b ∈ B}). The list of handled points is

emptied. When the program ends, event STOP is output. When the rule applies, the debugged program performs

actionm[pc] such that (P ⟨m 7→m, pc 7→ pc⟩ ,D) is the configuration of the debugged program to which the rule is

applied.

Remark 6. In actual implementations, for performance reasons, the program is not necessarily uninstrumented at each

execution step. Debuggers assume that breakpoint instructions do not affect the execution, which is the case if the

program does not read its own instructions and no breakpoint is set on a data (which a debugger should forbid).

We now present the rules related to instrumentation features of the debugged program in Fig. 11.

• Rule clearEvents. When adding instrumentation for a set of events, previous instrumentation (i.e., breakpoints

and watchpoints) is removed using rule clearEvents. Rules rmWatch and rmBreak are used to remove points

in Dom(evts) (i.e., that correspond to events).

Manuscript submitted to ACM



1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

Interactive Runtime Verification: Formal Models, Algorithms, and Implementation 23

clearEvents

rmPoints({b ∈ Dom(evts)})
− / (P ′,D′)
−−−−−−−−−→ (P,D)

(P,D)
clearEvts / −
−−−−−−−−−−→ (P ′,D ′)

instrument

clearEvts

− / (Pt ,Dt ⟨evts 7→evtst ⟩)
−−−−−−−−−−−−−−−−−−−−−→ (P,D)

(pts, evts′) = watchEvents(Pt , evtst , events)

setPoints(pts)
− / (P ′,D′)
−−−−−−−−−→ (Pt ,Dt

[
evts 7→ evts

′
]
)

(P,D)
instr(events) / −
−−−−−−−−−−−−−→ (P ′,D ′)

Fig. 11. Instrumenting events

setBreak

b ∈ Breakpoint
m′ =m[b .addr = BREAK] oi

′ =

{
oi if ∃b ′ ∈ B : b ′.addr = b .addr
oi[b .addr 7→m[b .addr]] otherwise

(P ⟨m 7→m⟩ ,D ⟨bpts 7→ B, oi 7→ oi⟩)
setPoint(b) / −
−−−−−−−−−−−−→

(
P
[
m 7→m′

]
,D

[
oi 7→ oi

′, bpts 7→ B ∪ {p}
] )

rmBreak

b ∈ B a = b .addr
evts
′ = evts\{b }

(m′,oi ′) =

{
(m, oi) if ∃b ′ ∈ B \ {b} : b ′.addr = a

(m[a 7→ oi(addr)], oi[a 7→ BREAK]) otherwise(
P ⟨m 7→m⟩ ,D

〈
bpts 7→ B, oi 7→ oi,

evts 7→ evts

〉)
rmPoint(b) / −
−−−−−−−−−−−−→

(
P
[
m 7→m′

]
,D

[
oi 7→ oi

′, bpts 7→ B \ {p},
evts 7→ evts

′

] )

setWatch

w ∈ Watchpoint

(P,D ⟨wpts 7→ W ⟩)
setPoint(w ) / −
−−−−−−−−−−−−−→ (P,D [wpts 7→ W ∪ {w}])

rmWatch

w ∈ W

(P,D ⟨wpts 7→ W ⟩)
rmPoint(w ) / −
−−−−−−−−−−−−−→ (P,D [wpts 7→ W \ {w}])

Fig. 12. Setting breakpoints and watchpoints

• Rule instrument. The debugged program can be asked to add instrumentation for a set of events. This happens

when the monitor state is updated. Existing instrumentation for events being tracked is cleared using rule

clearEvents. Function watchEvents : ConfP × [Point → Event] × Event
∗
returns the set of points to add

and updates function evts. watchEvents is such that watchEvents(P, evts, ϵ) = (∅, evts) and watchEvents(P,

evts, e · l) = (pts ∪ pts
′, evts

′ † {p 7→ e | p ∈ pts}) where pts = evt2pts(P .m, P .pc, Sym, e) and (pts′,

evts
′) = watchEvents(P, evts, l). Points are added to the debugged program using rule setBreak or rule

setWatch, given in Fig. 12 and described later in this section.

We now present the rules provided by the debugged program to set and remove points in Fig. 12.

Manuscript submitted to ACM



1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

24 Raphaël Jakse, Yliès Falcone, and Jean-François Méhaut

checkpoint

m′ =m † {b .addr 7→ oi(b .addr) | b ∈ B} c = (P
[
m 7→m′

]
, Im(evts))

(P ⟨m 7→m⟩ ,D ⟨bpts 7→ B, cpts 7→ C , evts 7→ evts, oi 7→ oi⟩)
checkpoint / |C |
−−−−−−−−−−−−−−→ (P,D [cpts 7→ C · c])

restore

(Pt ⟨m 7→mt ⟩ , events) = Cn m′t =mt † {b .addr 7→ BREAK | b ∈ B}
B

dev
= {b | b ∈ B ∧ b .for = dev} oi

′ = {b .addr 7→mt [b .addr] | b ∈ B
dev
}

(Pt
[
m 7→m′t

]
,D

[
bpts 7→ B

dev
, oi 7→ oi

′
]
)

instr(events) / −
−−−−−−−−−−−−−→ (P ′,D ′)

(P,D ⟨bpts 7→ B, cpts 7→ C ⟩)
restore(n) / −
−−−−−−−−−−−→ (P ′,D ′)

Fig. 13. Checkpointing

• Rule setBreak is used to set a breakpoint, which consists in (i) saving the instruction of the program memory at

the breakpoint address in the debugger, if no breakpoint has been set at this location (ii) replacing this instruction

by BREAK (iii) updating the set of breakpoints in the debugger. When the rule applies, the debugged program

performs action setBreak(b), where b is the breakpoint being set.

• Rule rmBreak is used to remove a breakpoint, which consists in:

– restoring the instruction of the program memory at the breakpoint address from the debugger, if no other

breakpoint is set at this location, and, in this case, removing the instruction from the debugger memory,

– removing this breakpoint in the points to events mapping, if present,

– updating the set of breakpoints in the debugger.

When the rule applies, the debugged program performs action rmBreak(b), where b is the breakpoint being

removed.

• Rules setWatch and rmWatch are used to set (resp. remove) a watchpoint (rules setWatch and rmWatch)

which consists in adding (resp. removing) the watchpoint in the debugger.

Remark 7. Input symbol setPoints(pts) (resp. rmPoints(pts)) is handled by applying rules setBreak and setWatch

(resp. rmBreak and rmWatch) sequentially for each p in pts.

We present rules related to checkpointing given in Fig. 12.

• Rule checkpoint is used to set a checkpoint, which consists in saving the programmemorywithout the breakpoint

instructions and the set of tracked events in a checkpoint that is added in the debugger. The checkpoint index is

output.

• Rule restore is used to restore a checkpointing, which consists in restoring the program memory saved in the

checkpoint given by its index, adding the breakpoints instructions for currently set developer breakpoints, and

instrumenting the set of events that were being tracked at the moment the checkpoint was set.

Remark 8. The set of breakpoints can be different at the moment of checkpointing and at the moment of restoring the

checkpoint. This matches the behavior of GDB when using its built-in checkpointing feature. However, we ensure that

breakpoints mapped to event are restored, since the state of the monitor will also be restored at the state corresponding

to the moment of checkpointing.

We now present rules in Fig. 14, related to stepping and mode switching.

Manuscript submitted to ACM



1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

Interactive Runtime Verification: Formal Models, Algorithms, and Implementation 25

stepRedo

Rule devWatch, scnWatch, evtWatch, devBreak, scnBreak,

evtBreak or trapNoBreak applies on (P,D [mode 7→ P])

(P,D [mode 7→ P])
− / o
−−−−→ (Pt ⟨pc 7→ pc,m 7→m[pc 7→ oi(pc)]⟩ ,D ′)

(P ⟨pc 7→ pc,m 7→m⟩ ,D ⟨mode 7→ I, oi 7→ oi⟩)
step / o
−−−−−−→ (P ′,D ′ [mode 7→ I])

step

(P,D [mode 7→ P])
− / o
−−−−→ (P ′,D ′)

(P,D ⟨mode 7→ I⟩)
step / o
−−−−−−→ (P ′,D ′ [mode 7→ I])

int

(P,D)
INT / −
−−−−−−→ (P,D [mode 7→ I])

cont

(P,D ⟨mode 7→ I⟩)
continue / −
−−−−−−−−−−→ (P,D [mode 7→ P])

Fig. 14. Stepping and interrupting the execution

setAddr

a ∈ Addr,v ∈ Value

(P,D)
set(a,v) / −
−−−−−−−−−−→ (P [m 7→m[a 7→ v]] ,D)

getAddr

(P ⟨m 7→m⟩ ,D)
get(a) /m[a]
−−−−−−−−−−−→ (P,D)

setSym

s ∈ Symbol,v ∈ Value

(P ⟨m 7→m, pc 7→ pc⟩ ,D)
set(s ,v) / −
−−−−−−−−−−→ (P [m 7→m[Sym(m, pc, s) 7→ v]] ,D)

getSym

(P ⟨m 7→m, pc 7→ pc⟩ ,D)
get(a) /m[Sym(m,pc,s)]
−−−−−−−−−−−−−−−−−−−−→ (P,D)

setPC

(P,D)
setPC(a) / −
−−−−−−−−−−→ (P [pc 7→ a] ,D)

getPC

(P ⟨pc 7→ pc⟩ ,D)
getPC / pc
−−−−−−−−→ (P,D)

Fig. 15. Setting and getting values in the program

• Rules int and cont. Rule int changes the debugger mode to interactive, interrupting the execution since normal

execution happens only in passive mode. Rule cont changes the debugger mode to passive, allowing execution

to happen normally.

• Rules step and stepRedo. Rule step makes the debugged program execute one step. The debugger mode is

temporarily set to passive. This allows normal execution. If breakpoints and watchpoints must be handled, or if

there is a breakpoint instruction at the current address in the program, rule stepRedo applies.

We present rules related to commands used to set and get values in the program in Fig. 15.

• Rules getAddr and setAddr. Rule getAddr (resp. rule setAddr) outputs (resp. sets) a value at the given

address in the program memory.

• Rules getSym and setSym Rule setSym (resp. rule setSym) outputs (resp. changes) the value at an address of a

given symbol using the symbol table Sym

• Rules getPC and setPC. Rule getPC (resp. rule setPC) outputs (resp. sets) the program counter.

Manuscript submitted to ACM



1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

26 Raphaël Jakse, Yliès Falcone, and Jean-François Méhaut

event

q′ =→M (q, e)

M ⟨state 7→ q⟩
e / verdict(q′),eventsNeeded(q′)
−−−−−−−−−−−−−−−−−−−−−−−−−−→ M

[
state 7→ q′

]
checkpoint

M ⟨state 7→ q, cpts 7→ C ⟩
checkpoint / |C |
−−−−−−−−−−−−−−→ M [cpts 7→ C · q]

restore

n < |C |

M ⟨cpts 7→ C ⟩
restore(n) / −
−−−−−−−−−−−→ M [state 7→ Cn ]

Fig. 16. Evolution of the monitor

6.4 Monitor

In this section, we integrate the monitor to the debugged program. The monitor evaluates a property against a trace,

giving a verdict upon the reception of each event. To be independent from the specification formalism, we assume a

monitor given in terms of a set of states Q , a transition function→M : Q × Event→ Q which updates the state of the

monitor upon each event, and a function verdict : Q → Verdict which maps states to verdicts. Before integrating the

monitor to the debugged program, we augment its behavior as follows.

Definition 6.3 (Operational semantics of a monitor). The operational semantics of a monitor is the IOLTS (Q ×

Q∗,AM, IM,OM,→MC
), where Q ×Q∗ is the set of configurations and:

• AM

def

= {event(e) | e ∈ Event} ∪ {checkpoint(n), restore(n) | n ∈ N} is the set of actions,

• IM
def

= Event ∪ {checkpoint} ∪ {restore(n) | n ∈ N} is the set of input symbols,

• OM

def

= Verdict × N is the set of output symbols,

• →MC
is the transition relation defined as the least set of transitions abiding to the rules given in Fig. 16.

The initial configuration of the monitor is (qinit, ϵ).

In a configuration (state 7→ q, cpts 7→ C ) of the monitor, q ∈ Q is the current state of the monitor, C ∈ Q∗ is the

list of checkpoints of the monitor. Each checkpoint is indexed by its position in this list and is created by copying the

current state of the monitor. An input symbol is either an event e ∈ Event ∪ {INIT} which makes the monitor evolve

from one state to the next state, the symbol checkpoint used to set a checkpoint, or the symbol restore(n) is used to

restore a checkpoint. An output symbol is either: a verdict v ∈ Verdict that is output when the state of the monitor

changes (after receiving an event), or an integer that is output when setting a checkpoint. This integer identifies the

checkpoint.

The transitions between the configurations of the monitor abide by the rules described in Fig. 16.

• Upon the reception of an event, rule event applies and the monitor performs action event(e), where e is the

event being received. The new state is computed using function→M : Q × (Event ∪ {INIT}) → Q , that maps the

current state and the received event to the new state (the initial event being INIT). The set of events handled by

the transitions of the monitor from this new state is given by function eventsNeeded : Q → P (SymbolicEvent)

defined as eventsNeeded(q) = {ef ∈ SymbolicEvent | ∃q′ ∈ Q, ∃e ∈ Event : symbolic(e) = ef ∧q
′ =→M (q, e)},

that is, the set of formal events handled by transitions which begin state is the new state. The new verdict is

given by function verdict : Q → Verdict provided by the monitor. This set of events and the new verdict are

output and the configuration of the monitor is updated with the new state.

Manuscript submitted to ACM



1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

Interactive Runtime Verification: Formal Models, Algorithms, and Implementation 27

• Rules checkpoint and restore describe checkpointing for the monitor. When these rules apply, the monitor

perform actions checkpoint(n) and restore(n) respectively, where n is the index of the checkpoint being output.

Rule checkpoint saves the current state of the monitor in a checkpoint, adds this checkpoint to the list of

checkpoints and outputs its index, which is the size of the list before adding the checkpoint. Rule restore takes

a checkpoint index and sets the current state of the monitor to the state that was saved.

6.5 The Scenario

In this section, we integrate the scenario to the debugged program. Whenever the monitor issues a verdict, the scenario

reacts by executing actions on the i-RV program. In i-RV, the scenario is provided by the developer. For generality, we

assume that the behavior of the scenario is similarly described by an IOLTS following the specification described in this

section. In practice, and in our implementation, the scenario is described by a small language allowing the developer to

specify reactions to monitor verdicts.

The semantics of the scenario depends on the sets Ii-RV and Oi-RV of input and output symbols of the i-RV program

defined in Sec. 6.1.

Definition 6.4 (Operational semantics of a scenario). The operational semantics of a scenario is an IOLTS (ConfS,AS,

IS,OS,→S ) such that:

• IS
def

= Point × Verdict × {scnCmdReply(r ) | r ∈ Oi-RV} is the set of input symbols,

• OS

def

= Ii-RV is the set of commands issued by the scenario to the i-RV program

The set of configurations ConfS, the set of actions AS and the transition function→S are specific to the definition of a

particular scenario and should follow the following rules:

• Upon reception of a verdict from the monitor or a point from the debugger, the scenario shall update its state

and either output nothing, or a symbol in Ii-RV, which is a command for the i-RV program.

• After sending a command to the i-RV program, the scenario shall receive a symbol scenarioReply(r ) such that

r ∈ Oi-RV. The scenario shall update its state and either output nothing or a new symbol in Ii-RV.

• If the scenario sets a point, it should be able to receive this point as an input symbol.

An input symbol of the scenario can be either a verdict v ∈ Verdict generated by the monitor, a point p ∈ Point set

by the scenario and triggered during the execution, or a symbol scnCmdReply(r ), where r is the result of a command

issued by the scenario to the i-RV program.

The behavior of the scenario should be such that:

• The scenario handles any verdict from the monitor. For any configuration S of the scenario, for any verdict

v ∈ Verdict, there should exist a command c for the i-RV program in Ii-RV ∪ {null} and a new configuration S ′

such that (S,v, S ′, c) ∈→S .

• The scenario handles any answer from the i-RV program. For any configuration S of the scenario, for any reply

scnCmdReply(r ) such that r ∈ Oi-RV, there should exist a command c for the i-RV program in Ii-RV ∪ {null} and
a new configuration S ′ such that (S, scnCmdReply(r ), S ′, c) ∈→S .

• The scenario handles any point from the debugged program. This point was requested by the scenario and has

been triggered during the execution. The scenario updates its state and outputs c ∈ Ii-RV ∪ {nop} a command for

the i-RV program or nop, a command that has no effects.

Manuscript submitted to ACM



1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

28 Raphaël Jakse, Yliès Falcone, and Jean-François Méhaut

init

M
INIT / verdict,events
−−−−−−−−−−−−−−−−−→ M ′ (P,D)

instr(events) / −
−−−−−−−−−−−−−→ (P ′,D ′) S

verdict / c
−−−−−−−−→ St

(Pt2 ,Dt2 ,Mt , St )
scnCmd(c) / o
−−−−−−−−−−−−→ (P ′,D ′,M ′, S ′)

(P,D,M, S)
INIT / o
−−−−−−−−→ (P ′,D ′,M ′, S)

normalExec

(P,D)
− / −
−−−−→ (P ′,D ′)

(P,D,M, S)
− / −
−−−−→ (P ′,D ′,M, S)

Fig. 17. Intialization and execution

For any configuration S of the scenario, for any reply p ∈ Point, there should exist a command c for the i-RV

program in Ii-RV ∪ {nop} and a new configuration S ′ such that (S,p, S ′, c) ∈→S .

6.6 The Interactively Verified Program

We consider a debugged program PD, a monitor M and a scenario S.

Definition 6.5 (Operational semantics of the i-RV-program). The operational semantics of the program under interactive

runtime verification (i-RV-program) associated to debugged program PD, monitor M and scenario S is an IOLTS

(Confi-RV,Ai-RV, Ii-RV,Oi-RV,→i-RV).

The set of actions of the i-RV-program is Ai-RV = APD ∪AM ∪AS. That is, actions happening in the i-RV-program

are actions happening in the debugged program, the monitor or the scenario. The sets of input symbols Ii-RV and of

output symbols Oi-RV are defined in Sec. 6.1.

6.6.1 Initialisation and execution.

In Fig. 17, we describe the initialization and an execution step of the interactively verified program.

Rule init (Fig. 17) initializes the i-RV-program. Upon reception of symbol INIT, the monitor is initialized and

outputs an initial verdict and a set of events to track. The set of events is transmitted to the debugged program

for instrumentation and the verdict is transmitted the scenario. The scenario issues a command that is run by the

i-RV-program.

Rule normalExec (Fig. 17) does one execution step. During this step, no scenario or monitor point is triggered. After

application of this rule, the debugger program may, or may not, be suspended by a developer point.

6.6.2 Events and non-developer points.

In Fig. 18, we describe rules that trigger events for the monitor and non-developer points for the scenario.

Rules execPoint and execEvent (Fig. 18) trigger a non-developer point. In rule execPoint, a point is output by

the debugged program. The point is forwarded to the scenario. The scenario outputs a command. The command is

executed by the i-RV-program.

Rule execEvt outputs an event by the debugged program. This event is either generated by reaching a point in the

program or STOP, when the execution ends. The event is forwarded to the monitor. The monitor outputs a verdict

and a new set of events to track. The set of events is forwarded to the debugged program for instrumentation. The

verdict is forwared to the scenario. The scenario outputs a command. The command is executed by the i-RV-program.

Manuscript submitted to ACM



1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

Interactive Runtime Verification: Formal Models, Algorithms, and Implementation 29

execPoint

(P,D)
− / p∈Point
−−−−−−−−−−→ (Pt ,Dt ) S

p / c
−−−−→ S ′

(Pt ,Dt ,M, St )
scnCmd(c) / o
−−−−−−−−−−−−→ (P ′,D ′,M ′, S ′)

(P,D,M, S)
− / o
−−−−→ (P ′,D ′,M ′, S ′)

execEvent

(P,D)
− / e ∈P(Event)
−−−−−−−−−−−−−→ (Pt ,Dt ) M

e / verdict,events
−−−−−−−−−−−−−−→ Mt

(Pt ,Dt )
instr(events) / −
−−−−−−−−−−−−−→ (Pt2 ,Dt2 ) S

verdict / c
−−−−−−−−→ St

(Pt2 ,Dt2 ,Mt , St )
scnCmd(c) / o
−−−−−−−−−−−−→ (P ′,D ′,M ′, S ′)

(P,D,M, S)
− / o
−−−−→ (P ′,D ′,M ′, S ′)

stepPoint

(P,D)
step / p∈Point
−−−−−−−−−−−−→ (Pt ,Dt ) S

p / c
−−−−→ S ′

(Pt ,Dt ,M, St )
scnCmd(c) / o
−−−−−−−−−−−−→ (P ′,D ′,M ′, S ′)

(P,D,M, S)
− / o
−−−−→ (P ′,D ′,M ′, S ′)

stepEvent

(P,D)
step / e ∈P(Event)
−−−−−−−−−−−−−−−→ (Pt ,Dt ) M

e / verdict,events
−−−−−−−−−−−−−−→ Mt

(Pt ,Dt )
instr(events) / −
−−−−−−−−−−−−−→ (Pt2 ,Dt2 ) S

verdict / c
−−−−−−−−→ St

(Pt2 ,Dt2 ,Mt , St )
scnCmd(c) / o
−−−−−−−−−−−−→ (P ′,D ′,M ′, S ′)

(P,D,M, S)
step / o
−−−−−−→ (P ′,D ′,M ′, S ′)

Fig. 18. Events and non-developer points

scnCmd

(P,D,M, S)
c / r
−−−−→ (Pt ,Dt ,Mt , St )

St
scnCmdReply(r ) / c ′
−−−−−−−−−−−−−−−−−→ S ′t

(Pt ,Dt ,Mt , S
′
t )

scnCmd(c ′) / o
−−−−−−−−−−−−→ (P ′,D ′,M ′, S ′)

(P,D,M, S)
scnCmd(c) / o
−−−−−−−−−−−−→ (P ′,D ′,M ′, S ′)

scnCmdNop

(P,D,M, S)
scnCmd(nop) / −
−−−−−−−−−−−−−−→ (P,D,M, S)

Fig. 19. Command from the scenario

Rules stepPoint and stepEvent apply whenever command step is used and the debugged program outputs a point

or an event.

Manuscript submitted to ACM



1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

30 Raphaël Jakse, Yliès Falcone, and Jean-François Méhaut

checkpoint

(P,D)
checkpoint / cPD
−−−−−−−−−−−−−−→ (P ′,D ′) M

checkpoint / cm
−−−−−−−−−−−−−→ M ′

(P,D,M, S)
checkpoint / (cPD,cM)
−−−−−−−−−−−−−−−−−−→ (P ′,D ′,M ′, S)

restore

(P,D)
restore(cPD) / −
−−−−−−−−−−−−−→ (P ′,D ′) M

restore(cM) / −
−−−−−−−−−−−−→ M ′

(P,D,M, S)
restore(cPD,cM) / −
−−−−−−−−−−−−−−−−→ (P ′,D ′,M ′, S)

step

(P,D)
step / −
−−−−−−−→ (P ′,D ′)

(P,D,M, S)
step / −
−−−−−−→ (P ′,D ′,M, S)

otherCmd

(P,D)
c / o
−−−−→ (P ′,D ′)

(P,D,M, S)
c / o
−−−−→ (P ′,D ′,M, S)

Fig. 20. Stepping, checkpointing and other debugger commands

6.6.3 Command from the scenario.

Rules scnCmdNop and scnCmd (Fig. 19) execute a command from the scenario. If the command is nop, rule scnCmdNop

applies and nothing happens. Otherwise, rule scnCmd applies. The command is run by the i-RV-program. This command

may produce an output. This output is forwarded to the scenario. The scenario outputs a new command. This new

command is run by the i-RV-program.

6.6.4 Stepping, checkpointing and other debugger commands.

Rules in Fig. 20 handle the debugger commands. Rule checkpoint handles command checkpoint. The debugged program

is checkpointed, the monitor is checkpointed, and the i-RV-program outputs the index of the resulting checkpoint by

combining indexes generated by the debugged program and the monitor.

Rule checkpoint handles command restore(n). The checkpoints of the debugged program and of the monitor are

restored.

Rule step handles command step whenever rules stepPoint and stepEvent do not apply, that is, no point or event

will be output by the debugged program.

Rule otherCmd handles other debugger commands (setAddr(a,v), setSymb(s,v), getSymb(s), getAddr(a), getPC,

setPC(a), continue, int, setPoint(p), rmPoint(p)). These commands are forwarded to the debugged program.

7 CORRECTNESS OF INTERACTIVE RUNTIME VERIFICATION

We demonstrate the correctness of our models. Correctness is important because it allows to demonstrate that 1) any

verdict found by monitors (and in particular those corresponding to a violation of the monitored property) are actual

verdicts applying on the system, and 2) monitors do not miss verdict.

7.1 Verifying the Behavior of the Debugged Program

We consider the initial program and the debugged program and show that they are observationally equivalent. More

precisely, given the behavior of the initial and debugged programs defined by their LTS as per Sec. 6.2 and Sec. 6.3

respectively, we show that these LTSs are observationally equivalent, that is, they weakly simulates each other.

For this purpose, we define a relation between the configurations of the initial and the debugged programs.

Manuscript submitted to ACM



1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

Interactive Runtime Verification: Formal Models, Algorithms, and Implementation 31

Definition 7.1 (Relation between the configurations of the initial and the debugged programs). The relation between

the configurations of the initial program (ConfP) and the debugged program (ConfP × ConfD) is denoted by R ⊆

(ConfP × ConfD) × ConfP and is defined as follows. Any two configurations (P
dbg
,D) and P of the debugged and the

initial programs are in R if (1), (2) and (3) hold, where:

P .m = unInstr(P
dbg
.m,D.bpts,D.oi) (1)

P .pc = P
dbg
.pc (2)

∀a ∈ Addr, P
dbg
.m[a] , BREAK =⇒ P

dbg
.m[a] = P .m[a] (3)

The above equations can be understood as follows:

• (1) means that removing the instrumentation from the memory of the debugged program (unInstr(P
dbg
.m,

D.bpts,D.oi)) (see Sec. 6.3) results in the memory of the initial program (P .m);

• (2) means that the program counters of the initial (P .pc) and debugged programs (P
dbg
.pc) are the same;

• (3) means that at any address, the memory content in the debugged program (P
dbg
.m[a]) is either a breakpoint

or the memory content at the same address in the initial program (P .m[a]).

Intuitively, R relates configurations of the debugged and the initial programs as follows: if breakpoints are removed

from the memory of the debugged program, the resulting memory (resp. the program counter) is equal to the memory

(resp. the program counter) of the initial program.

The set of actions is Mem × Addr ∪ {setWatch, rmWatch, getPC, getSym, getAddr, userBreak, scnBreak,

evtBreakint, cont, setBreak, rmBreak, userWatch, scnWatch, evtWatch}, trapNoBreak, clearEvents,

instrument, stepRedo}. The set of observable actions is Mem × Addr and is denoted by Obs and other actions are

considered inobservable.

When restricting the behavior of the debugged program by forbidding the use of rules that modify the program

behavior, R is a weak simulation, as stated by the proposition below.

Proposition 7.2. Let us consider→P (resp.→PD ) the transition relation of the initial program (resp. the debugged

program) where rules restore, setSym, setAddr, setPC and rule checkpoint
3
are excluded. Let us also consider the set of

observable actions Obs. Relation R (Definition 7.1) is a weak simulation as per Definition 4.4. That is, the initial program P

weakly simulates the debugged program (P,D).

Moreover, the debugged program simulates the initial program, as stated by the following proposition.

Proposition 7.3. Relation R= {((P
dbg
,D), P) | (P, (P

dbg
,D)) ∈ R} is a weak simulation.

We prove Proposition 7.2 in Appendix A.1 and Proposition 7.3 in Appendix A.2.

7.2 Guarantees on Monitor Verdicts

Since the initial program and the debugged program weakly simulate each other, their execution produce the same

sequence of observable actions. This sequence contains the whole information of the program execution, needed to

produce any possible sequence of events abstracting the execution of the initial program. Therefore, any sequence of

3
Using rule checkpoint is meaningless without rule restore.

Manuscript submitted to ACM



1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

32 Raphaël Jakse, Yliès Falcone, and Jean-François Méhaut

Algorithm 1 Executing the program

1: function prgm::step

2: if mem[pc] = BREAK then
3: return TRAP
4: if mem[pc] = STOP then
5: return STOP
6: (mem, pc) = runInstr(mem, pc)

7: return OK

events that could be deduced using this information from the execution of the initial program can be produced from

the execution of the debugged program assuming correct instrumentation (completeness) and any sequence of events

produced by a correct instrumentation by the debugged program corresponds to a sequence of event that could be

deduced from the execution of the initial program (soundness). Therefore, assuming correct instrumentation, verdicts

issued by a monitor from a sequence of events produced by the debugged program correspond to verdicts that would

be issued for the execution of the initial program. We point out that instantiate, the instrumentation function that

generates events during the debugged program execution, only depends on the state of the program (its memory and

its program counter), its symbol table (that is immutable) and the breakpoints set for the monitor.

8 ALGORITHMIC VIEW

We present an algorithmic view of the behavior of the i-RV program. This view is complementary to the operational

view given in Sec. 6. This algorithmic view provides a lower-level and more practical description of the behavior of the

i-RV-program. This formalization is not needed to adopt the approach. However, it offers a programming-language

independent basis for implementation. In this view, we use object-oriented programming style pseudo-code. We first

present the program (Sec. 8.1), then the debugged program (Sec. 8.2), the scenario (Sec. 8.3) and then the i-RV-program

(Sec. 8.4). The i-RV-program drives the execution. It uses the debugged program, the monitor and the scenario as

components.

8.1 The Program

As in Sec. 6.2, the configuration of the program is a 2-tuple (mem, pc) ∈ Mem × Addr. Algorithm 1 describes function

prgm::step used to perform an execution step of the program. If the current instruction is a breakpoint (BREAK),

TRAP is returned. If the current instruction is the end of the program (STOP), STOP is returned. Otherwise, the

current instruction is executed using runInstr. The memory and the program counter are updated and OK is returned.

8.2 The Debugged Program

As in Sec. 6.3, the configuration of the debugged program is a pair consisting of a configuration of the initial program

and the configuration of the debugger. In the algorithms of this section, we define functions called by the i-RV-program

described in Sec. 8.4. P (resp. D) is a global variable referencing the configuration of the program (resp. the debugger).

8.2.1 Handling the execution of an instruction in the program.

In Algorithm 2, we describe an execution step of the debugged program. The program can only evolve in passive

mode (D.fieldMode = P). First, the list of accesses done by the next instruction is computed (Line 2). These accesses

Manuscript submitted to ACM



1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

Interactive Runtime Verification: Formal Models, Algorithms, and Implementation 33

Algorithm 2 Handling the execution of an instruction in the program

Precondition: D .fieldMode = P

1: function dbgprog::exec

2: accessList ← getAccesses(P ) ▷ the list of accesses done by the next instruction in the program.

3: wps← D .wpts \ D .hdld
4: if ∃w ∈ wps : ∃a ∈ accessList : match(a,w ) ∧w .for = dev then ▷ Dev watchpoint

5: (P .m, D .oi) ← restoreBP(D .bpts, P .pc, D .oi, P .m)
6: D .hdld← D .hdld ∪ {w }
7: D .mode← I

8: return OK
9: ascn ← [a ∈ accessList | ∃w ∈ wps : match(a,w ) ∧w .for = scn] ▷ Accesses matching a scenario watchpoint

10: if ascn is not empty then
11: let w ∈ wps such that match(head(ascn),w ) ∧w .for = scn
12: (P .m, D .oi) ← restoreBP(D .bpts, P .pc, D .oi, P .m)
13: D .hdld← D .hdld ∪ {w }
14: return w
15: aevt ← [a ∈ accessList | ∃w ∈ wps : match(a,w ) ∧w .for = evt] ▷ Accesses matching a monitor watchpoint

16: if aevt is not empty then
17: let w ∈ wps such that match(head(aevt),w ) ∧w .for = evt
18: (P .m, D .oi) ← restoreBP(D .bpts, P .pc, D .oi, P .m)
19: D .hdld← D .hdld ∪ {w }
20: return instantiate(Sym, D .evts(w ), P .m, P .pc)
21: switch P .exec() do
22: case OK ▷ No watchpoints, no breakpoints

23: return OK
24: case STOP ▷ We reached the end of the program

25: return STOP
26: case TRAP ▷ A breakpoint instruction was encountered

27: B ← {b ∈ D .bpts \ D .hdld | b .addr = P .pc} ▷ Set of breakpoints at this address that have not been handled

28: if ∃b ∈ B : b .for = dev then ▷ Developer breakpoint

29: D .hdld← D .hdld ∪ {b }
30: D .mode← I

31: return OK
32: if ∃b ∈ B : b .for = scn then ▷ Scenario breakpoint

33: D .hdld← D .hdld ∪ {b }
34: return b
35: if ∃b ∈ (Dom(D .evts) \ D .hdld) ∩ D .bpts : b .addr = P .pc then ▷ Monitor breakpoint

36: D .hdld← D .hdld ∪ {b }
37: return instantiate(Sym, D .evts(b), P .m, P .pc)
38: P .m[pc] ← D .oi(P.pc) ▷ No breakpoint to handle, we temporarily restore the original instruction

39: return TRAP

are later matched in the algorithm (using function match defined in Sec. 6.3) with the set of watchpoints managed by

the debugger and that have not been handled yet (Computed at Line 3).

• If a developer watchpoint matches (Line 4), the debugger is set to interactive mode (Line 7), which corresponds

to rule devWatch (Fig. 8), and returns OK (Line 8). The watchpoint is added to the set of handled points in the

debugger (Line 6)

• Otherwise, the list of accesses matching a scenario watchpoint is built (Line 9). If this list is not empty (Line 10), the

watchpoint matching the first access of this list is returned (Line 14), which corresponds to rule scnWatch (Fig. 8).

The watchpoint is added to the set of handled points in the debugger (Line 13)

Manuscript submitted to ACM



1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

34 Raphaël Jakse, Yliès Falcone, and Jean-François Méhaut

• Otherwise, the list of accessesmatching amonitor watchpoint is built (Line 15). If this list is not empty (Line 16), the

event corresponding to thewatchpointmatching the first access of this list is returned (Line 20), which corresponds

to rule monWatch (Fig. 8). The watchpoint is added to the set of handled points in the debugger (Line 19)

Each time a watchpoint is triggered, if a breakpoint exists at the current instruction, the breakpoint instruction is set

at the current program counter to ensure breakpoints are never missed even if a watchpoint makes the scenario or the

developer changes the execution flow (Lines 5, 12 and 18).

If no watchpoint is triggered, a program execution step is done (Line 21). The debugged program checks whether a

breakpoint is triggered.

• If no breakpoint instruction is encountered,OK is returned (Line 22), which corresponds to rule normalExec (Fig. 10),

or STOP if the execution reaches the end of the program (Line 24).

• If a breakpoint instruction is encountered (Line 26), breakpoints are evaluated.

– If a developer breakpoint matches (Line 28), the debugger is set to interactive mode, which corresponds to rule

devBreak (Fig. 9), and the breakpoint is added to the set of handled points.

– If a scenario breakpoint matches (Line 32), the breakpoint is returned, which corresponds to rule scn-

Break (Fig. 9), and the breakpoint is added to the set of handled points.

– If a monitor breakpoint matches (Line 35), the corresponding event is returned, which corresponds to rule

evtBreak (Fig. 9), and the breakpoint is added to the set of handled points.

– If no breakpoint matches (Line 38), the original instruction is temporarily restored in the program memory

and TRAP is returned (which corresponds to rule trapNoBreak (Fig. 9)). This instruction will be executed

or and the breakpoint instruction will be set back again.

Algorithm 3 Setting and removing points

1: function dbgprog::setBreak(b ∈ Breakpoint)
2: if ∄b′ ∈ D .bpts : b′.addr = b .addr then
3: D .oi← D .oi[b .addr 7→m[b .addr]]
4: m′ ←m[b .addr = BREAK]
5: D .bpts← D .bpts ∪ {b }
6: function dbgprog::rmBreak(b ∈ Breakpoint)
7: a ← b .addr
8: D .evts← D .evts\{b}
9: if ∄b′ ∈ D .bpts \ {b } : b′.addr = a then
10: P .m← P .m[a 7→ D .oi(addr)]
11: D .oi← D .oi[a 7→ BREAK]
12: D .bpts← D .bpts \ {b }
13: function dbgprog::setWatch(w ∈ D .wpts)

14: D .wpts← D .wpts ∪ {w }
15: function dbgprog::rmWatch(w ∈ D .wpts)
16: D .wpts← D .wpts \ {w }
17: function dbgprog::setPoint(p ∈ Point)
18: if p ∈ Breakpoint then
19: setBreak(p)
20: else
21: setWatch(p)

22: function dbgprog::rmPoint(p ∈ Point)
23: if p ∈ Breakpoint then
24: rmBreak(p)
25: else
26: rmWatch(p)

8.2.2 Setting and removing points.

In Algorithm 3, we define functions to set and remove points, corresponding to rules in Fig. 12.

Function setBreak (Line 1) sets a breakpoint. This consists in adding a breakpoint to the set of breakpoints of the

debugger (Line 4). If there is no other breakpoint at the address of the breakpoint (Line 2), the instruction at this address

is saved in field oi of the debugger (Line 5). Instruction BREAK is placed at the address of the breakpoint (Line 3).

Manuscript submitted to ACM



1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

Interactive Runtime Verification: Formal Models, Algorithms, and Implementation 35

Likewise, function rmBreak (Line 6) removes a breakpoint. This consists in removing a breakpoint from the set

of breakpoints of the debugger (Line 11). If there is no other breakpoint at the address of the breakpoint (Line 9), we

restore the original instruction at this address from oi (Line 10).

Function setWatch (Line 13) sets a watchpoint. This consists in adding a watchpoint to the set of watchpoints of

the debugger.

Likewise, function rmWatch (Line 15) removes a watchpoint. This consists in removing a watchpoint from the set

of watchpoints of the debugger.

Function setPoint (Line 17) calls setBreak (Line 1) or setWatch (Line 13) depending on whether the point in param-

eter is a breakpoint or a watchpoint. Likewise, function rmPoint (Line 22) calls rmBreak (Line 6) or rmWatch (Line 15)

depending on whether the point in parameter is a breakpoint or a watchpoint.

Algorithm 4 Instrumentation

1: function dbgprog::clearEvents

2: addrs← {b .addr | b ∈ Dom(D .evts) ∩ Breakpoint} \ {b .addr ∈ D .bpts \ Dom(D .evts)}
3: P .m← P .m † {a 7→ D .oi(a) | a ∈ addrs}
4: D .wpts← D .wpts \ Dom(D .evts)
5: D .bpts← D .bpts \ Dom(D .evts)
6: D .evts← ∅
7: function dbgprog::instrument(events ∈ P (Event))

8: clearEvents()

9: (pts, evts) ← watchEvents(P , D .evts, events)
10: for all p ∈ pts do
11: setPoint(p)
12: D .evts← evts

8.2.3 Instrumentation.

In Algorithm 4, we define functions corresponding to rules clearEvents and instrument defined in Fig. 11. In function

clearEvents (Line 1), the list of addresses of event breakpoints is built (Line 2), corresponding instructions in the

program memory are restored (Line 3) and breakpoints and watchpoints corresponding to events are removed (Lines 4

and 5). In function instrument (Line 7), current events are cleared (Line 8), the list of points needed for events to

instrument and the mapping from these points to these events are built (Line 9) using function watchEvents defined

in Sec. 6.3. These points are set (Line 11) and the mapping of events to points in the debugger is updated (Line 12)

according to the result computed at (Line 9) by function watchEvents.

Algorithm 5 Stepping and interrupting the execution

Precondition: D .mode = I

1: function dbgprog::step

2: D .mode← P

3: r ← exec()

4: D .mode← I

5: return r

Precondition: D .mode = P

6: function dbgprog::interrupt

7: D .mode← I

Precondition: D .mode = I

8: function dbgprog::continue

9: D .mode← P

Manuscript submitted to ACM



1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

36 Raphaël Jakse, Yliès Falcone, and Jean-François Méhaut

8.2.4 Stepping and interrupting the execution.

In Algorithm 5, we describe commands step, interrupt and continue, corresponding to rules in Fig. 14.

Function step (Line 1) implements command step of the interactive mode of the debugger (D.mode = I). It sets the

debugger in passive mode (Line 2), does an execution step (Line 3) and then restores interactive mode (Line 4). An

execution step can produce an event or a point that is returned at Line 5.

Function interrupt (Line 6) sets the debugger in interactive mode.

Function continue (Line 8) sets the debugger in passive mode. The behavior of rule stepRedo (Fig. 14, Sec. 6.3) is

taken into account in function exec (Algorithm 2).

Algorithm 6 Controlling the program memory and counter

1: function dbgprog::setAddr(a ∈ Addr, v ∈ Value)
2: P .m[a] ← v

3: function dbgprog::getAddr(a ∈ Addr)
4: return P .m[a]

5: function dbgprog::setSym(s ∈ Symbol, v ∈ Value)
6: P .m[Sym(P .m, P .pc, s)] ← v

7: function dbgprog::getSym(s ∈ Symbol)

8: return P .m[Sym(P .m, P .pc, s)]

9: function dbgprog::setPC(setPC(a))
10: P .pc← a

11: function dbgprog::getPC(getPC(a))
12: return P .pc

8.2.5 Controlling the program memory and counter.

Functions in Algorithm 6 correspond to rules in Fig. 15 and are used to set and get values in the program.

Algorithm 7 Checkpointing

1: function dbgprog::checkpoint

2: D .cpts.push(((P .m † {b .addr 7→ oi(b .addr) | b ∈ D .bpts}, P .pc), Im(D .evts)))
3: return D .cpts.length
4: function dbgprog::restore(cid ∈ N)
5: ((mt , pc), events) ← D .cpts

cid

6: P .pc← pc

7: D .bpts← {b ∈ D .bpts | b .for = dev}
8: D .oi← {b .addr 7→mt [b .addr] | b ∈ D .bpts}
9: P .m←mt † {b .addr 7→ BREAK | b ∈ D .bpts}
10: PD.instrument(events)

8.2.6 Checkpointing.

Functions in Algorithm 7 are used to checkpoint and restore the debugged program. Function checkpoint stores the

program memory (with breakpoint instructions replaced by the original instructions of the program), the program

counter and the set of events being tracked by the debugger (Line 2). The function returns the identifier of the checkpoint,

which is the index in the sequence of checkpoints known to the debugger (Line 3).

Remark 9. The set of breakpoints is not saved: the set of active developer breakpoints in the restored program will be

the set of active developer breakpoints before restoring.

Manuscript submitted to ACM



1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

Interactive Runtime Verification: Formal Models, Algorithms, and Implementation 37

Function restore restores the checkpoint D.cpts
cid

given by the parameter identifier cid from the list of check-

points D.cpts known to the debugger. The program counter is restored (Line 6), non-developer breakpoints are

discarded (Line 7), the map of original instructions in the debugger is built (Line 8), the memory is restored while

keeping developer breakpoints instructions (Line 9) and checkpointed events are instrumented (Line 10) by function

instrument defined in Algorithm 4 at Line 7.

8.3 The Scenario

We present an implementation of the scenario. In the operational view (Sec. 6.5), for the sake of generality, the scenario

is specified in a generic way. In this section, we propose a more specific, practical definition of a scenario. The scenario

behavior is defined using a map that links verdicts from the monitor to actions. An action a in A is a function that

commands the i-RV program and updates the environment of the scenario referenced by variable env. Algorithm 8

defines the behavior of the scenario.

Algorithm 8 Handling the scenario

1: function scn::execAction(a ∈ A)

2: if a = null then
3: return nop

4: (cmd, ar, env′) ← a(env)
5: env ← env

′

6: actionReply ← ar

7: if ∃ (p, a′) ∈ Point × A : c = setPoint(p, a′)then
8: points← points[p 7→ a′]
9: return setPoint(p)
10: if ∃p ∈ Point : c = rmPoint(p) then
11: delete points[p]
12: return c

13: function scn::applyVerdict(v ∈ Verdict)
14: return execAction(actions(verdict))

15: function scn::applyCmdReply(r ∈ Oi-RV)

16: if actionReply = null then
17: return null
18: r ← execAction(actionReply(r ))
19: actionReply ← null
20: return r

21: function scn::applyPoint(p ∈ Point)
22: return execAction(points(p))

Function applyVerdict is called when the monitor issues a verdict. This function retrieves the action associated

with this verdict using map actions, given in the definition of the scenario. This action is then executed by function

execAction.

Function execAction executes action a with the environment of the scenario in parameter (Line 4). The action

returns a triple (cmd, ar, env′) where:

• cmd is a command to be run by, and returned to, the i-RV program;

• ar is a callback function, or null. This function takes the reply of the i-RV program to the command, and returns

an action to run.

• env
′
is the new environment of the scenario.

The scenario environment is updated (Line 5) and the callback function is saved in variable actionReply (Line 6) to

handle the result of the command that will be run by the i-RV-program.

• If cmd is an action of the form setPoint(p,a′) for some point p and some action a′ (Line 7), command setPoint(p)

is returned instead. Point p is set and mapped to action a′ in points. Action a′ is run when p is triggered in the

debugged program.

Manuscript submitted to ACM



1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

38 Raphaël Jakse, Yliès Falcone, and Jean-François Méhaut

• If cmd is an action of the form rmPoint(p) for some point p (Line 10), point p is removed from map points and

cmd is returned as is (Line 12).

• Any other command is returned as is (Line 12).

Function applyPoint is called when a point set by the scenario is triggered. The corresponding action in points is

executed.

When a command is run by the i-RV program for the scenario, the output of this command is forwarded to the

scenario by calling function applyCmdReply. If a callback function is present (i.e., actionReply is not null), this function
is run with the reply as parameter. This function returns an action that is executed.

8.4 The Interactively Runtime Verified Program

We consider an interactively verified program PDMS as defined in Sec. 6.6, using a scenario as defined in Sec. 6.5. We

suppose a monitorM with initial configurationM0 that provides a method applyEvent. This method takes an event

as parameter and returns a pair (v, events) ∈ Verdict × P (SymbolicEvent) where v is a verdict and events is a set of

symbolic events to track in the debugged program.

The initial configuration of the i-RV-program is (P0,D0,M0, S0). In the algorithms of this section, the global state

is represented by the states of the debugged program PD, the monitorM and the scenario S . We also allow the i-RV-

program to access the states of the program P and the debugger D included in the state of the debugged program. We

present the general behavior at the end of this section, in Algorithm 11.

Algorithm 9 Initialisation and execution

1: function irv::init

2: (verdict, events) ← M .init()

3: PD.instrument(events)

4: cmd ← S .applyVerdict(verdict)
5: return applyScenarioCmd(cmd)

Precondition: D .fieldMode = P

6: function irv::exec

7: r ← PD.exec()

8: switch r do
9: case r ∈ Point
10: cmd ← S .applyPoint(r )
11: return applyScenarioCmd(cmd)

12: case r ∈ Event
13: (verdict, events) ← M .applyEvent(r )

14: PD.instrument(events)

15: cmd ← S .applyVerdict(verdict)
16: return applyScenarioCmd(cmd)

17: case other
18: return r

19: function irv::applyScenarioCmd(cmd)

20: if cmd = nop then
21: return null
22: r ← Execute cmd .name(. . . cmd .params)
23: cmd ← S .applyCmdReply(r )
24: return applyScenarioCmd(cmd)

8.4.1 Initialisation and execution.

In Algorithm 9, we describe the initialization and an execution step of the interactively verified program.

In function init (Line 1), the monitor is initialized (Line 2). Then, instrumentation for the initial state of the monitor is

requested to the debugged program (Line 3). Finally, scenario for the initial verdict is applied (Line 4) and the command

returned by the scenario is passed to function applyScenarioCmd (Line 5).

Function applyScenarioCmd (Line 19) executes a command (i.e., calls the function given in the command by its

name with given parameters) at Line 22. The result of this command is forwarded to the scenario (Line 23, and the new

Manuscript submitted to ACM



1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

Interactive Runtime Verification: Formal Models, Algorithms, and Implementation 39

Algorithm 10 Stepping, checkpointing and other debugger commands

1: function irv::checkpoint

2: return (PD.checkpoint(),M .checkpoint())

3: function irv::restore((cPD, cM))
4: PD.restore(cPD)
5: M .restore(cM)

Precondition: D .mode = I

6: function step

7: D .mode← P

8: r ← exec()

9: D .mode← I

10: return r

command returned by the scenario is executed using function applyScenarioCmd (Line 24). This recursive process

ends when the scenario returns the special command nop (Line 20).

Function exec (Line 6) performs an execution step of the debugged program (Line 7). Making the program evolve

requires the debugger to be in passive mode. (D.fieldMode = P).

• If the debugged program returns a point (Line 9), this point is forwarded to the scenario. The scenario may return

a command to perform. This command is executed using function applyScenarioCmd (Line 11).

• If the debugged program returns an event (Line 12), this event is forwarded to the monitor. The monitor returns

a verdict and a new set of events to instrument. Instrumentation is requested to the debugged program (Line 14)

and the verdict is forwarded to the scenario (Line 15). The scenario may return a command to perform. This

command is executed using function applyScenarioCmd (Line 16).

• Any other value (OK, TRAP) returned by the debugged program is returned to the caller (Line 11).

8.4.2 Stepping, checkpointing and other debugger commands.

In Algorithm 10, we define functions checkpoint, restore and step.

Function checkpoint (Line 1) returns a checkpoint composed of a checkpoint of the debugged program and a

checkpoint of the monitor.

Function restore (Line 3) restores the debugged program (Line 4) and the monitor (Line 5).

Function step (Line 6) implements command step of the interactivemode of the debugger (D.mode = I). It temporarily

sets the debugged program in passive mode (Line 7), performs an execution step (Line 8), then restore interactive

mode (Line 9). The function returns the value produced by the execution step to the caller (Line 10).

8.4.3 General behavior.

In Algorithm 11, we describe the general behavior of the interactively verified program. First, the i-RV-program is

initialized using function init (Line 1). Then, while nothing interrupts the execution, if the debugger is in passive

mode (Line 4), an execution step is performed (Line 4). Otherwise, in interactive mode (Line 8), the developer inputs a

command (Line 9) which is executed.

9 IMPLEMENTATION: VERDE

To evaluate our approach in terms of usefulness and performance, we implemented it in a tool called Verde. We give an

overview of Verde in Sec. 9.1. We then present how Verde handles the program execution, the property evaluation, and

the instrumentation in Sec. 9.2. We then present how checkpointing is done in Verde Sec. 9.2.4. We finally explain how

to use Verde in Sec. 9.3.

Manuscript submitted to ACM



2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

40 Raphaël Jakse, Yliès Falcone, and Jean-François Méhaut

Algorithm 11 General behavior

1: init()

2: cont ← true

3: while cont do
4: if D .mode = P then
5: r ← exec()

6: if r = STOP then
7: cont = false

8: else
9: switch get developer command do
10: case step
11: step()

12: case continue
13: PD.continue()

14: case set watchpoint addr read write

15: PD.setWatch((addr, {r | read } ∪

{w | write}, dev))
16: case set breakpoint addr

17: PD.setBreak((addr, dev))
18: case unset watchpoint addr read write

19: PD.rmWatch((addr, {r | read } ∪

{w | write}, dev))

20: case unset breakpoint addr

21: PD.rmBreak((addr, dev))
22: case print value at addr

23: print(PD.getAddr(addr))

24: case set value v at addr

25: PD.setAddr(addr, v)
26: case print value of symbol

27: print(PD.getSym(symbol))

28: case set value v of symbol

29: PD.setSym(symbol, v)
30: case print program counter
31: print(PD.getPC())

32: case set program counter addr

33: PD.setPC(addr)

34: case checkpoint
35: print(checkpoint())

36: case restore cid

37: restore(cid)

Fig. 21. During the execution of the property given in Fig. 25, the following graphs can be seen respectively before initialization of the
property initialization, on initialization, while the property is verified and when the property becomes falsified. Light red, red, brown
and gray respectively correspond to non accepting state, a current non accepting state, a transition taken during the last state change
and a state which was current before the last state change. Graphs are automatically drawn using Graphviz and colors animated
during the execution.

9.1 Overview

Verde
4
is a GDB-based implementation of interactive runtime verification. Verde can be used with programs written

in any programming language supported by GDB. Verde supports the verification of several properties by means of

monitors executing independently. Each monitor automatically sets and deletes breakpoints according to the events

that are relevant to the current states of the monitored properties. Verde provides a graphical and animated view of the

4
Verde can be downloaded at https://gitlab.inria.fr/monitoring/verde.

Manuscript submitted to ACM

https://gitlab.inria.fr/monitoring/verde


2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

Interactive Runtime Verification: Formal Models, Algorithms, and Implementation 41

properties being checked at runtime (see Fig. 21). The view eases understanding the current evaluation of the property

(and, as a consequence, the program) since it offers to the developer a visualization of an abstracted history of the

program execution. Verde also lets the developer control the monitors and access their internal state (property instances,

current states, environments).

Monitor Event Manager

Instrumentation for GDB

GDB Commands

Graph Displayer

ScenarioProperty

Fig. 22. Organization of the code of Verde

Architecture. Verde is written in Python and works seamlessly as a GDB plugin by using the Python API provided

by GDB
5
. The organization of the code is depicted in Fig. 22. The developer controls Verde by using commands

defined in module GDB Commands. These commands are available from the GDB command-line interface and allow

creating monitors (class Monitor) by loading properties (class Property) and scenarios (class Scenario). Module Graph
Displayer provides a graphical view of running monitors. If the view is enabled, Verde shows graphs depicting the

properties. Properties are drawn using Graphviz
6
in SVG

7
. As the current state of the monitor changes, the graphical

view is updated: the current state is shown in green if it is accepting, in red if it is not accepting. Taken transitions

are represented in brown. Module Event Manager defines the interface between monitors and the instrumentation

module, which defines methods to handle breakpoints and watchpoints in GDB.

9.2 Program Execution, Property Evaluation, Instrumentation and Checkpointing

In this section, we describe how instrumentation is done, how events are produced, how properties are evaluated and

how checkpointing is done during the program execution.

9.2.1 Program Execution with Verde

Fig. 23 depicts the execution of a program with Verde. When a breakpoint or a watchpoint in the monitored program is

reached, the execution of the program is suspended. If the breakpoint (or the watchpoint) was set by Verde, an event

5
https://sourceware.org/gdb/onlinedocs/gdb/Python.html

6
Graphviz is a set of graph drawing tools - https://www.graphviz.org/

7
the Scalable Vector Graphics format - http://www.w3.org/2000/svg

Fig. 23. Instrumentation in Verde

Manuscript submitted to ACM

https://sourceware.org/gdb/onlinedocs/gdb/Python.html
https://www.graphviz.org/
http://www.w3.org/2000/svg


2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

42 Raphaël Jakse, Yliès Falcone, and Jean-François Méhaut

on en t e r i n g non−a c c e p t i n g s t a t e {

print ( " S c en a r i o : a non−a c c e p t i n g s t a t e has been reached ! ( " +

o l d _ s t a t e + " −> " + new_s ta t e + " ) " )

c = che ckpo in t ( )

def c a l l e d_when_checkpo in t _ r e ady ( ) :

c i d = c h e c kpo i n t _ g e t _ i d ( c )

print (
" ∗ ∗ ∗ Checkpoint on t h i s b reakage : " , c id ,

" \ n ∗ ∗ ∗ To r e s t o r e , type verde checkpo in t − r e s t a r t " , c i d

)

a f t e r _ b r e a k p o i n t ( c a l l e d_when_checkpo in t _ r e ady )

}

Fig. 24. This scenario sets a checkpoint each time a non-accepting state is entered. The execution of the program is not suspended.

is produced, the state of the property and the instrumentation are updated. Scenarios react to monitor updates by

executing actions that modify the program state, the debugger and the scenario itself. In Verde, each monitor can be

associated with a scenario. A scenario is a list of reactions to monitor state changes. When the monitor updates its

state, the scenario runs the corresponding action. These actions, written in Python, also have a dedicated environment

that can be initialized in the definition of the scenario if needed. An example of a scenario in Verde is given in Fig. 24.

9.2.2 Handling Instrumentation and Event Production

Setting and removing breakpoints and watchpoints. When the monitor reaches a new state (including the initial

state), the list of transitions of the new state is browsed. Each transition includes a formal event. The event can be a

function call or a variable access. Instrumentation is removed for events that are not involved in the evaluation of the

property anymore, and instrumentation (breakpoints and watchpoints) is added for events that are involved. Events are

requested and released through an event manager. The event manager is an interface between the monitor and the

instrumentation module. It keeps track of the active events. It does not depend on the monitor and abstracts away how

instrumentation is performed. The event manager sends requests to the instrumentation module, which sets breakpoints

and watchpoints by using the API provided by the debugger. Several breakpoints may correspond to one event, and

several events can use the same breakpoints. When a breakpoint or a watchpoint is hit, the instrumentation module

instantiates the event by retrieving parameters values from the program and forwards this event to the event manager,

which in turn forwards the event to the monitor, which updates its state.

Handling after events. After events are triggered when a function ends. GDB does not provide straightforward means

to instrument after events out of the box. However, GDB provides finish breakpoints. A finish breakpoints triggers

when the frame of the call stack on which it is set returns. To instrument for an after event, a regular breakpoint is first

added to the beginning of the function. When the breakpoint is reached, a finish breakpoint is set at the current frame.

This finish breakpoint triggers when the function returns. Finish breakpoints are also set on each frame in the call stack

that corresponds to the instrumented function, accounting for recursive calls and after events set during the execution

of the instrumented function.

Manuscript submitted to ACM



2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

Interactive Runtime Verification: Formal Models, Algorithms, and Implementation 43

9.2.3 Parametric Trace Slicing

We implemented trace slicing in Verde, inspiring from [7]. Trace slicing is a feature that allows expressing parametric

properties. Such properties get instantiated with runtime values and are evaluated over subsequences of the whole trace

of the program execution instead of the whole trace itself. These subsequences of the trace are related to particular

instances of parameters (e.g. objects) in the program. For instance, Fig. 2 (p. 13) depicts a property specifying a behavior

on each queue created during the program execution. When evaluating this property, each queue is associated with

a specific state that does not depend on the states associated with the other queues. Thus, the monitor keeps track

of several states and must, for each event, determine which state must be updated. For this property, the queue is a

parameter of every event (init, push, pop). This parameter is used to determine the state to be updated. In general, an

instance can be defined by multiple parameters. For example, a web page containing some element E can be opened in

several tabs in a browser, which itself consists of several windows. An instance of element E is identified by its identifier

(unique within a tab) as well as the tab identifier (unique within a window) and the window identifier.

We describe how trace slicing is implemented in Verde. Properties define the list of formal parameters on which the

trace must be sliced. In the property depicted in Fig. 2, the unique parameter in this list is the queue. In the monitor, each

current state is mapped to an instance of these parameters (the slice instance). The monitor initially has one current

state: the initial state. This state is mapped to the slice instance in which each parameter to the special undetermined

value ⊥ (the parameter is not instantiated). When the monitor receives a new event, the slice instance is built from its

parameter, and then, for each current state:

• If the state is associated with a slice instance such that all parameters of the event are equal to the parameters of

the slice instance, then the state is updated according to the property semantics, i.e., by evaluating the guard and

the success or the failure block.

• Otherwise, the state is copied into a new current state if:

– every instantiated parameter in the slice instance of the state is equal to the corresponding event parameter

value, and

– there is no slice instance in the monitor for which the values of all parameters in the event are equal to the

corresponding values in the slice instance.

The new state is associated to the slice instance built by merging the state slice instance and the event slice

instance. The event is directed to this new state.

When a state is copied to form a new current state, the environment containing variables used in the property is also

copied, so the new state inherits from the values stored in the state its was copied from. Primitive values are not shared.

More complex constructions like dictionaries and lists are, however, shared.

Handling Disappearing Instances. Sometimes, an instance of an object is destructed (freed), and then a new instance

is created and gets the same identifier. This can be observed by running the following C program, in which a manually

allocated area of 4 bytes is requested using malloc, then freed, than another area of 4 bytes is created:

# include < s t d l i b . h>

# include < s t d i o . h>

in t main ( ) {

void ∗ p = ma l l o c ( 4 ) ;

p r i n t f ( "%p " , p ) ; f r e e ( p ) ;

Manuscript submitted to ACM



2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

2255

2256

2257

2258

2259

2260

2261

2262

2263

2264

2265

2266

2267

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

44 Raphaël Jakse, Yliès Falcone, and Jean-François Méhaut

p r i n t f ( "%p \ n " , ma l l o c ( 4 ) ) ; return 0 ;

}

On a x86-64machine runningDebian Buster, compiling this programwith gcc and running it outputs “0x564e53699260
0x564e53699260”. However, the two objects that have the same identifier should be handled as distinct objects.

To handle this in Verde, a state can be marked as final, meaning that the state must not be updated anymore. When

such a state is reached, the corresponding slice instance is forgotten. As such, when a new instance with the same

identifier is seen through an event, a new state will be created in the monitor. This feature also helps keeping the output

of the monitor clean and allows optimizing resource usage.

9.2.4 Checkpointing

Checkpointing can be done from the scenario to allow going back at a specific point of the execution. Verde features two

methods for checkpointing processes on Linux-based systems. The first uses the native checkpoint command of GDB.

This method is based on fork() to save the program state in a new process, which is efficient, as fork is implemented

using Copy on Write. A major drawback is that multithreaded programming is not supported since fork() keeps only
one thread in the new process. The second method uses CRIU

8
, which supports multithreaded processes and trees of

processes. CRIU uses the ptrace API to attach the process to be checkpointed and saves its state in a set of files. CRIU

supports incremental checkpointing by computing a differential between an existing checkpoint and a checkpoint to

create. It can make the system track memory changes in the process to speed this computation.

Beside CRIU, other checkpointing solutions exist on Linux (cf. the CRIU website
9
for a comparison). We chose CRIU

because it does not require preloading any library nor special kernel module. Instead, features required to checkpoint

processes with CRIU have been integrated in the mainline Linux kernel. This allows for an easier setup as well as fewer

differences between an uninstrumented process and a process under debug. CRIU also seems to be the currently most

active and supported solution. CRIU authors state that it is impossible to checkpoint processes debugged under GDB

because both tools use the ptrace API provided by the kernel. However, we were able to work around this limitation by

suspending and detaching the process from GDB before checkpointing with CRIU, and then reattaching the process to

GDB and restoring the breakpoints and watchpoints that were present before checkpointing, and then resuming the

execution. Support for other checkpointing solutions may be added as needed.

9.3 Using Verde

In this section, we present how to use Verde. A typical usage session begins by launching GDB and Verde (which can be

automatically loaded by configuring GDB appropriately). Then, the developer loads one or several properties. Additional

python functions, used in properties, can be loaded at the same time. A scenario can also be loaded. Then, the developer

starts the execution. It is also possible to display the graph of the property with the show-graph subcommand (see

Fig. 21, p. 40).

$ gdb . / my−a p p l i c a t i o n

( gdb ) verde load−p rope r t y behav i o r . prop f u n c t i o n s . py

( gdb ) verde load−s c e n a r i o d e f a u l t −s c e n a r i o . s c

( gdb ) verde show−graph

( gdb ) verde run−with−program

8
Checkpoint/Restore In Userspace is a community-driven project started by Virtuozzo kernel engineers in 2011 to allow checkpointing and restoring on

Linux. See https://criu.org/.

9
https://criu.org/Comparison_to_other_CR_projects

Manuscript submitted to ACM

https://criu.org/
https://criu.org/Comparison_to_other_CR_projects


2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

2301

2302

2303

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

2321

2322

2323

2324

2325

2326

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

2337

2338

2339

2340

Interactive Runtime Verification: Formal Models, Algorithms, and Implementation 45

Command Effect

verde activate Activates all the commands monitor related commands

verde checkpoint Sets a checkpoint for the program and each managed monitor

verde checkpoint-restart Restores a checkpoint

verde cmd-group-begin Begins a group of commands

verde cmd-group-end Ends a group of command

verde delete Deletes a monitor

verde exec Executes an method in the current monitor.

verde get-current Prints the name of the current monitor

verde load-functions Loads a developer defined functions file

verde load-property Loads a property file and possibly a function file in the given monitor

verde load-scenario Loads a scenario

verde new Creates a monitor that will also become the current monitor

verde run Runs the monitor

verde run-with-program Running the monitor and the program at the same time

verde set-current Sets the current monitor

verde show-graph Shows the graph of the monitor in a window and animates it at runtime

Table 2. List of Verde commands.

. . .

[ ve rde ] I n i t i a l i z a t i o n : N = 0

[ verde ] Curren t s t a t e : i n i t (N = 0 )

queue . c : push !

[ ve rde ] Curren t s t a t e : i n i t

. . .

queue . c : push !

[ ve rde ] GUARD: nb push : 63

[ verde ] Overf low d e t e c t e d !

[ ve rde ] Curren t s t a t e : s i nk (N = 63 )

[ Execu t i on s topped . ]

( gdb )

Verde provides more fine-tuned commands to handle cases when properties and functions need to be loaded separately,

or when properties and the program need to be run at different times. A list of commands is given in Table 2

Writing Properties. Verde provides a Domain Specific Language for writing properties
10
. An informal grammar is

given in Fig. 26. Fig. 25 depicts a property used to check whether an overflow happens in a multi-threaded producer-

consumer program. First, the optional keyword slice on gives the list of slicing parameters. Then, an optional Python

code block initializes the environment of the monitor. Then, states are listed, including the mandatory state init. A
state has a name, an optional annotation indicating whether it is accepting, whether it is final (useful for trace slicing,

see Sec. 9.2.3), an optional action name attached to the state and its transitions. Transitions can be written with two

destination states: a success (resp. failure) state used when the guard returns success (resp. failure). The transition is

ignored if the guard returns None. Each transition comprises the monitored event, the parameters of the event used in

the guard, the guard (optional), the success block and the failure block (optional). Success and failure blocks comprise

an optional Python code block, an optional action name and the name of a destination state. The guard is a side-effect

10
We did not use pre-existing syntax in order to allow us flexibility as we experiment. Interfacing with existing monitoring tools is planned.

Manuscript submitted to ACM



2341

2342

2343

2344

2345

2346

2347

2348

2349

2350

2351

2352

2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

2376

2377

2378

2379

2380

2381

2382

2383

2384

2385

2386

2387

2388

2389

2390

2391

2392

46 Raphaël Jakse, Yliès Falcone, and Jean-François Méhaut

1 slice on queue

2

3 initialization {

4 N = 0

5 maxSize = 0

6 }

7

8 state init accepting {

9 transition {

10 event queue_new(queue, size : int) {

11 maxSize = size − 1

12 }

13 success queue_ready

14 }

15 }

16

17 state sink non−accepting sink_reached()

18

19 state queue_ready accepting {

20 transition {

21 event queue_push(queue) {

22 return N < maxSize

23 }

24 success {

25 N = N + 1

26 print("nb elem: " + str(N))

27 } queue_ready

28

29 failure sink

30 }

31

32 transition {

33 event queue_pop(queue) {

34 return N > 0

35 }

36

37 success {

38 N = N − 1

39 print("nb elem: "+str(N))

40 } queue_ready

41

42 failure sink

43 }

44 }

Fig. 25. Verde version of the property in Figure 2

[
s l i c e on

[
param ,

]
+

]
?[

i n i t i a l i z a t i o n {

Python code

}

]
?[
s t a t e state_name

[ [
non−

]
? a c c e p t i n g

]
?

[
f i n a l

]
?

[
action_name ( )

]
? {[

t r a n s i t i o n {[
b e f o r e | a f t e r

]
? even t event_name (

[
param ,

]
* )

[
{

Python code returning True F a l s e or None

}

]
?[
s u c c e s s

[
{

Python code

}

]
?

[
action_name ( )

]
? state_name

]
?[

f a i l u r e

[
{

Python code

}

]
?

[
action_name ( )

]
? state_name

]
?

}

]
*

}

]
+

Fig. 26. Informal grammar for the automaton-based property description language in Verde

free Python code block that returns True (resp. False) if the guard succeeds (resp. fails) and None if the transition

should be ignored.

10 EXPERIMENTS

We report on seven experiments carried out with Verde to measure its usefulness in finding and correcting bugs and its

efficiency from a performance point of view
11
. We discuss the objective and possible limitations (threat to validity) of

each experiment. These experiments also illustrate how a developer uses Verde in practice.

11
A video and the source codes needed for reproducing the benchmarks are available at http://gitlab.inria.fr/monitoring/verde.

Manuscript submitted to ACM

http://gitlab.inria.fr/monitoring/verde


2393

2394

2395

2396

2397

2398

2399

2400

2401

2402

2403

2404

2405

2406

2407

2408

2409

2410

2411

2412

2413

2414

2415

2416

2417

2418

2419

2420

2421

2422

2423

2424

2425

2426

2427

2428

2429

2430

2431

2432

2433

2434

2435

2436

2437

2438

2439

2440

2441

2442

2443

2444

Interactive Runtime Verification: Formal Models, Algorithms, and Implementation 47

10.1 Correcting a Bug in zsh

In zsh, a widely-used UNIX shell, a segmentation fault happened when trying to auto-complete some inputs like !> .
by hitting the tab key right after character >.

We ran zsh in GDB, triggered the bug and displayed a backtrace leading to a long and complicated function,

get_comp_string, calling another function with a null parameter itype_end, making zsh crash. Instead of trying to

read and understand the code or debugging step by step, we observed the bug (null pointer) and inspected the stack trace.

We noticed a call to function itype_end with a null parameter. Then, we wrote a property tracking assignments related

to this variable and checking that this variable, whenever used, is not null, and a scenario that prints the backtrace

each time the state of the property changes. This let us see that the last write to this variable nulls it. We were able

to prevent the crash by adding a null check before a piece of code that seems to assume that the variable is not null

and that contains the call to itype_end leading to the crash
12
. We did not discover the bug using i-RV

13
. However, it

helped us determine its origin in the code of zsh and fix it. A fix has since been released.

10.2 Automatic Checkpointing to Debug a Sudoku Solver

We evaluated i-RV by mutating the code of a backtracking Sudoku solver
14
. This experiment illustrates the use of

scenarios to automatically set checkpoints and add instrumentation at relevant points of the execution. Sudoku is a

game where the player fills a 9x9 board such that each row, each column and each 3x3 box contains every number

between 1 and 9. The solver reads a board with some already filled cells and prints the resulting board. During the

execution, several instances of the board are created and unsolvable instances are discarded.

We wrote a property describing its expected global behavior after skimming the structure of the code, ignoring its

internal details. No values should be written on a board deemed unsolvable or that break the rules of Sudoku (putting

two same numbers in a row, a column or a box). Loading a valid board should succeed. We then wrote a scenario that

creates checkpoints whenever the property enters an accepting state. Entering a non-accepting state makes the scenario

restore the last checkpoint and add watchpoints on each cells of the concerned board instance. When watchpoints are

reached, checkpoints are set, allowing us to get a more fine-grained view of the execution close to the misbehavior and

choose the moment of the execution we want to debug. This scenario allows a first execution that is not slowed down

by heavy instrumentation, and precise instrumentation for a relevant part of it.

The solver is bundled with several example boards that it solves correctly. We mutated its code using mutate.py15

to artificially introduce a bug without us knowing where the change is. When ran, the mutated program outputs "bad

board". We ran it with i-RV. The property enters the state failure_load. When restoring a checkpoint and running the

code step by step in the function that loads a board, the execution seems correct. The code first runs one loop reading

the board using scanf by chunks of 9 cells, and then a second loop iterates over the 81 cells to convert them to the

representation used by the solver. Setting breakpoints and displaying values during the first loop exhibits a seemingly

correct behavior. During the second loop, the last line of the board holds incorrect values. Since we observed correct

behavior for the first loop and the 72 first iterations of the second loop, and since both loops do not access the board in

the same way, we suspected a problem with the array containing the board. We checked the code and saw that the

mutation happened in the type definition of the board, giving it 10 cells by line instead of 9.

12
The code of the property is in Appendix C. We worked on commit 85ba685 of zsh.

13
The bug was reported at https://sourceforge.net/p/zsh/bugs/87/

14
https://github.com/jakub-m/sudoku-solver

15
https://github.com/arun-babu/mutate.py

Manuscript submitted to ACM

https://sourceforge.net/p/zsh/bugs/87/
https://github.com/jakub-m/sudoku-solver
https://github.com/arun-babu/mutate.py


2445

2446

2447

2448

2449

2450

2451

2452

2453

2454

2455

2456

2457

2458

2459

2460

2461

2462

2463

2464

2465

2466

2467

2468

2469

2470

2471

2472

2473

2474

2475

2476

2477

2478

2479

2480

2481

2482

2483

2484

2485

2486

2487

2488

2489

2490

2491

2492

2493

2494

2495

2496

48 Raphaël Jakse, Yliès Falcone, and Jean-François Méhaut

A caveat of this experiment is that we had to choose the mutated version of the code such that the code violates

the property. We also introduced a bug artificially rather than working on a bug produced by a human and arguably,

the program is small enough to be debugged using a traditional interactive debugger. However, the experiment can be

generalized and illustrates how scenarios can be used for other programs, where checkpoints are set on a regular basis

and execution is restarted from the last one and heavy instrumentation like watchpoints is used, restricting slowness to

a small part of the execution.

10.3 Multi-Threaded Producer-Consumers

The purpose of this experiment is to check whether our approach is realistic in terms of usability. We considered the

following use-case: a developer works on a multi-threaded application in which a queue is filled by 5 threads and

emptied by 20 threads and a segmentation fault happens in several cases. We wrote a program deliberately introducing

a synchronization error, as well as a property (see Fig. 2) on the number of additions in a queue in order to detect an

overflow. The size of the queue is a parameter of the event queue_new. The function push adds an element into the

queue. A call to this function is awaited by the transition defined at line 15 of Fig. 25. We ran the program with Verde.

The execution stopped in the state sink (defined at line 39 of Fig. 25). In the debugger, we had access to the precise line

in the source code from which the function was called, as well as the complete call stack. Under certain conditions

(that we artificially triggered), a mutex was not locked, resulting in a queue overflow. After fixing this, the program

behaved properly. In this experiment, we intentionally introduced a bug (and thus already knew its location). However

this experiments shows how Verde helps the programmer locate the bug: the moment the verdict given by the monitor

becomes false can correspond to the exact place the error is located in the code of the misbehaving program.

10.4 Micro-benchmark

Fig. 27. Instrumentation overhead with Verde. raw (red) is the execution of the program without Verde. verde (green) is the execution
with Verde. The overhead includes the breakpoint-based instrumentation. verde-arg (blue) is the execution with Verde, and one
parameter is used in the produced events. The overhead includes the instrumentation and the time used to retrieve one value per
event.

Manuscript submitted to ACM



2497

2498

2499

2500

2501

2502

2503

2504

2505

2506

2507

2508

2509

2510

2511

2512

2513

2514

2515

2516

2517

2518

2519

2520

2521

2522

2523

2524

2525

2526

2527

2528

2529

2530

2531

2532

2533

2534

2535

2536

2537

2538

2539

2540

2541

2542

2543

2544

2545

2546

2547

2548

Interactive Runtime Verification: Formal Models, Algorithms, and Implementation 49

Fig. 28. Memory consumption per number of tracked queues

In this experiment, we evaluated the overhead of the instrumentation in function of the temporal gap between events.

We wrote a C program calling a NOP function in a loop. To measure the minimal gap between two monitored events

for which the overhead is acceptable, we simulated this gap by a loop of a configurable duration. The results of this

benchmark using a Core i7-3770 @ 3.40 GHz (with a quantum time (process time slice) around 20 ms), under Ubuntu

16.04 and Linux 4.4.0-109 with GDB 7.11, are presented in Fig. 27. The curve verde-arg corresponds to the evaluation

of a property which retrieves an argument from calls to the monitored function. With 0.5 ms between two events, we

measured a slowdown factor of 2. Under 0.5 ms, the overhead can be significant, with a slowdown factor greater than

two, and rapidly growing as the delay between event shrinks. From 3 ms, the slowdown is under 20 % and from 10 ms,

the slowdown is under 5 %. We noticed that the overhead is dominated by breakpoint hits. The absolute overhead by

monitored event, in the manner of the overhead of an argument retrieval, is constant. We measured the mean cost

of encountering a breakpoint during the execution. We obtained 162 µs
16

on the same machine and around 300 µs

on a slower machine (i3-4030U CPU @ 1.90 GHz). This time constitutes the main cause of the slowdown observed

when evaluating properties. While this experiment does not give a realistic measure of the overhead added by the

instrumentation, it is still useful to estimate the overhead in more realistic scenarios.

10.5 Memory Consumption

We assess the memory consumption of Verde according to the number of objects being tracked by the monitor in the

interactively debugged program.Wemonitor a program that creates a number of queues given in parameter. We measure

the peak memory usage in terms of approximate number of bytes taken by a global object containing the monitor using

method asizeof of library Pympler, a first time before creating the queues in the program and a second time after their

creation. We deduce the memory used by Verde to keep track of these queues by computing the difference between

these two measures. Results are shown in Fig. 28 (axes use a logarithmic scale). The number of queues is represented on

16
Previously, we measured 95 µs on the same machine running Ubuntu 14.04 and GDB 7.7. Running Ubuntu 16.04 and GDB 7.11 with disabled support

for Kernel Page-Table Isolation (KPTI), we measure 152 µs. Running Ubuntu 16.04 and GDB 7.7 with KPTI support, we measure 125 µs. Same versions

without KPTI support, we measure 109 µs. We suspect a regression in both newer versions of GDB and in the Linux kernel with support for KPTI, a

mechanism to defend against the Meltdown vulnerability reveled in January 2018.

Manuscript submitted to ACM



2549

2550

2551

2552

2553

2554

2555

2556

2557

2558

2559

2560

2561

2562

2563

2564

2565

2566

2567

2568

2569

2570

2571

2572

2573

2574

2575

2576

2577

2578

2579

2580

2581

2582

2583

2584

2585

2586

2587

2588

2589

2590

2591

2592

2593

2594

2595

2596

2597

2598

2599

2600

50 Raphaël Jakse, Yliès Falcone, and Jean-François Méhaut

the x-axis and the memory consumption in bytes is represented on the y-axis using log scale. The memory consumption

is linear, with nearly 1.3 KB used per tracked queue, making it realistic to track several thousands of instances of an

object.

10.6 User-Perceived Performance Impact

Multimedia Players and Video Games. We evaluated our approach on widespread multimedia applications: the VLC

and MPlayer video players and the SuperTux 2D platform video game. A property made the monitor set a breakpoint on

the function that draws each frame to the screen for these applications, respectively ThreadDisplayPicture, update_video

and DrawingContext::do_drawing. For SuperTux, the function was called around 60 times per second. For the video

players, it was called 24 times per second. In each case, the number of frames per second was not affected and the CPU

usage remains moderated: we measured an overhead of less than 10 % for the GDB process. These results correspond

to our measurements in Sec. 10.4: there is a gap of 16 ms between two function calls which is executed 60 times per

second. Thus, our approach does not lead to an observable overhead for multimedia applications when the events occur

at such a limited frequency.

Opening and Closing Files, Iterators. We evaluated the user-perceived overhead with widespread applications. We

ensured that all open files are closed with the Dolphin file manager, the NetSurf Web browser, the Kate text editor and

the Gimp image editor. Despite some slowdowns, caused by frequent disk accesses, the execution of these programs

was still fast enough to be debugged in realistic conditions, with lags under the second. Likewise, we checked that no

iterator over hash tables of the GLib library (GHashTableIter) that is invalidated was used. Simplest applications like

the Gnome calculator remained usable but strong slowdowns were observed during the evaluation of this property,

even for mere mouse movements, as methods of this library are called multiple times during when handling these

events. Perceived lags ranged from unnoticeable to several seconds in the worst cases. In Sec. 11, we present possible

ways to mitigate these limitations.

10.7 Dynamic Instrumentation on a Stack

Wemeasured the effects of the dynamic instrumentation on the performance. A program adds and removes, alternatively,

the first 100 natural integers in a stack. We checked that the integer 42 is taken out of the stack after being added. A first

version of this property leverage the dynamic instrumentation. With this version, the call to the remove function was

watched only when the monitor knew that 42 is in the stack. A second version of the property made the monitor watch

every event unconditionally. The execution was 2.2 times faster with the first version. While this experiment used

artificial properties, it shows that dynamic instrumentation has a positive impact on the overhead in that it improves

performance.

11 CONCLUSION AND FUTUREWORK

11.1 Conclusion

Interactive runtime verification combines runtime verification and interactive debugging to facilitate and combine

bug discovery and bug understanding. Interactive runtime verification aims at taking the best of both approaches by

seeing the program as a system that can be monitored to find bugs and, at the same time, as a system that can be

debugged interactively to understand the bugs that were found. i-RV replaces a part of the tedious manual process of

Manuscript submitted to ACM



2601

2602

2603

2604

2605

2606

2607

2608

2609

2610

2611

2612

2613

2614

2615

2616

2617

2618

2619

2620

2621

2622

2623

2624

2625

2626

2627

2628

2629

2630

2631

2632

2633

2634

2635

2636

2637

2638

2639

2640

2641

2642

2643

2644

2645

2646

2647

2648

2649

2650

2651

2652

Interactive Runtime Verification: Formal Models, Algorithms, and Implementation 51

setting breakpoints in traditional interactive debugging by automatically set breakpoints by the monitor from properties

describing the (expected) behavior for the program.

The monitor and scenario guide debugging. Our approach to i-RV relies on formal models of the behavior of the

program, the debugger, and the scenario.The models we introduce allow us to formally describe their composition, thus

providing guarantees on the verdicts reported by monitors at runtime. Since interactively runtime verifying the behavior

of a program does not modify the behavior of the initial program, any bug found as a violation of a property at runtime

is an actual bug and no bug causing the violation of a property can be missed. The formal models are backed up with

algorithmic descriptions aimed at easing implementations of i-RV. We also presented Verde, an implementation of this

approach, and experiments to evaluate our approach. Our experiments showed that even though the property checker

can slow down the execution of the program considerably when events are temporally close to each other, our approach

remain relevant in numerous cases showed in our experiments, when properties do not require the production of a high

number of events per time unit (See Sec. 10.4). We demonstrated that interactive runtime verification is applicable in

realistic use-cases with software such as video games and video players (Sec. 10.6). Our current implementation shows

limitations in terms of performance under other use-cases. In the next section, we present ideas to mitigate this issue.

11.2 Future Work

We present some perspectives opened by this work.

Event Types. Our main event types are the function call and variable accesses. A way to make our approach more

powerful is to find and include other kinds of events in our model. System calls are an example of event type we have

not taken in account yet for technical reasons. They might be of interest for checking properties on drivers or programs

dealing with hardware.

Instrumentation. Handling breakpoints is costly [5] and handling watchpoints even more so. Code injection could

provide better efficiency [30, 32] by limiting round trips between the debugger and the program would to the bare

minimum (for example, when the scenario requires the execution to be suspended to let the developer interact with the

debugger) while keeping the current flexibility of the approach.

Checkpointing the File System. We plan to capture the environment of the developer in addition to the process being

debugged when checkpointing. More specifically, we shall look at the atomic snapshotting capabilities of modern file

systems like Brfs and ZFS.

Record and Replay and Reverse Execution. RR is a powerful method for finding bugs. Once a buggy execution is

recorded, the bug can be studied and observed again by running the recording. We aim to augment i-RV with reverse

debugging.

Usability and Scalability. Our largest experiment involves a medium-sized application, Zsh (4 MiB of source code),

and has been conducted ourselves. The next step is to show that it indeed eases bug fixing with bigger applications and

conduct a solid user study.

Another idea to be explored is verifying good programming practice and good API usage at runtime. We think

that API designers and library writers could leverage our approach by providing properties with their APIs and their

libraries. This would provide a means to check that their APIs are used correctly and make their usage safer. This would

also be a means to document these APIs and these libraries.

Manuscript submitted to ACM



2653

2654

2655

2656

2657

2658

2659

2660

2661

2662

2663

2664

2665

2666

2667

2668

2669

2670

2671

2672

2673

2674

2675

2676

2677

2678

2679

2680

2681

2682

2683

2684

2685

2686

2687

2688

2689

2690

2691

2692

2693

2694

2695

2696

2697

2698

2699

2700

2701

2702

2703

2704

52 Raphaël Jakse, Yliès Falcone, and Jean-François Méhaut

Relaxing Assumptions on the Program. Our current assumptions on the program in our theoretical model are strong.

We plan to improve the model by allowing multithreaded programs with side effects, possibilities of communicating

with the outside and by accounting for the physical time.

Modular and Programming Language Independent Interface and Implementation for i-RV.. Our current implementation,

Verde, is limited to the languages supported by the GNU Debugger and to our implementation of the monitor. We plan

to design a standard interface for interactive runtime verification that is not tied to a particular programming language,

runtime, debugger or monitor. This will let us leverage proven implementation of monitors supported by the runtime

verification community. We plan to produce an implementation of this interface.

REFERENCES
[1] Ezio Bartocci and Yliès Falcone (Eds.). 2018. Lectures on Runtime Verification - Introductory and Advanced Topics. Lecture Notes in Computer Science,

Vol. 10457. Springer. https://doi.org/10.1007/978-3-319-75632-5

[2] Mark Brörkens and Michael Möller. 2002. Dynamic Event Generation for Runtime Checking using the JDI. Electr. Notes Theor. Comput. Sci. 70, 4

(2002), 21–35. https://doi.org/10.1016/S1571-0661(04)80575-9

[3] Derek Bruening and Qin Zhao. 2011. Practical memory checking with Dr. Memory. In Proceedings of the CGO 2011, The 9th International Symposium

on Code Generation and Optimization, Chamonix, France, April 2-6, 2011. IEEE Computer Society, 213–223. https://doi.org/10.1109/CGO.2011.5764689

[4] Derek Bruening, Qin Zhao, and Saman P. Amarasinghe. 2012. Transparent dynamic instrumentation. In Proceedings of the 8th International Conference

on Virtual Execution Environments, VEE 2012, London, UK, March 3-4, 2012 (co-located with ASPLOS 2012), Steven Hand and Dilma Da Silva (Eds.).

ACM, 133–144. https://doi.org/10.1145/2151024.2151043

[5] Martial Chabot, Kévin Mazet, and Laurence Pierre. 2015. Automatic and configurable instrumentation of C programs with temporal assertion

checkers. In 13. ACM/IEEE International Conference on Formal Methods and Models for Codesign, MEMOCODE 2015, Austin, TX, USA, September 21-23,

2015. 208–217. https://doi.org/10.1109/MEMCOD.2015.7340488

[6] Feng Chen and Grigore Rosu. 2007. Mop: an efficient and generic runtime verification framework. In Proceedings of the 22nd Annual ACM SIGPLAN

Conference on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2007, October 21-25, 2007, Montreal, Quebec, Canada.

569–588. https://doi.org/10.1145/1297027.1297069

[7] Feng Chen and Grigore Rosu. 2009. Parametric Trace Slicing and Monitoring. In Tools and Algorithms for the Construction and Analysis of Systems,

15th International Conference, TACAS 2009, Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2009, York, UK,

March 22-29, 2009. Proceedings. 246–261. https://doi.org/10.1007/978-3-642-00768-2_23

[8] Yoonsik Cheon and Gary T. Leavens. 2002. A Simple and Practical Approach to Unit Testing: The JML and JUnit Way. In ECOOP 2002 - Object-Oriented

Programming, 16th European Conference, Malaga, Spain, June 10-14, 2002, Proceedings. 231–255. http://link.springer.de/link/service/series/0558/bibs/

2374/23740231.htm

[9] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. 2001. Model checking. MIT Press. http://books.google.de/books?id=Nmc4wEaLXFEC

[10] Christian Colombo, Adrian Francalanza, and Rudolph Gatt. 2011. Elarva: A Monitoring Tool for Erlang. In Runtime Verification - Second International

Conference, RV 2011, San Francisco, CA, USA, September 27-30, 2011, Revised Selected Papers (Lecture Notes in Computer Science), Sarfraz Khurshid and

Koushik Sen (Eds.), Vol. 7186. Springer, 370–374. https://doi.org/10.1007/978-3-642-29860-8_29

[11] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or

Approximation of Fixpoints. In Conference Record of the Fourth ACM Symposium on Principles of Programming Languages, Los Angeles, California,

USA, January 1977. 238–252. https://doi.org/10.1145/512950.512973

[12] Pascal Cuoq, Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles, and Boris Yakobowski. 2012. Frama-C - A Software Analysis

Perspective. In Software Engineering and Formal Methods - 10th International Conference, SEFM 2012, Thessaloniki, Greece, October 1-5, 2012.

Proceedings (Lecture Notes in Computer Science), George Eleftherakis, Mike Hinchey, and Mike Holcombe (Eds.), Vol. 7504. Springer, 233–247.

https://doi.org/10.1007/978-3-642-33826-7_16

[13] Fabio Q. B. da Silva. 1992. Correctness proofs of compilers and debuggers : an approach based on structural operational semantics. Ph.D. Dissertation.

University of Edinburgh, UK. http://hdl.handle.net/1842/13542

[14] Mireille Ducassé and Erwan Jahier. 2001. Efficient Automated Trace Analysis: Examples with Morphine. Electr. Notes Theor. Comput. Sci. 55, 2 (2001),

118–133. https://doi.org/10.1016/S1571-0661(04)00248-8

[15] Mireille Ducassé. 1999. Opium: an extendable trace analyzer for Prolog. The Journal of Logic Programming 39, 1 (1999), 177 – 223. https:

//doi.org/10.1016/S0743-1066(98)10036-5

[16] E. Allen Emerson and Edmund M. Clarke. 1980. Characterizing Correctness Properties of Parallel Programs Using Fixpoints. In Automata, Languages

and Programming, 7th Colloquium, Noordweijkerhout, The Netherland, July 14-18, 1980, Proceedings (Lecture Notes in Computer Science), J. W. de Bakker

and Jan van Leeuwen (Eds.), Vol. 85. Springer, 169–181. https://doi.org/10.1007/3-540-10003-2_69

Manuscript submitted to ACM

https://doi.org/10.1007/978-3-319-75632-5
https://doi.org/10.1016/S1571-0661(04)80575-9
https://doi.org/10.1109/CGO.2011.5764689
https://doi.org/10.1145/2151024.2151043
https://doi.org/10.1109/MEMCOD.2015.7340488
https://doi.org/10.1145/1297027.1297069
https://doi.org/10.1007/978-3-642-00768-2_23
http://link.springer.de/link/service/series/0558/bibs/2374/23740231.htm
http://link.springer.de/link/service/series/0558/bibs/2374/23740231.htm
http://books.google.de/books?id=Nmc4wEaLXFEC
https://doi.org/10.1007/978-3-642-29860-8_29
https://doi.org/10.1145/512950.512973
https://doi.org/10.1007/978-3-642-33826-7_16
http://hdl.handle.net/1842/13542
https://doi.org/10.1016/S1571-0661(04)00248-8
https://doi.org/10.1016/S0743-1066(98)10036-5
https://doi.org/10.1016/S0743-1066(98)10036-5
https://doi.org/10.1007/3-540-10003-2_69


2705

2706

2707

2708

2709

2710

2711

2712

2713

2714

2715

2716

2717

2718

2719

2720

2721

2722

2723

2724

2725

2726

2727

2728

2729

2730

2731

2732

2733

2734

2735

2736

2737

2738

2739

2740

2741

2742

2743

2744

2745

2746

2747

2748

2749

2750

2751

2752

2753

2754

2755

2756

Interactive Runtime Verification: Formal Models, Algorithms, and Implementation 53

[17] Jakob Engblom. 2012. A review of reverse debugging. In System, Software, SoC and Silicon Debug Conference (S4D), 2012. IEEE, 1–6.

[18] Yliès Falcone. 2010. You Should Better Enforce Than Verify. In Runtime Verification - First International Conference, RV 2010, St. Julians, Malta,

November 1-4, 2010. Proceedings (Lecture Notes in Computer Science), Howard Barringer, Yliès Falcone, Bernd Finkbeiner, Klaus Havelund, Insup Lee,

Gordon J. Pace, Grigore Rosu, Oleg Sokolsky, and Nikolai Tillmann (Eds.), Vol. 6418. Springer, 89–105. https://doi.org/10.1007/978-3-642-16612-9_9

[19] Kiril Georgiev and Vania Marangozova-Martin. 2014. MPSoC Zoom Debugging: A Deterministic Record-Partial Replay Approach. In 12th IEEE

International Conference on Embedded and Ubiquitous Computing, EUC 2014, Milano, Italy, August 26-28, 2014. 73–80. https://doi.org/10.1109/EUC.

2014.20

[20] Klaus Havelund and Allen Goldberg. 2005. Verify Your Runs. In Verified Software: Theories, Tools, Experiments, First IFIP TC 2/WG 2.3 Conference,

VSTTE 2005, Zurich, Switzerland, October 10-13, 2005, Revised Selected Papers and Discussions (Lecture Notes in Computer Science), Bertrand Meyer and

Jim Woodcock (Eds.), Vol. 4171. Springer, 374–383. https://doi.org/10.1007/978-3-540-69149-5_40

[21] Juha Itkonen, Mika V Mäntylä, and Casper Lassenius. 2007. Defect detection efficiency: Test case based vs. exploratory testing. In First International

Symposium on Empirical Software Engineering and Measurement. IEEE, 61–70.

[22] Juha Itkonen, Mika V Mantyla, and Casper Lassenius. 2009. How do testers do it? An exploratory study on manual testing practices. In Proceedings

of the 3rd International Symposium on Empirical Software Engineering and Measurement. IEEE Computer Society, 494–497.

[23] Raphaël Jakse, Yliès Falcone, Jean-François Méhaut, and Kevin Pouget. 2017. Interactive Runtime Verification - When Interactive Debugging Meets

Runtime Verification. In 28th IEEE International Symposium on Software Reliability Engineering, ISSRE 2017, Toulouse, France, October 23-26, 2017.

IEEE Computer Society, 182–193. https://doi.org/10.1109/ISSRE.2017.19

[24] Raphaël Jakse, Yliès Falcone, and Jean-François Méhaut. 2017. Verde Repository. https://gitlab.inria.fr/monitoring/verde.

[25] Dongyun Jin, Patrick O’Neil Meredith, Choonghwan Lee, and Grigore Rosu. 2012. JavaMOP: Efficient parametric runtime monitoring framework. In

34th International Conference on Software Engineering, ICSE 2012, June 2-9, 2012, Zurich, Switzerland, Martin Glinz, Gail C. Murphy, and Mauro Pezzè

(Eds.). IEEE Computer Society, 1427–1430. https://doi.org/10.1109/ICSE.2012.6227231

[26] Shmuel Katz. 2006. Transactions on Aspect-Oriented Software Development I. In Transactions on Aspect-Oriented Software Development I, Awais

Rashid and Mehmet Aksit (Eds.). Springer-Verlag, Berlin, Heidelberg, Chapter Aspect Categories and Classes of Temporal Properties, 106–134.

http://dl.acm.org/citation.cfm?id=2168342.2168346

[27] Gregor Kiczales. 2002. AspectJ(tm): Aspect-Oriented Programming in Java. In Objects, Components, Architectures, Services, and Applications for a

Networked World, International Conference NetObjectDays, NODe 2002, Erfurt, Germany, October 7-10, 2002, Revised Papers (Lecture Notes in Computer

Science), Mehmet Aksit, Mira Mezini, and Rainer Unland (Eds.), Vol. 2591. Springer. https://doi.org/10.1007/3-540-36557-5_1

[28] Martin Leucker and Christian Schallhart. 2009. A brief account of runtime verification. J. Log. Algebr. Program. 78, 5 (2009), 293–303. https:

//doi.org/10.1016/j.jlap.2008.08.004

[29] Chi-Keung Luk, Robert S. Cohn, Robert Muth, Harish Patil, Artur Klauser, P. Geoffrey Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim M.

Hazelwood. 2005. Pin: building customized program analysis tools with dynamic instrumentation. In Proceedings of the ACM SIGPLAN 2005

Conference on Programming Language Design and Implementation, Chicago, IL, USA, June 12-15, 2005, Vivek Sarkar and Mary W. Hall (Eds.). ACM,

190–200. https://doi.org/10.1145/1065010.1065034

[30] Reed Milewicz, Rajeshwar Vanka, James Tuck, Daniel Quinlan, and Peter Pirkelbauer. 2016. Lightweight runtime checking of C programs with RTC.

Computer Languages, Systems & Structures 45 (2016), 191–203. https://doi.org/10.1016/j.cl.2016.01.001

[31] Robin Milner. 1989. Communication and concurrency. Prentice Hall.

[32] Samaneh Navabpour, Yogi Joshi, Chun Wah Wallace Wu, Shay Berkovich, Ramy Medhat, Borzoo Bonakdarpour, and Sebastian Fischmeister. 2013.

RiTHM: a tool for enabling time-triggered runtime verification for C programs. In Joint Meeting of the European Software Engineering Conference and

the ACM SIGSOFT Symposium on the Foundations of Software Engineering, ESEC/FSE’13, Saint Petersburg, Russian Federation, August 18-26, 2013,

Bertrand Meyer, Luciano Baresi, and Mira Mezini (Eds.). ACM, 603–606. https://doi.org/10.1145/2491411.2494596

[33] Nicholas Nethercote and Julian Seward. 2007. Valgrind: a framework for heavyweight dynamic binary instrumentation. In Proceedings of the ACM

SIGPLAN 2007 Conference on Programming Language Design and Implementation. 89–100. https://doi.org/10.1145/1250734.1250746

[34] Fábio Petrillo, Zéphyrin Soh, Foutse Khomh, Marcelo Pimenta, Carla M. D. S. Freitas, and Yann-Gaël Guéhéneuc. 2016. Towards Understanding

Interactive Debugging. In 2016 IEEE International Conference on Software Quality, Reliability and Security, QRS 2016. IEEE, 152–163. https:

//doi.org/10.1109/QRS.2016.27

[35] Kevin Pouget. 2014. Programming-Model Centric Debugging for multicore embedded systems / Debogage Interactif des systemes embarques multicoeur

base sur le model de programmation. Ph.D. Dissertation. University of Grenoble, France. https://tel.archives-ouvertes.fr/tel-01010061

[36] Norman Ramsey. 1994. Correctness of Trap-Based Breakpoint Implementations. In Conference Record of POPL’94: 21st ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, Portland, Oregon, USA, January 17-21, 1994, Hans-Juergen Boehm, Bernard Lang, and Daniel M.

Yellin (Eds.). ACM Press, 15–24. https://doi.org/10.1145/174675.175188

[37] Jean-François Roos, Luc Courtrai, and Jean-François Méhaut. 1993. Execution replay of parallel programs. In 1993 Euromicro Workshop on Parallel

and Distributed Processing, PDP 1993, Gran Canaria, Spain, 27-29 January 1993. 429–434. https://doi.org/10.1109/EMPDP.1993.336375

[38] Oleg Sokolsky, Klaus Havelund, and Insup Lee. 2012. Introduction to the special section on runtime verification. International Journal on Software

Tools for Technology Transfer 14, 3 (2012), 243–247. https://doi.org/10.1007/s10009-011-0218-6

Manuscript submitted to ACM

https://doi.org/10.1007/978-3-642-16612-9_9
https://doi.org/10.1109/EUC.2014.20
https://doi.org/10.1109/EUC.2014.20
https://doi.org/10.1007/978-3-540-69149-5_40
https://doi.org/10.1109/ISSRE.2017.19
https://gitlab.inria.fr/monitoring/verde
https://doi.org/10.1109/ICSE.2012.6227231
http://dl.acm.org/citation.cfm?id=2168342.2168346
https://doi.org/10.1007/3-540-36557-5_1
https://doi.org/10.1016/j.jlap.2008.08.004
https://doi.org/10.1016/j.jlap.2008.08.004
https://doi.org/10.1145/1065010.1065034
https://doi.org/10.1016/j.cl.2016.01.001
https://doi.org/10.1145/2491411.2494596
https://doi.org/10.1145/1250734.1250746
https://doi.org/10.1109/QRS.2016.27
https://doi.org/10.1109/QRS.2016.27
https://tel.archives-ouvertes.fr/tel-01010061
https://doi.org/10.1145/174675.175188
https://doi.org/10.1109/EMPDP.1993.336375
https://doi.org/10.1007/s10009-011-0218-6


2757

2758

2759

2760

2761

2762

2763

2764

2765

2766

2767

2768

2769

2770

2771

2772

2773

2774

2775

2776

2777

2778

2779

2780

2781

2782

2783

2784

2785

2786

2787

2788

2789

2790

2791

2792

2793

2794

2795

2796

2797

2798

2799

2800

2801

2802

2803

2804

2805

2806

2807

2808

54 Raphaël Jakse, Yliès Falcone, and Jean-François Méhaut

A PROVING THAT THE DEBUGGED PROGRAMWEAKLY SIMULATES THE INITIAL PROGRAM, AND
VICE VERSA

A.1 The Initial ProgramWeakly Simulates the Debugged Program

We prove Proposition 7.2 (Sec. 7). That is, the initial program P weakly simulates the debugged program (P,D).

Proof. Since the initial program cannot perform any unobservable action, proving that R is a simulation relation

amounts to proving the two following points:

(1) ∀((P
dbg
,D), P) ∈ R,∀θ ∈ Obs,∀(P ′

dbg
,D ′) ∈ ConfP × ConfD : (P

dbg
,D)

θ
−→ (P ′

dbg
,D ′) =⇒ ((P ′

dbg
,D ′), P) ∈ R.

(2) ∀((P
dbg
,D), P) ∈ R,∀α ∈ Obs,∀(P ′

dbg
,D ′) ∈ ConfP × ConfD : (P

dbg
,D)

α
−→ (P ′

dbg
,D ′) =⇒ ∃P ′ ∈ ConfP :

((P ′
dbg
,D ′), P ′) ∈ R ∧ P

α
−→ P ′.

Let us consider ((P
dbg
,D), P) ∈ R. Let us prove these two points in turn.

Proof of 1. Let us consider θ ∈ Obs and (P ′
dbg
,D ′) ∈ ConfP×ConfD such that (P

dbg
,D)

θ
−→ (P ′

dbg
,D ′). Action θ is triggered by

applying either rule setWatch, rmWatch, getPC, getSym, getAddr, devBreak, scnBreak, evtBreak, int,

cont, setBreak, rmBreak, devWatch, scnWatch, evtWatch, trapNoBreak, clearEvents, instrument, or

stepRedo. We shall prove that ((P ′
dbg
,D ′), P) ∈ R.

• Case: rule setWatch, rmWatch, getPC, getSym, getAddr, devBreak, scnBreak, evtBreak, int, or cont

applies. None of these rules modifies neither the configuration of the program nor fields bpts and oi of the

debugger (see Fig. 12, Fig. 15, Fig. 14) for the definitions of these rules). Since ((P
dbg
,D), P) ∈ R, relation R is

preserved, and we deduce immediately ((P ′
dbg
,D ′), P) ∈ R.

• Case: rule setBreak (Fig. 12) applies for some b ∈ D.bpts. Let us prove that ((P ′
dbg
,D ′), P) ∈ R.

Let us prove (1). Let us definemunInstr = P ′
dbg
.m † {b ′.addr 7→ D ′.oi(b ′.addr) | b ′ ∈ D ′.bpts}, the debugger

memory P ′
dbg
.m where breakpoints have been removed. We distinguish two cases according to whether there

is another breakpoint recorded at the same address as the address of breakpoint b in the debugger, that is

whether ∃b ′ ∈ D.bpts : b ′.addr = b .addr, or not.
– Case ∃b ′ ∈ D.bpts : b ′.addr = b .addr.
According to rule setBreak, oi

′ = oi. Moreover, we have:

munInstr = P ′
dbg

.m † {b′ .addr 7→ D′ .oi(b′ .addr) | b′ ∈ D′ .bpts}

= P
dbg

.m † {b′ .addr 7→ D′ .oi(b′ .addr) | b′ ∈ D′ .bpts}

(because P
dbg

.m[b .addr] = BREAK and thus P ′
dbg

.m = P
dbg

.m

since there is already a breakpoint at b .addr)

= P
dbg

.m † {b′ .addr 7→ D .oi(b′ .addr) | b′ ∈ D .bpts ∪ {b }}

(because D′ .oi = oi
′ = oi = D .oi)

= P
dbg

.m † {a 7→ D .oi(a) | a ∈ {b′ .addr | b′ ∈ D .bpts} ∪ {b .addr}}

= P
dbg

.m † {b′ .addr 7→ D .oi(b′ .addr) | b′ ∈ D .bpts}

(because ∃b′ ∈ D .bpts : b′ .addr = b .addr)

= P .m (because of (1))

– Second case: ∄b ′ ∈ D.bpts : b ′.addr = b .addr.

Manuscript submitted to ACM



2809

2810

2811

2812

2813

2814

2815

2816

2817

2818

2819

2820

2821

2822

2823

2824

2825

2826

2827

2828

2829

2830

2831

2832

2833

2834

2835

2836

2837

2838

2839

2840

2841

2842

2843

2844

2845

2846

2847

2848

2849

2850

2851

2852

2853

2854

2855

2856

2857

2858

2859

2860

Interactive Runtime Verification: Formal Models, Algorithms, and Implementation 55

According to rule setBreak, we have: oi
′ = oi

[
b .addr 7→ P

dbg
.m[b .addr]

]
and P ′

dbg
.m =m′ =m [b .addr 7→ BREAK].

We have:

munInstr = P ′
dbg

.m † {b′ .addr 7→ D′ .oi(b′ .addr) | b′ ∈ D′ .bpts}

munInstr = Pdbg .m [b .addr 7→ BREAK]

†
{
b′ .addr 7→ D .oi

[
b .addr 7→ P

dbg
.m[b .addr]

]
(b′ .addr) | b′ ∈ D .bpts ∪ {b }

}
= P

dbg
.m [b .addr 7→ BREAK]

[
b .addr 7→ P

dbg
.m[b .addr]

]
† {b′ .addr 7→ D .oi(b′ .addr) | b′ ∈ D .bpts}︸                                                       ︷︷                                                       ︸

(b .addr is not in the domain of this function because ∄b′ ∈ D .bpts : b′ .addr = b .addr)

= P
dbg

.m
[
b .addr 7→ P

dbg
.m[b .addr]

]
† {b′ .addr 7→ D .oi(b′ .addr) | b′ ∈ D .bpts}

= P
dbg

.m † {b′ .addr 7→ D .oi(b′ .addr) | b′ ∈ D .bpts}

= P .m (because of (1))

In both cases, (1) holds.

Since the program counter has not been modified, (2) holds. Finally, P ′
dbg
.m = P

dbg
.m[b .addr 7→BREAK].

Therefore, (3) holds.

• Case: rmBreak applies (see Fig. 12) for some input symbol rmPoint(b). Let us suppose that b ∈ D.bpts.
Let us prove (1). Let us definemunInstr = P ′

dbg
.m † {b ′.addr 7→ D ′.oi(b ′.addr) | b ′ ∈ D ′.bpts}.

We distinguish two cases according to whether ∃b ′ ∈ D.bpts \ {b} : b ′.addr = b .addr.
– First case: ∃b ′ ∈ D.bpts \ {b} : b ′.addr = b .addr. We have:

munInstr = P ′
dbg

.m † {b′ .addr 7→ D′ .oi(b′ .addr) | b′ ∈ D′ .bpts}

munInstr = Pdbg .m † {b′ .addr 7→ D .oi(b′ .addr) | b′ ∈ D .bpts \ {b }}

(because D′ .oi = oi
′ = oi = D .oi, P ′

dbg
.m = P

dbg
.m and D′ .bpts = D .bpts \ {b })

= P
dbg

.m † {b′ .addr 7→ D .oi(b′ .addr) | b′ ∈ D .bpts}︸                                                       ︷︷                                                       ︸
b .addr is still in the domain because ∃b ′ ∈ D .bpts \ {b} : b ′ .addr = b .addr

= P .m (because of (1))

– Second case: ∄b ′ ∈ D.bpts \ {b} : b ′.addr = b .addr. We have:

munInstr = P ′
dbg

.m † {b′ .addr 7→ D′ .oi(b′ .addr) | b′ ∈ D′ .bpts}

munInstr = Pdbg .m [b .addr 7→ D .oi(b .addr)] † {b′ .addr 7→ D .oi [b .addr 7→ BREAK] (b′ .addr) | b′ ∈ D .bpts \ {b }}

(because in the rule, oi
′ = oi [b .addr 7→ BREAK] andm′ =m [b .addr 7→ oi(b .addr)] )

= P
dbg

.m [b .addr 7→ D .oi(b .addr)] † {b′ .addr 7→ D .oi(b′ .addr) | b′ ∈ D .bpts \ {b }}

(because there is no b′ in D .bpts \ {b } such that b′ .addr = b .addr)

= P
dbg

.m † {b′ .addr 7→ D .oi(b′ .addr) | b′ ∈ (D .bpts \ {b }) ∪ {b }} (simplification)

= P
dbg

.m † {b′ .addr 7→ D .oi(b′ .addr) | b′ ∈ D .bpts} (because b ∈ D .bpts)

= P .m (because of (1))

In both cases, (1) holds.

Seeing that (2) holds follows directly from the definition of rmBreak (see Fig. 12).

Lets us prove that (3) holds. Let us consider a ∈ Addr such that a , b .addr. We have: P ′
dbg
.m(a) =

P
dbg
.m [b .addr 7→ oi(b .addr)] (a) = P

dbg
.m(a), and:

P .m(b .addr) =
(
P ′
dbg

.m † {b′ .addr 7→ D′ .oi(b′ .addr) | b′ ∈ D′ .bpts}
)
(b .addr)

= (P ′
dbg

.m † {a 7→ D′ .oi(a) | ∃b′ ∈ D′ .bpts : a = b′ .addr︸                                  ︷︷                                  ︸
∄b′∈D′ .bpts:a=b .addr

})(b .addr)

= P ′
dbg

.m(b .addr)

Manuscript submitted to ACM



2861

2862

2863

2864

2865

2866

2867

2868

2869

2870

2871

2872

2873

2874

2875

2876

2877

2878

2879

2880

2881

2882

2883

2884

2885

2886

2887

2888

2889

2890

2891

2892

2893

2894

2895

2896

2897

2898

2899

2900

2901

2902

2903

2904

2905

2906

2907

2908

2909

2910

2911

2912

56 Raphaël Jakse, Yliès Falcone, and Jean-François Méhaut

Therefore, (3) holds.

• Case: devWatch, scnWatch, or evtWatch applies (see Fig. 8).

In any of the rules, oi
′ = oi

[
P
dbg
.pc 7→ P

dbg
.m[P

dbg
.pc]

]
andm′ = m[P

dbg
.pc 7→ BREAK] (see function

restoreBP).

Let us prove (1). We distinguish two cases according to whether ∃b ∈ D.bpts : b .addr = pc, or not.

– First case: ∃b ∈ D.bpts : b .addr = pc.

Let us definea = getAccesses(P
dbg
) andw ∈ D.wpts\D.hdld such that∃k ∈ {0, . . . , |a |−1} : match(ak ,w)∧

w .for = dev, This is possible according to the conditions of the rule. This implies P
dbg
.m[P

dbg
.pc] ,

BREAK.

Let us definemunInstr = P ′
dbg
.m † {b .addr 7→ D ′.oi(b .addr) | b ∈ D.bpts}.

munInstr = P ′
dbg

.m † {b .addr 7→ D′ .oi(b .addr) | b ∈ D .bpts}

= P
dbg

.m[P
dbg

.pc 7→ BREAK] †
{
b .addr 7→ D .oi

[
P
dbg

.pc 7→ P
dbg

.m[P
dbg

.pc]
]
(b .addr) | b ∈ D .bpts

}︸                                                                                                  ︷︷                                                                                                  ︸
Pdbg .pc is in the domain of this function

(because oi
′ = oi

[
P
dbg

.pc 7→ P
dbg

.m[P
dbg

.pc]
]
andm′ =m[P

dbg
.pc 7→ BREAK])

= P
dbg

.m †
{
b .addr 7→ D .oi

[
P
dbg

.pc 7→ P
dbg

.m[P
dbg

.pc]
]
(b .addr) | b ∈ D .bpts

}
(simplification)

= P
dbg

.m † {b .addr 7→ D .oi(b .addr) | b ∈ D .bpts}
[
P
dbg

.pc 7→ P
dbg

.m[P
dbg

.pc]
]

(because b ∈ D .bpts, so the substitution can be done outside)

= P .m
[
P
dbg

.pc 7→ P
dbg

.m[P
dbg

.pc]
]

(because of (1))

= P .m [P .pc 7→ P .m[P .pc]] (because P
dbg

.pc = P .pc and P
dbg

.m[P
dbg

.pc] , BREAK)

= P .m

– Second case: ∄b ∈ D.bpts : b .addr = pc.

In the rule, oi
′ = oi andm′ =m. In P ′

dbg
,D = (P ′,D ′,M, S), D ′.oi = D.oi, D ′.bpts = D ′.bpts, P ′.m = P .m

and P ′.pc = P .pc. Since (P, P
dbg,D ) ∈ R, (P, P

′
dbg
,D) ∈ R.

(2) and (3) hold because the program counter and the memory are not modified by these rules.

• Case: trapNoBreak apply (see Fig. 9).

This rule applying means that rule bpHit of the program applies and so P
dbg
.m

[
P
dbg
.pc

]
= BREAK.

Let us prove (1). Let us definemunInstr = P ′
dbg
.m † {b .addr 7→ D ′.oi(b .addr) | b ∈ D.bpts}.

munInstr = P ′
dbg

.m † {b .addr 7→ D′ .oi(b .addr) | b ∈ D .bpts}

= P
dbg

.m
[
P
dbg

.pc 7→ D .oi
(
P
dbg

.pc
) ]
† {b .addr 7→ D .oi(b .addr) | b ∈ D .bpts}︸                                                    ︷︷                                                    ︸

Pdbg .pc is in the domain of this function

(because in the rule, P ′
dbg

.m = P
dbg

.m[pc 7→ D .oi(pc)])

= P
dbg

.m † {b .addr 7→ D .oi(b .addr) | b ∈ D .bpts}

(simplification: this substitution has no effect)

= P .m (because of (1))

• Case: clearEvents applies (see Fig. 11).

This rule uses rule rmBreak and rule rmWatch sequentially for each point given by the input symbol. These

rules are proven to respect the conditions of the weak simulation applying to unobservable actions. Proving

(1), (2) and (3) is therefore straightforward by induction.

Manuscript submitted to ACM



2913

2914

2915

2916

2917

2918

2919

2920

2921

2922

2923

2924

2925

2926

2927

2928

2929

2930

2931

2932

2933

2934

2935

2936

2937

2938

2939

2940

2941

2942

2943

2944

2945

2946

2947

2948

2949

2950

2951

2952

2953

2954

2955

2956

2957

2958

2959

2960

2961

2962

2963

2964

Interactive Runtime Verification: Formal Models, Algorithms, and Implementation 57

• Case: instrument applies (see Fig. 11).

This rule uses rule clearEvents and then rule setBreak and rule setWatch. These rules are proven to

respect the conditions of the weak simulation applying to unobservable actions. Proving (1), (2) and (3) is

therefore straightforward.

• Case: stepRedo applies (see Fig. 14).

This rule temporarily sets the debugger in passive mode and uses rule evtBreak, devBreak, scnBreak,

evtWatch, devWatch, scnWatch or trapNoBreak. Proving (1), (2) and (3) is therefore straightforward.

Proof of 2. Let us consider α ∈ Obs. Let us consider (P ′
dbg
,D ′) such that (P

dbg
,D)

α
−→ (P ′

dbg
,D ′). Let us consider P ′ such that

P
α
−→ P ′. Let us prove that ((P ′

dbg
,D ′), P ′) ∈ R. To produce action a, either rule step applies, or rule normalExec

applies. rule step uses rule normalExec, and does nothing else than temporarily switching the debugger mode

to passive so rule normalExec applies. Therefore, we prove the case where rule normalExec applies. Proof for

the case where rule step applies is then straightforward.

Let us prove (1). We have (P ′.m, P ′.pc) = runInstr(P .m, P .pc) (see rule normalExec).
Since ((P

dbg
,D), P) ∈ R, we have P .m = unInstr(P

dbg
.m, D.bpts, D.oi) (because of (1)) and P .pc = P

dbg
.pc

(because of (2)).

We have:

(D′ .oi, P ′
dbg

.m) = restoreBP(D′ .bpts,mt )

such that ∃pc′ : (mt , pc
′) = runInstr(unInstr(P

dbg
.m, D .bpts, D .oi), P

dbg
.pc)

(according to the rule)

= restoreBP(D′ .bpts,mt ) such that ∃pc′ : (mt , pc
′) = runInstr(P .m, P

dbg
.pc)

(because of (1))

= restoreBP(D′ .bpts,mt ) such that ∃pc′ : (mt , pc
′) = runInstr(P .m, P .pc)

(because of (2))

= restoreBP(D′ .bpts,mt ) such that ∃pc′ : (mt , pc
′) = (P ′ .m, P ′ .pc)

(because of the program’s rule normalExec)

= restoreBP(D′ .bpts, P ′ .m)

Therefore:

unInstr(P ′
dbg

.m, D′ .bpts, D′ .oi) = unInstr(m′, D′ .bpts, D′ .oi)

such that (D′ .oi,m′) = restoreBP(D′ .bpts, P ′ .m)

= P ′ .m (by definition of unInstr and restoreBP)

The same action α is performed in the program and the debugged program. This proves (1). Let us prove (2).

P ′
dbg
.pc is such that there existsmt such that:

(mt , P ′
dbg

.pc) = runInstr(unInstr(P
dbg

.m, D .bpts, D .oi), P
dbg

.pc)

= (mt , P ′ .pc) (as proved previously)

Therefore, P ′
dbg
.pc = P ′.pc. (2) is proved. Proving (3) is straightforward.

□

Manuscript submitted to ACM



2965

2966

2967

2968

2969

2970

2971

2972

2973

2974

2975

2976

2977

2978

2979

2980

2981

2982

2983

2984

2985

2986

2987

2988

2989

2990

2991

2992

2993

2994

2995

2996

2997

2998

2999

3000

3001

3002

3003

3004

3005

3006

3007

3008

3009

3010

3011

3012

3013

3014

3015

3016

58 Raphaël Jakse, Yliès Falcone, and Jean-François Méhaut

A.2 The Debugged ProgramWeakly Simulates the Initial Program

We now prove Proposition 7.2 (Sec. 7). That is, the debugged program (P,D) weakly simulates the initial program P .

Proof. We prove that relation satisfies the two points of the definition of weak simulation given the set of observable

actions Obs. Since the initial program does not have any unobservable action, proving that Ris a weak simulation

amounts to proving:

∀(P, (P
dbg
,D)) ∈ R,∀α ∈ Obs,∀P ′ ∈ ConfP :

P
α
−→ P ′ =⇒ ∃(P ′

dbg
,D ′) ∈ ConfP × ConfD : (P

dbg
,D)

Obs

∗
·α ·Obs

∗

−−−−−−−−−−→ (P ′
dbg
,D ′) ∧ (P ′, (P ′

dbg
,D ′)) ∈ R.

Let us consider P a configuration of a program and (P
dbg
,D) a configuration of the debugged program such that

(P, (P
dbg
,D)) ∈ R. By definition of R, ((P

dbg
,D), P) ∈ R. Let us consider α ∈ Obs. Let us consider P ′ ∈ ConfP such

that P
α
−→ P ′. Let us show the existence of (P ′

dbg
,D ′) ∈ ConfP × ConfD such that (P

dbg
,D)

Obs

∗
·α ·Obs

∗

−−−−−−−−−−→ (P ′
dbg
,D ′) and

((P ′
dbg
,D ′), P ′) ∈ R.

Since action α is observable, it can be only triggered by applying rule normalExec in the program P (see Fig. 7). We

consider configuration of the debugged program (P
dbg
,D) wherein the debugger can be in two modes (either passive or

active). We handle each two cases in turn.

• Case: the debugger is in passive mode. We shall prove that rule normalExec applies, triggering action α , possibly

after several applications of rules associated to unobservable actions.

Either rule normalExec applies immediately or not. Let us consider both cases.

– Rule normalExec applies. In this case, the proof is similar to the one for the simulation of the debugged

program by the initial program (as the same equalities apply). Resulting configuration (P ′
dbg
,D ′) is such that

((P ′
dbg
,D ′), P ′) ∈ R and therefore (P ′, (P ′

dbg
,D ′)) ∈ R.

– Rule normalExec does not apply. Then, the debugger has at least one point to handle, and necessarily, either

rule devWatch, scnWatch, evtWatch, devBreak, scnBreak, evtBreak or trapNoBreak applies. Let

us consider θ the action associated to this rule. Let us consider (P
dbg,i ,Di ) such that (P

dbg
,D)

θ
−→ (Pi ,Di ).

Since θ is unobservable and ((P
dbg
,D), P) ∈ R, ((Pi ,Di ), P) ∈ R (see proof for the simulation of the debugged

program by the initial program). Showing that successive applications of these rules starting from configuration

(P
dbg,i ,Di ) results in a configuration (Pj ,D j ) such that ((Pj ,D j ), P) ∈ R is straightforward by induction on

the sequence of actions associated to these rules.

While there exists a watchpoint in W matching an access done by the current instruction, or a breakpoint in

B matching the current address that is not in hdld , one of these rules except trapNoBreak applies and adds

this breakpoint or watchpoint in hdld . Since there is a finite number of points, these rules stop applying and

rule trapNoBreak applies at most once (if a breakpoint is present at the current address in the program).

Let us call u the finite sequence of unobservable actions triggered by applying these rules sequentially. Let

us consider (Pj ,D j ) the configuration such (P
dbg
,D)

u
−→ (Pj ,D j ). Configuration (P

′
dbg
,D ′) of the debugged

program such that (Pj ,D j )
α
−→ (P ′

dbg
,D ′) exists and rule normalExec applies since (P, (Pj ,D j )) ∈ R (see proof

for the simulation of the debugged program by the initial program). Therefore, ((Pj ,D j ), P) ∈ R. See previous

case.

• Case: the debugger is in interactive mode. rule step either applies, or do not apply. In case rule step does not

apply, rule stepRedo applies a certain number of times. In any case, both rules temporarily set the debugged

Manuscript submitted to ACM



3017

3018

3019

3020

3021

3022

3023

3024

3025

3026

3027

3028

3029

3030

3031

3032

3033

3034

3035

3036

3037

3038

3039

3040

3041

3042

3043

3044

3045

3046

3047

3048

3049

3050

3051

3052

3053

3054

3055

3056

3057

3058

3059

3060

3061

3062

3063

3064

3065

3066

3067

3068

Interactive Runtime Verification: Formal Models, Algorithms, and Implementation 59

program in passive mode and call rules that apply in passive mode. Therefore, proving this case is similar to the

previous case.

□

B COMPARING A TRADITIONNAL INTERACTIVE DEBUGGING AND AN INTERACTIVE RUNTIME
VERIFICATION SESSION

In Fig. 29 and Fig. 30, we reproduce an interactive debugging session and an interactive runtime verification session for

the illustrative example presented in Sec. 2 (p. 6).

C PROPERTY ON VALUE CHANGES OF STRING S IN FUNCTION GET_COMP_STRING IN ZSH

In this appendix, we present a property written in Verde property format. This property is used in the experiment on

zsh in Sec. 10.1. We use the property to find the cause of a segfault in zsh; see Fig. 31. In this property, we are in an

accepting state while the state of zsh seems consistent, that is, no null pointer is used. In state init, we track a call to

function get_comp_string. When the call happens, the state becomes in_get_cmp_str_init. In this state, several things

can happen. Destination states from state in_get_cmp_str_init correspond to the different continuations we imagined

possible after this state by quickly looking at the code. We did not aim at exactly understanding the meaning of these

different possibilities. Rather, we aimed at seeking where the pointer was nulled in the code.

Manuscript submitted to ACM



3069

3070

3071

3072

3073

3074

3075

3076

3077

3078

3079

3080

3081

3082

3083

3084

3085

3086

3087

3088

3089

3090

3091

3092

3093

3094

3095

3096

3097

3098

3099

3100

3101

3102

3103

3104

3105

3106

3107

3108

3109

3110

3111

3112

3113

3114

3115

3116

3117

3118

3119

3120

60 Raphaël Jakse, Yliès Falcone, and Jean-François Méhaut

1 $ ./faulty

2 Consonants: hnstbgsh

3 Vowels: raayuiee

4 $ gdb ./faulty

5 [...] Reading symbols from ./faulty...done.

6 (gdb) start

7 Temporary breakpoint 1 at 0x1372: file faulty.c, line 51.

8 Starting program: /tmp/a

9

10 Temporary breakpoint 1, main () at faulty.c:51

11 51 double_queue_t∗ q = queue_init();

12 (gdb) break 53

13 Breakpoint 2 at 0x5...55393: file faulty.c, line 53.

14 (gdb) cont

15 Continuing.

16

17 Breakpoint 2, main () at faulty.c:53

18 53 queue_display_result(q);

19 (gdb) print q−>vowels

20 $1 = "raayuiee"

21 (gdb) quit

22 [...]

23 $ gdb ./faulty

24 Reading symbols from ./faulty...done.

25 (gdb) start

26 Temporary breakpoint 1 at 0x1372: file faulty.c, line 51.

27 Starting program: /tmp/a

28

29 Temporary breakpoint 1, main () at faulty.c:51

30 51 double_queue_t∗ q = queue_init();

31 (gdb) break 30

32 Breakpoint 2 at 0x5...55233: file faulty.c, line 30.

33 (gdb) cont

34 Continuing.

35

36 Breakpoint 2, queue_push (q=0x5...59260, c=111 'o') at faulty.c:30

37 30 q−>vowels[q−>pos_v++] = c;

38 (gdb) display c

39 1: c = 111 'o'

40 (gdb) c

41 Continuing.

42 [...]

43 Breakpoint 2, queue_push (q=0x5...59260, c=101 'e') at faulty.c:30

44 30 q−>vowels[q−>pos_v++] = c;

45 1: c = 101 'e'

46 (gdb) c

47 Continuing.

48 Consonants: hnstbgsh

49 Vowels: raayuiee

50 [Inferior 1 (process 6646) exited normally]

51 (gdb) info break 2

52 Num Type Disp Enb Address What

53 2 breakpoint keep y 0x00005...55233 in queue_push at faulty.c:30

54 breakpoint already hit 8 times

55 (gdb) quit

56 $ gdb ./faulty

57 [...] Reading symbols from ./faulty...done.

58 (gdb) break 52

59 Breakpoint 1 at 0x1380: file faulty.c, line 52.

60 (gdb) start

61 Temporary breakpoint 2 at 0x1372: file faulty.c, line 51.

62 Starting program: /tmp/a

63

64 Temporary breakpoint 2, main () at faulty.c:51

65 51 double_queue_t∗ q = queue_init();

66 (gdb) cont

67 Continuing.

68

69 Breakpoint 1, main () at faulty.c:52

70 52 queue_push_str(q, "oh, a nasty bug is here!");

71 (gdb) watch q−>vowels[0]

72 Hardware watchpoint 3: q−>vowels[0]

73 (gdb) cont

74 Continuing.

75

76 Hardware watchpoint 3: q−>vowels[0]

77

78 Old value = 0 '\000'

79 New value = 111 'o'

80 queue_push (q=0x5...59260, c=111 'o') at faulty.c:33

81 33 }

82 (gdb) next

83 queue_push_str ... at faulty.c:36

84 36 while (s[0] != '\0')

85 (gdb) cont

86 Continuing.

87

88 Hardware watchpoint 3: q−>vowels[0]

89

90 Old value = 111 'o'

91 New value = 114 'r'

92 queue_push (q=0x5...59260, c=114 'r') at faulty.c:33

93 33 }

94 (gdb) print q−>pos_c − 1

95 $1 = 8

96 (gdb) quit

Fig. 29. Interactive debugging of the faulty C program.

Manuscript submitted to ACM



3121

3122

3123

3124

3125

3126

3127

3128

3129

3130

3131

3132

3133

3134

3135

3136

3137

3138

3139

3140

3141

3142

3143

3144

3145

3146

3147

3148

3149

3150

3151

3152

3153

3154

3155

3156

3157

3158

3159

3160

3161

3162

3163

3164

3165

3166

3167

3168

3169

3170

3171

3172

Interactive Runtime Verification: Formal Models, Algorithms, and Implementation 61

1 $ verde −−prop queue.prop −show−graph ./faulty

2 [...]

3 [23:09:36] Initialization:

4 N: 0

5 max: 0

6

7 Event: queue_new{'size': 16, 'queue': 93824992252512}

8 16

9 [23:09:36] Current state (monitor #1):

10 Slice 1 <None>: init (from init)

11 N: 0

12 max: 16

13 Slice 2 <93824992252512>: queue_ready

14 N: 0

15 max: 16

16

17 Event: queue_push{'queue': 93824992252512}

18 GUARD: nb push: 0 (max: 16)

19 [23:09:36] Current state (monitor #1):

20 Slice 1 <None>: init

21 N: 0

22 max: 16

23 Slice 2 <93824992252512>: queue_ready (from queue_ready)

24 N: 1

25 max: 16

27 Event: queue_push{'queue': 93824992252512}

28 GUARD: nb push: 1 (max: 16)

29 [23:09:36] Current state (monitor #1):

30 Slice 1 <None>: init

31 N: 0

32 max: 16

33 Slice 2 <93824992252512>: queue_ready (from queue_ready)

34 N: 2

35 max: 16

36

37 Event: queue_push{'queue': 93824992252512}

38 GUARD: nb push: 15 (max: 16)

39 [23:09:36] Current state (monitor #1):

40 Slice 1 <None>: init

41 N: 0

42 max: 16

43 Slice 2 <93824992252512>: queue_ready (from queue_ready)

44 N: 16

45 max: 16

46

47 Event: queue_push{'queue': 93824992252512}

48 GUARD: nb push: 16 (max: 16)

49 [23:09:36] Current state (monitor #1):

50 Slice 1 <None>: init

51 N: 0

52 max: 16

53 Slice 2 <93824992252512>: sink (from queue_ready) non−accepting

54 N: 16

55 max: 16

56 (gdb) where

57 #0 queue_push (queue=0x5...59260, c=105 'i') at faulty.c:29

58 #1 0x00005...552a1 in queue_push_str [...] at faulty.c:37

59 #2 0x00005...55377 in main () at faulty.c:52

60 (gdb) quit

Fig. 30. Interactively runtime verifying the faulty C program. Compared to the interactive debugging session depicted in Fig. 29,
almost all interactions between the debugger and the developer are avoided.

Manuscript submitted to ACM



3173

3174

3175

3176

3177

3178

3179

3180

3181

3182

3183

3184

3185

3186

3187

3188

3189

3190

3191

3192

3193

3194

3195

3196

3197

3198

3199

3200

3201

3202

3203

3204

3205

3206

3207

3208

3209

3210

3211

3212

3213

3214

3215

3216

3217

3218

3219

3220

3221

3222

3223

3224

62 Raphaël Jakse, Yliès Falcone, and Jean-François Méhaut

1 initialization {

2 import gdb

3 }

4

5 state init accepting {

6 transition {

7 before event get_comp_string()

8 success in_get_cmp_str_init

9 }

10 }

11

12 state in_get_cmp_str_init accepting {

13 transition {

14 after event write s(s) {

15 return not s

16 }

17

18 success {

19 print("s = " + str(s))

20 } in_get_cmp_str_init_s_not_null

21

22 failure {

23 gdb.execute("backtrace")

24 } in_get_cmp_str_init_s_null

25 }

26

27 transition {

28 before event itype_end(ptr) { return not ptr }

29 success calling_itype_end_with_null_ptr

30 }

31

32 transition {

33 before event get_comp_string()

34 success in_get_cmp_str_init

35 }

36 }

37

38 state in_get_cmp_str_init_s_null accepting {

39 transition {

40 after event write s(s) {

41 return not s

42 }

43

44 success {

45 print("s = " + str(s))

46 } in_get_cmp_str_init_s_not_null

47

48 failure {

49 gdb.execute("backtrace")

50 } in_get_cmp_str_init_s_null

51 }

52

53 transition {

54 before event itype_end(ptr) {

55 return not ptr

56 }

57

58 success calling_itype_end_with_null_ptr

59

60 failure {

61 print("called itype_end with non null");

62 gdb.execute("backtrace")

63 } in_get_cmp_str_init_s_null

64 }

65 transition {

66 before event get_comp_string()

67 success in_get_cmp_str_init

68 }

69 }

70

71 state in_get_cmp_str_init_s_not_null accepting {

72 transition {

73 after event write s(s) {

74 return not s

75 }

76

77 success {

78 print("s = " + str(s))

79 } in_get_cmp_str_init_s_not_null

80

81 failure {

82 gdb.execute("backtrace")

83 } in_get_cmp_str_init_s_null

84 }

85

86 transition {

87 before event itype_end(ptr) { return not ptr }

88 success calling_itype_end_with_null_ptr

89 }

90

91 transition {

92 before event get_comp_string()

93 success in_get_cmp_str_init

94 }

95 }

96

97 state in_get_cmp_str_init_s_not_null accepting {

98 transition {

99 before event get_comp_string()

100 success in_get_cmp_str_init

101 }

102

103 transition {

104 after event write s(s) {

105 return not s

106 }

107

108 success {

109 print("s = " + str(s))

110 } in_get_cmp_str_init_s_not_null

111

112 failure {

113 gdb.execute("backtrace")

114 } in_get_cmp_str_init_s_null

115 }

116 }

117

118 state calling_itype_end_with_null_ptr non−accepting

Fig. 31. Verde property to find the cause of the segfault in zsh

Manuscript submitted to ACM


	Abstract
	1 Introduction
	2 Overview of Interactive Runtime Verification
	3 Related Work
	3.1 Testing
	3.2 Heavyweight Verification
	3.3 Interactive and Reverse Debugging
	3.4 Runtime Verification

	4 Notations and Definitions
	4.1 Sets and Functions
	4.2 Notation and Notions Related to Labeled Transition Systems

	5 Notions Used in Interactive Runtime Verification
	5.1 Program
	5.2 Events
	5.3 Instrumentation Provided by the Debugger and Event Handling

	6 Operational View
	6.1 Interface of the Program Under i-RV
	6.2 The Program
	6.3 The Debugged Program
	6.4 Monitor
	6.5 The Scenario
	6.6 The Interactively Verified Program

	7 Correctness of Interactive Runtime Verification
	7.1 Verifying the Behavior of the Debugged Program
	7.2 Guarantees on Monitor Verdicts

	8 Algorithmic View
	8.1 The Program
	8.2 The Debugged Program
	8.3 The Scenario
	8.4 The Interactively Runtime Verified Program

	9 Implementation: Verde
	9.1 Overview
	9.2 Program Execution, Property Evaluation, Instrumentation and Checkpointing
	9.3 Using Verde

	10 Experiments
	10.1 Correcting a Bug in zsh
	10.2 Automatic Checkpointing to Debug a Sudoku Solver
	10.3 Multi-Threaded Producer-Consumers
	10.4 Micro-benchmark
	10.5 Memory Consumption
	10.6 User-Perceived Performance Impact
	10.7 Dynamic Instrumentation on a Stack

	11 Conclusion and Future Work
	11.1 Conclusion
	11.2 Future Work

	References
	A Proving that the Debugged Program Weakly Simulates the Initial Program, and Vice Versa
	A.1 The Initial Program Weakly Simulates the Debugged Program
	A.2 The Debugged Program Weakly Simulates the Initial Program

	B Comparing a Traditionnal Interactive Debugging and an Interactive Runtime Verification Session
	C Property on Value Changes of String s in Function get_comp_string in zsh

