C. Alberti and L. Cochella, « A Framework for Understanding the Roles of MiRNAs in Animal Development, Development, vol.144, issue.14, pp.2548-59, 2017.

A. , A. , J. Rahnenfuhrer, and T. Lengauer, « Improved Scoring of Functional Groups from Gene Expression Data by Decorrelating GO Graph Structure, Bioinformatics, vol.22, issue.13, pp.1600-1607, 2006.

,

A. Bouchareb, A. Le-cam, J. Montfort, S. Gay, T. Nguyen et al., et Violette Thermes. 2017. « Genome-Wide Identification of Novel Ovarian-Predominant MiRNAs: New Insights from the Medaka, vol.7

J. Brennecke, A. Stark, B. Robert, E. Russell, M. Stephen et al., « Principles of MicroRNA-Target Recognition, PLoS Biology, vol.3, issue.3, 2005.

,

J. Chen, T. Cai, C. Zheng, X. Lin, G. Wang et al., « MicroRNA-202 Maintains Spermatogonial Stem Cells by Inhibiting Cell Cycle Regulators and RNA Binding Proteins, Nucleic Acids Research, vol.45, issue.7, pp.4142-57, 2017.

A. A. Dabaja, A. Mielnik, D. Brian, . Robinson, S. Matthew et al., « Possible germ cell-Sertoli cell interactions are critical for establishing appropriate expression levels for the Sertoli cell-specific MicroRNA, miR-202-5p, in human testis, Basic and Clinical Andrology, vol.25, 2015.

A. Dobin, C. A. Davis, F. Schlesinger, J. Drenkow, C. Zaleski et al., et Thomas R. Gingeras. 2013. « STAR: Ultrafast Universal RNA-Seq Aligner, vol.29, pp.15-21

A. J. Enright, B. John, U. Gaul, T. Tuschl, C. Sander et al., MicroRNA Targets in Drosophila, p.14, 2003.

S. Gay, J. Bugeon, A. Bouchareb, L. Henry, C. Delahaye et al., MiR-202 Controls Female Fecundity by Regulating Medaka Oogenesis, vol.14, p.1007593, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01871468

A. Grimson, K. Kai-how, W. K. Farh, P. Johnston, . Garrett et al., MicroRNA Targeting Specificity in Mammals: Determinants Beyond Seed Pairing, p.28, 2013.

T. Iwamatsu, « Stages of Normal Development in the Medaka Oryzias Latipesq, p.14, 2004.

L. Kaufman and P. J. Rousseeuw, Clustering By Means of Medoids, 1987.

B. P. Lewis, B. Christopher, D. P. Burge, and . Bartel, « Conserved Seed Pairing, Often Flanked by Adenosines, Indicates That Thousands of Human Genes Are MicroRNA Targets, Cell, vol.120, issue.1, pp.15-20, 2005.

,

J. Li, W. Ma, P. Zeng, J. Wang, B. Geng et al., « LncTar: A Tool for Predicting the RNA Targets of Long Noncoding RNAs, Briefings in Bioinformatics, vol.16, issue.5, pp.806-818, 2015.

Y. Liao, G. K. Smyth, and E. W. Shi, « FeatureCounts: An Efficient General Purpose Program for Assigning Sequence Reads to Genomic Features, Bioinformatics, vol.30, issue.7, pp.923-953, 2014.

E. Lubzens, G. Young, J. Bobe, J. Et, and . Cerdà, « Oogenesis in Teleosts: How Fish Eggs Are Formed, General and Comparative Endocrinology, vol.165, issue.3, pp.367-89, 2010.

S. Mockly and H. Seitz, « Inconsistencies and Limitations of Current MicroRNA Target Identification Methods, MicroRNA Target Identification, édité par Alessandro Laganà, pp.291-314, 1970.

M. Otsuka, M. Zheng, M. Hayashi, J. Lee, O. Yoshino et al., « Impaired MicroRNA Processing Causes Corpus Luteum Insufficiency and Infertility in Mice, Journal of Clinical Investigation, vol.118, issue.5, pp.1944-54, 2008.

M. Pertea, G. M. Pertea, C. M. Antonescu, T. Chang, J. T. Mendell et al., « StringTie Enables Improved Reconstruction of a Transcriptome from RNA-Seq Reads », Nature Biotechnology, vol.33, issue.3, pp.290-95, 2015.

C. Presslauer, T. T. Bizuayehu, M. Kopp, J. M. Fernandes, and I. Babiak, « Dynamics of miRNA transcriptome during gonadal development of zebrafish, Scientific Reports, vol.7, 2017.

,

M. D. Robinson, J. Davis, . Mccarthy, K. Et-gordon, and . Smyth, « edgeR: a Bioconductor package for differential expression analysis of digital gene expression data, Bioinformatics, vol.26, issue.1, pp.139-179, 2010.

G. Romano, D. Veneziano, M. Acunzo, C. M. Et, and . Croce, « Small NonCoding RNA and Cancer, Carcinogenesis, vol.38, issue.5, pp.485-91, 2017.

,

E. N. Wainwright, J. S. Jorgensen, Y. Kim, V. Truong, S. Bagheri-fam et al., SOX9 Regulates MicroRNA MiR-202-5p/3p Expression during Mouse Testis Differentiation, vol.89, p.34, 2013.

T. Wang, C. Lee, L. Lai, M. Tsai, T. Lu et al., AnamiR: Integrated Analysis of MicroRNA and Gene Expression Profiling », BMC Bioinformatics, vol.20, issue.1, 2019.

V. Wucher, F. Legeai, T. Leeb, V. Jagannathan, E. Cadieu et al., « FEELnc: A Tool for Long Non-Coding RNA Annotation and Its Application to the Dog Transcriptome, Nucleic Acids Research, vol.45, issue.8, p.12, 2017.

, MDS des 36 échantillons (6 ovaires par temps T0, T1, T2, T3, T4 et T5) prélevés au cours du cycle d'ovogénèse. Les échantillons du temps T4 se regroupent bien, sauf T4_F1. Les échantillons du temps T5 semble former un groupe. Les échantillons des autres temps semblent être réunis entre eux, vol.1

, Heatmap et classification hiérarchique des 36 échantillons (6 ovaires par temps T0, T1, T2, T3, T4 et T5) prélevés au cours du cycle d'ovogénèse. L'échantillon T2_F4 n'est pas classifié avec les autres échantillons. Les échantillons T2_F1, T3_F1, T3_F2 et T4_F1 semblent avoir une expression différente des autres temps qui se regroupent, vol.2