J. Adam and N. Bellomo, A survey of models for tumor-immune system dynamics, 2012.

M. Ben-alaya and A. Kebaier, Asymptotic Behavior of the Maximum Likelihood Estimator for Ergodic and Nonergodic SquareRoot Diffusions, Stochastic Analysis and Application, vol.31, pp.552-573, 2013.

G. Albano and V. Giorno, A stochastic model in tumor growth, Journal of Theoretical Biology, vol.242, issue.2, pp.329-336, 2006.

K. Allison and G. Sledge, Heterogeneity and Cancer, Oncology, vol.28, pp.772-778, 2014.

P. M. Altrock, L. L. Liu, and F. Michor, The mathematics of cancer : integrating quantitative models, Nature Reviews Cancer, vol.15, issue.12, p.730, 2015.

M. Baar and L. Coquille, A stochastic model for immunotherapy of cancer, Sientific Reports, vol.6, p.24169, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01483048

V. Bansay and S. Méléard, Stochastic models for structured populations -Scaling limits and long time behavior, 2010.

C. Bettegowda and M. Sausen, Detection of Circulating Tumor DNA in Early-and Late-Stage Human Malignancies, Science Translational Medicine, vol.6, issue.224, pp.224-248, 2014.

D. Betticher and S. Peters, Rôle de l'EGFR dans le cancer pulmonaire non à petites cellules, Revue Médicale Suisse, vol.5, pp.1096-101, 2009.

F. Costa and M. Campos, Basic ingredients for mathematical modeling of tumor growth in vitro : Cooperative effects and search for space, Journal of theoretical biology, vol.337, pp.24-29, 2013.

G. , On estimating the diffusion coefficient, Journal of Applied Probability, vol.24, pp.105-114, 1987.

S. Evain, Mathematical modeling of tumor and metastatic growth when treated with sunitinib, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01377994

L. Ferrante, S. Bompadre, L. Possati, and L. Leone, Parameter estimation in gompertzian stochastic model for tumor growth, Biometrics, vol.56, issue.4, pp.1076-1081, 2000.

E. Fournié and D. Talay, Application de la statistique des diffusions à un modèle de taux d'intérêt, Finance, vol.12, issue.2, pp.79-111, 1991.

J. Gall, Mouvement brownien, martingales et calcul stochastique, vol.71, 2013.

O. Garet and A. Kurtzmann, De l'intégration aux probabilités. Ellipses, 2011.

J. Giet, P. Vallois, and S. Wantz-mézières, The logistic S.D.E. Theory of Stochastic Processes, vol.20, pp.28-62, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01096323

A. Gloter, Estimation du coefficient de diffusion de la volatilité d'un modèle à volatilité stochastique, Série, vol.330, pp.243-248, 2000.

X. Gourdon, Les maths en tête -Analyse. 2 e édition, Ellipses, 2008.

C. Graham and D. Talay, Simulation stochastique et méthodes de Monte-Carlo. Les Éditions de l'École Polytechnique, 2011.

E. Gray, H. Rizos, and A. Reid, Circulating Tumor DNA to Monitor Treatment Response ans Detect Acquired Resistance in Patients with Metastatic Melanoma, Oncotarget, vol.6, issue.39, pp.42008-42018, 2015.

P. Guttorp, Statistical inference for branching processes, 1991.

H. Haeno, M. Gonen, and M. Davis, Computational Modeling of Pancreatic Cancer Reveals Kinetics of Metastasis Suggesting Optimum Treatment Strategies, Cell, vol.148, pp.362-375, 2012.

P. Hahnfeldt, D. Panigraphy, J. Folkman, and L. Hlatky, Tumor development under angiogenic signaling : a dynamical theory of tumor growth, treatment, response and postvascular dormancy, Cancer Research, vol.19, pp.4770-4775, 1999.

P. Hahnfeldt, R. Sachs, and L. Hlatky, Simple ode models of tumor growth and anti-anhiogenic or radiation treatment. Mathematical and Computer Modelling, vol.33, pp.1297-1305, 2001.

N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes. 2 e édition, 1989.

D. Jiang and N. Shi, A note on nonautonomous logistic equation with random perturbation, Journal of Mathematical Analysis and Applications, vol.303, pp.164-172, 2005.

T. Jiang, C. Zhai, and C. Su, The diagnostic value of circulating cell free DNA quantification in non-small cell lung cancer : A systematic review with meta-analysis, Lung Cancer, vol.100, pp.63-70, 2016.

S. Kaden and J. Potthoff, Progressive Stochastic Processes and an Application to the Itô Integral, Stochastic analysis and applications, vol.4, pp.843-865, 2004.

I. Karatzas and S. Shreve, Brownian Motion and Stochastic Calculus. 2 e édition, 1991.

R. Khasminskii, Stochastic stability of differential equation, vol.2, 2012.

B. , Stochastic Differential Equations -An Introduction with Applications. 5 e édition, 2000.

V. Kuznetsov, I. Makalkyn, M. Taylor, and A. Perelson, Nonlinear dynamics of immunogenic tumors : parameter estimation and global bifurcation analysis, Bulletin of Mathematical Biology, vol.56, issue.2, pp.295-321, 1994.

R. Liptser and A. Shiryaev, Statistics of Random Processes -General Theory. Tome 1, 2 e édition, 2001.

S. Méléard, Modèles aléatoires en Écologie et Évolution, vol.77, 2016.

T. Mok, Y. Wu, and M. Ahn, Osimertinib or Platinum Pemetrexed in EGFR T790M-Positive Lung Cancer, New England Journal Medical, vol.376, issue.7, pp.629-640, 2017.

T. Mok, Y. Wu, and S. Thongprasert, Gefitinib or carboplatin-paclitaxel in pulmonary adenocarninoma, New England Journal Medical, vol.361, issue.10, pp.947-957, 2009.

M. Murtanza, S. Dawson, and K. Pogrebniak, Multifocal clonal evolution characterized using circulating tumour DNA in a case of metastatic breast cancer, Nature Communications, vol.6, p.8760, 2015.

B. Perthame, Some mathematical models of tumor growth. Notes de cours, 2016.

J. Printems, Etude de quelques lois, 2012.

F. Shepherd, R. Pereira, and T. Ciuleanu, Erlotinib in previously treated non-small-cell lung cancer, New England Journal Medical, vol.353, issue.2, pp.123-132, 2005.

C. Skiadas, Exact Solutions of Stochastic Differential Equations : Gompertz, Generalized Logistic and Revised Exponential, Methodology and Computing in Applied Probability, vol.12, pp.261-270, 2010.

J. Soria, Osimertinib in Untreated EGFR-Mutated Advanced Non-Small-Cell Lung Cancer, New England Journal Medical, vol.378, issue.2, pp.113-125, 2018.

X. Sun, J. Bao, and Y. Shao, Mathematical Modeling of Therapy-induced Cancer Drug Resistance : Connecting Cancer Mechanisms to Population Survival Rates, Scientific Reports, 1, vol.6, p.22498, 2016.

L. Tenkes, R. Hollerbach, and E. Kim, Time-dependent probability density functions and information geometry in stochastic logistic and Gompertz models, Journal of Statistical Mechanics : Theory and Experiment, vol.2017, issue.12, p.123201, 2017.

S. Tisserant, Loi Gamma, loi du ? 2 et loi de Student, 2009.

S. Williams, Probability with Martingales, 1991.

D. Wodarz and N. Komarova, Dynamics of cancer : mathematical foundations of oncology, 2014.

, Illustration de la normalité asymptotique des estimateurs de dérive a et b Le code ci-dessous permet d'illustrer la normalité asymptotique des estimateurs de dérive a et b, en générant un n?échantillon que l

(. Def-mon_echantillon_ab_logi and T. ,

N. and T. Mon_echantillon_ab_logi, , vol.3

, Histogramme ?d \ ' un?5000, p.18

, Histogramme ?d \ ' un?5000, ? de ? l \ ' e s t i m a t e u r ? de ? d é r i v e ? $b$ ' ) xii