,

A. Varma, B. W. Boesch, and B. O. Palsson, Stoichiometric interpretation of Escherichia coli glucose catabolism under various oxygenation rates, Appl Environ Microbiol, vol.59, pp.2465-2473, 1993.

E. M. El-mansi and W. H. Holms, Control of carbon flux to acetate excretion during growth of Escherichia coli in batch and continuous cultures, 1989.

, J Gen Microbiol, vol.135, pp.2875-2883

M. Basan, S. Hui, H. Okano, Z. Zhang, Y. Shen et al., Overflow metabolism in Escherichia coli results from efficient proteome allocation, Nature, vol.528, pp.99-104, 2015.

G. W. Luli and W. R. Strohl, Comparison of growth, acetate production, and acetate inhibition of Escherichia coli strains in batch and fed-batch fermentations, Appl Environ Microbiol, vol.56, pp.1004-1011, 1990.

C. E. Carpenter and J. R. Broadbent, External concentration of organic acid anions and pH: key independent variables for studying how organic acids inhibit growth of bacteria in mildly acidic foods, J Food Sci, vol.74, pp.12-15, 2009.

T. Warnecke and R. T. Gill, Organic acid toxicity, tolerance, and production in Escherichia coli biorefining applications, Microb Cell Fact, vol.4, p.25, 2005.

M. Eiteman and E. Altman, Overcoming acetate in Escherichia coli recombinant protein fermentations, Trends Biotechnol, vol.24, pp.530-536, 2006.

M. De-mey, D. Maeseneire, M. Soetaert, W. Vandamme, and E. , Minimizing acetate formation in E. coli fermentations, J Ind Microbiol Biotechnol, vol.34, pp.689-700, 2007.

H. Chong, J. Yeow, I. Wang, H. Song, and R. Jiang, Improving acetate tolerance of Escherichia coli by rewiring its global regulator cAMP receptor protein (CRP), PLoS One, vol.8, 2013.

J. Diaz-ricci, L. Regan, and J. Bailey, Effect of alteration of the acetic acid synthesis pathway on the fermentation pattern of Escherichia coli, Biotechnol Bioeng, vol.38, pp.1318-1324, 1991.

W. R. Farmer and J. C. Liao, Reduction of aerobic acetate production by Escherichia coli, Appl Environ Microbiol, vol.63, pp.3205-3210, 1997.

M. Papagianni, Recent advances in engineering the central carbon metabolism of industrially important bacteria, Microb Cell Fact, vol.11, p.50, 2012.

J. M. Grime, M. A. Edwards, N. C. Rudd, and P. R. Unwin, Quantitative visualization of passive transport across bilayer lipid membranes, Proc Natl Acad Sci U S A, vol.105, pp.14277-14282, 2008.

J. C. Wilks and J. L. Slonczewski, pH of the cytoplasm and periplasm of Escherichia coli: rapid measurement by green fluorescent protein fluorimetry, J Bacteriol, vol.189, pp.5601-5607, 2007.

D. D. Axe and J. E. Bailey, Transport of lactate and acetate through the energized cytoplasmic membrane of Escherichia coli, Biotechnol Bioeng, vol.47, pp.8-19, 1995.

A. Herrero, R. Gomez, B. Snedecor, C. Tolman, and M. Roberts, Growth inhibition of Clostridium thermocellum by carboxylic acids: a mechanism based on uncoupling by weak acids, Appl Microbiol Biotechnol, vol.22, pp.53-62, 1985.

G. V. Smirnova, &. Oktyabr, and . On, Effect of the activity of primary proton pumps on the growth of Escherichia coli in the presence of acetate, Microbiology, vol.57, pp.446-451, 1988.

A. J. Roe, D. Mclaggan, I. Davidson, C. O'byrne, and I. R. Booth, Perturbation of anion balance during inhibition of growth of Escherichia coli by weak acids, J Bacteriol, vol.180, pp.767-772, 1998.

J. B. Russell, Another explanation for the toxicity of fermentation acids at low pH: anion accumulation versus uncoupling, J Appl Bacteriol, vol.73, pp.363-370, 1992.

A. J. Roe, C. O'byrne, D. Mclaggan, and I. R. Booth, Inhibition of Escherichia coli growth by acetic acid: A problem with methionine biosynthesis and homocysteine toxicity, Microbiology, vol.148, pp.2215-2222, 2002.

O. Kotte, B. Volkmer, J. L. Radzikowski, and M. Heinemann, Phenotypic bistability in Escherichia coli's central carbon metabolism, Mol Syst Biol, vol.10, p.736, 2014.

B. Enjalbert, P. Millard, M. Dinclaux, J. Portais, and F. Létisse, Acetate fluxes in Escherichia coli are determined by the thermodynamic control of the Pta-AckA pathway, Sci Rep, vol.7, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01605965

A. J. Wolfe, The acetate switch, Microbiol Mol Biol Rev, vol.69, pp.12-50, 2005.

A. J. Wolfe, Physiologically relevant small phosphodonors link metabolism to signal transduction, Curr Opin Microbiol, vol.13, pp.204-209, 2010.

D. K. Fox, N. D. Meadow, and S. Roseman, Phosphate transfer between acetate kinase and enzyme I of the bacterial phosphotransferase system, J Biol Chem, vol.261, pp.13498-13503, 1986.

S. Castaño-cerezo, V. Bernal, H. Post, T. Fuhrer, S. Cappadona et al., Protein acetylation affects acetate metabolism, motility and acid stress response in Escherichia coli, Mol Syst Biol, vol.10, p.762, 2014.

M. Kuhn, B. Zemaitaitis, L. Hu, A. Sahu, D. Sorensen et al., Structural, kinetic and proteomic characterization of acetyl phosphatedependent bacterial protein acetylation, PLoS One, vol.9, 2014.

B. T. Weinert, V. Iesmantavicius, S. A. Wagner, C. Schölz, B. Gummesson et al., Acetyl-phosphate is a critical determinant of lysine acetylation in E. coli, Mol Cell, vol.51, pp.265-272, 2013.

A. M. Feist, C. S. Henry, J. L. Reed, M. Krummenacker, A. R. Joyce et al., A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information, Mol Syst Biol, vol.3, p.121, 2007.

J. B. Russell and F. Diez-gonzalez, The effects of fermentation acids on bacterial growth, Adv Microb Physiol, vol.39, pp.205-234, 1998.

B. Enjalbert, F. Letisse, and J. C. Portais, Physiological and molecular timing of the glucose to acetate transition in Escherichia coli, Metabolites, vol.3, pp.820-837, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02146740

J. Contiero, C. Beatty, S. Kumari, C. L. Desanti, W. R. Strohl et al., Effects of mutations in acetate metabolism on high-cell-density growth of Escherichia coli, J Ind Microbiol Biotechnol, vol.24, pp.421-430, 2000.

E. A. Mordukhova and J. Pan, Evolved cobalamin-independent methionine synthase (MetE) improves the acetate and thermal tolerance of Escherichia coli, Appl Environ Microbiol, vol.79, pp.7905-7915, 2013.

K. Valgepea, K. Adamberg, R. Nahku, P. Lahtvee, L. Arike et al., Systems biology approach reveals that overflow metabolism of acetate in Escherichia coli is triggered by carbon catabolite repression of acetylCoA synthetase, BMC Syst Biol, vol.4, p.166, 2010.

S. Castaño-cerezo, J. M. Pastor, S. Renilla, V. Bernal, J. L. Iborra et al., An insight into the role of phosphotransacetylase (Pta) and the acetate/acetyl-CoA node in Escherichia coli, Microb Cell Fact, vol.8, p.54, 2009.

A. H. Klein, A. Shulla, S. A. Reimann, D. H. Keating, and A. J. Wolfe, The intracellular concentration of acetyl phosphate in Escherichia coli is sufficient for direct phosphorylation of two-component response regulators, J Bacteriol, vol.189, pp.5574-5581, 2007.

S. Castaño-cerezo, V. Bernal, T. Röhrig, S. Termeer, and M. Cánovas, Regulation of acetate metabolism in Escherichia coli BL21 by protein N-lysine acetylation, Appl Microbiol Biotechnol, vol.99, pp.3533-3545, 2015.

J. Sá-pessoa, S. Paiva, D. Ribas, I. J. Silva, S. C. Viegas et al., SatP (YaaH), a succinate-acetate transporter protein in Escherichia coli, Biochem J, vol.454, pp.585-595, 2013.

T. Baba, A. T. Hasegawa, M. Takai, Y. Okumura, Y. Baba et al., Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection, Mol Syst Biol, vol.2, 2006.

H. Holms, Flux analysis and control of the central metabolic pathways in Escherichia coli, FEMS Microbiol Rev, vol.19, pp.85-116, 1996.

C. R. Dittrich, R. V. Vadali, G. N. Bennett, and K. Y. San, Redistribution of metabolic fluxes in the central aerobic metabolic pathway of E. coli mutant strains with deletion of the ackA-pta and poxB pathways for the synthesis of isoamyl acetate, Biotechnol Prog, vol.21, pp.627-631, 2005.

J. N. Phue, S. J. Lee, J. B. Kaufman, A. Negrete, and J. Shiloach, Acetate accumulation through alternative metabolic pathways in ackA-ptapoxB-triple mutant in E. coli B (BL21), Biotechnol Lett, vol.32, pp.1897-1903, 2010.

Y. T. Yang, G. N. Bennett, and K. Y. San, Effect of inactivation of nuo and ackA-pta on redistribution of metabolic fluxes in Escherichia coli, Biotechnol Bioeng, vol.65, pp.291-297, 1999.

M. R. Antoniewicz, Methods and advances in metabolic flux analysis: a mini-review, J Ind Microbiol Biotechnol, vol.42, pp.317-325, 2015.

M. Morin, D. Ropers, F. Létisse, S. Laguerre, J. Portais et al., The post-transcriptional regulatory system CSR controls the balance of metabolic pools in upper glycolysis of Escherichia coli, Mol Microbiol, vol.100, pp.686-700, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02147255

D. Lee, K. Smallbone, W. B. Dunn, E. Murabito, C. L. Winder et al., Improving metabolic flux predictions using absolute gene expression data, BMC Syst Biol, vol.6, p.73, 2012.

M. Tortajada, F. Llaneras, and J. Picó, Validation of a constraint-based model of Pichia pastoris metabolism under data scarcity, BMC Syst Biol, vol.4, p.115, 2010.

I. S. Farmer and C. W. Jones, The energetics of Escherichia coli during aerobic growth in continuous culture, Eur J Biochem, vol.67, pp.115-122, 1976.

J. B. Russell and F. Diez-gonzalez, Effects of carbonylcyanide-mchlorophenylhydrazone (CCCP) and acetate on Escherichia coli O157:H7 and K-12: uncoupling versus anion accumulation, FEMS Microbiol Lett, vol.151, pp.71-76, 1997.

J. Orr, D. Christensen, A. Wolfe, and C. Rao, Extracellular acidic pH inhibits acetate consumption by decreasing gene transcription of the tricarboxylic acid cycle and the glyoxylate shunt, J Bacteriol, vol.201, pp.410-428, 2018.

Y. Zhang, F. Buchholz, J. Muyrers, and A. Stewart, A new logic for DNA engineering using recombination in Escherichia coli, Nat Genet, vol.20, pp.123-128, 1998.

K. A. Datsenko and B. L. Wanner, One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products, Proc Natl Acad Sci U S A, vol.97, pp.6640-6645, 2000.

S. K. Sharan, L. C. Thomason, S. G. Kuznetsov, and D. L. Court, Recombineering: a homologous recombination-based method of genetic engineering, Nat Protoc, vol.4, pp.206-223, 2009.

L. C. Thomason, N. Costantino, D. Court, D. D. Moore, J. Seidman et al., E. coli genome manipulation by P1 transduction, p 1.17.1-1.17.8, Current protocols in molecular biology, 2007.

J. Izard, G. Balderas, C. Ropers, D. Lacour, S. Song et al., A synthetic growth switch based on controlled expression of RNA polymerase, Mol Syst Biol, vol.11, p.840, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01247993

L. Heirendt, S. Arreckx, T. Pfau, S. Mendoza, R. A. Heinken et al., Creation and analysis of biochemical constraint-based models using the COBRA Toolbox, Nat Protoc, vol.14, pp.639-702, 2019.

N. D. Price, J. Schellenberger, and B. O. Palsson, Uniform sampling of steady-state flux spaces: means to design experiments and to interpret enzymopathies, Biophys J, vol.87, pp.2172-2186, 2004.

H. Haraldsdottir, B. Cousins, I. Thiele, R. Fleming, and S. Vempala, CHRR: coordinate hit-and-run with rounding for uniform sampling of constraint-based models, Bioinformatics, vol.33, pp.1741-1743, 2017.

G. Baptist, C. Pinel, C. Ranquet, J. Izard, D. Ropers et al., A genome-wide screen for identifying all regulators of a target gene, Nucleic Acids Res, vol.41, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00857345

H. De-jong, C. Ranquet, D. Ropers, C. Pinel, and J. Geiselmann, Experimental and computational validation of models of fluorescent and luminescent reporter genes in bacteria, BMC Syst Biol, vol.4, p.55, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00784438

D. Stefan, C. Pinel, S. Pinhal, E. Cinquemani, J. Geiselmann et al., Inference of quantitative models of bacterial promoters from time-series reporter gene data, PLoS Comput Biol, vol.11, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01097632

V. Rohatgi, E. Saleh, and A. , An introduction to probability and statistics, 2003.

P. Good, Permutation, parametric and bootstrap tests of hypotheses, 2005.