
HAL Id: hal-02197764
https://inria.hal.science/hal-02197764

Submitted on 30 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A Multi-agent Framework that Facilitates Decoupled
Agent Functioning

Dave J. Russell, Elizabeth M. Ehlers

To cite this version:
Dave J. Russell, Elizabeth M. Ehlers. A Multi-agent Framework that Facilitates Decoupled Agent
Functioning. 10th International Conference on Intelligent Information Processing (IIP), Oct 2018,
Nanning, China. pp.109-119, �10.1007/978-3-030-00828-4_12�. �hal-02197764�

https://inria.hal.science/hal-02197764
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

A multi-agent framework that facilitates decoupled agent
functioning.

D.J. Russell, E.M. Ehlers

University of Johannesburg, Corner of University and Kingsway, Auckland Park
Johannesburg, 2006, South Africa

emehlers@uj.ac.za

Abstract: Society is becoming more aware of the impact of Artificial Intelligence
and its relevance in everyday scenarios, from search engines to mobile phone
assistants. Intelligent agents focus on agents as entities that can act on
environments. These agents demonstrate qualities such as autonomy, situational
awareness, embodiment, and flexibility. A challenge faced is creating a
mechanism for artificial intelligent agents to cross-communicate in a world
where technology is disparate and always changing. This constant change leads
to numerous problems, from changing protocols and deprecated communication
endpoints to information or functionality loss. The research investigates existing
frameworks leveraged in agent programming and the standards in place such as
the Foundation for Intelligent Physical Agents standard, and the Mobile Agent
System Interoperability Facility. The standards are detailed and expanded to
leverage modern technologies. The investigation provides the Decoupled
Environment Agent Model that abstracts agent functioning from environment
execution that is based on the existing standards. In this model, components
function as if the they are agents. The model focuses on common interfaces and
mechanisms for communication and discovery. The Decoupled Environment
Agent System is an implementation of the model that is used to test and provide
a mechanism where the various components of the model behave in a consistent
simple manner. The information gathered in the research, the model and the
results collected identify whether an agent can effectively be loosely coupled
from the environment. The implementation shows that it is possible to construct
an agent that is decoupled from the functioning environment.

Keywords: Multi-Agent Systems, Agent Environments, Foundation for
Intelligent Physical Agents, Mobile Agent System Interoperability Facility,
Knowledge Query and Manipulation Language

mailto:emehlers@uj.ac.za

1 Introduction

The execution of multi-agent systems faces a challenge that is caused by the
fragmentation of the environments that they execute on. Agents have been utilized to
address problems in various industries from traffic control, medical analysis, industrial
control, web-based sentiment, to simulation of human-like intelligence [1].

An intelligent agent is an executable that functions continuously and autonomously
in environments [2]. The belief or knowledge of the agent is the current understanding
of the environment based on messages that either originate from other agents or direct
from the environment [1]. An environment is the domain in which an agent executes
[3,4,5]. Agents working in a loosely coupled network that work together to find
solutions to problems that are beyond individual agent capabilities form a multi-agent
system [6]. This network of environments is where the fragmentation takes place. The
fragmentations can take many forms from different operating systems, development
platforms, runtimes and chipsets.

The importance of this work is that it aims to investigate the state of the art with
regards to the current frameworks and solutions which try to address the problem
disparate environments by abstracting the environment away from the agent
functioning. This investigation assists in understanding the landscape of multi-agent
systems and the various interactions required of an agent.

Secondly, this work is aimed at providing a possible solution for this problem by
producing a model and a prototype. The idea behind the model and prototype is to
leverage what has been produced prior and to enhance and add on top of the work
through using modern technologies and mechanisms such as Hypertext Transfer
Protocol (HTTP) and Representational State Transfer (REST).

This rest of this paper is organized as follows. Section 2 summarizes the findings of
the literature review, this is followed by the results of the research and a discussion into
the findings.

2 Literature Review

The literature review is aimed at solving three problems. The first is to define the
various components of multi-agent systems, the second is to identify any frameworks
or standards that exist and the last is to consider any other utilitarian tools that can assist
in decoupling agents from their environments.

2.1 Definitions

Defining an agent is the first important in the scope within the research. An agent is
defined as an executable that functions autonomously in its environment. Due to how
agents interact a useful concept to understand interaction among individuals via the
environment is stigmergy [7]. Stigmergy is a mechanism that uses social network
consensus to coordinate between agents or actions indirectly. The understanding of
stigmergy provides a starting point of understanding how agents interact.

Environments provide agents with domains in which they can execute and move
between to perform actions on physical or logical resources [7]. When designing an
agent environment management system, one must consider whether to allow for cross-
environment communications or to require that agents only leverage resources on their
existing environment. The different environment agent interaction models are
summarized in Fig. 1.

Understanding how agents interact with their environments leads to a requirement
to understand multi-agent systems. Multi-agent systems deal with the behavior
management in collections of multiple independent agents [8]. Multi-agent systems can
be leveraged in scenarios where agents, which are a part of problem-solving, may
require having separate goals and beliefs; for example, manufacturing and hospital
scheduling. The ability of multi-agent systems to provide an open, evolving architecture
that can change at runtime to leverage new services or replace existing ones is very
compelling for various scenarios [9].

Fig. 1. Summary of the different environment agent interaction models

2.2 Standards

Throughout research three main standards emerged Foundation for Intelligent Physical
Agents (FIPA), Mobile Agent System Interoperability Facility (MASIF), and
Knowledge Query and Manipulation Language (KQML).

FIPA.

The Foundation for Intelligent Physical Agents, or FIPA, is an international body

that focuses on the promotion of intelligent agent interoperability [10]. FIPA joined the
IEEE (Institute of Electrical and Electronics Engineers) Computer Society in 2005 [11]
and runs under the IEEE standards body. FIPA provides a list of specifications which
specify architectural recommendations focusing on Intelligent Agents. It is a collection
of standards which are intended to support the interoperation of different agents and the
services they represent [12]. The standard aims to be holistic in nature and to provide
an architecture that addresses a broad range of used mechanisms.

At the core of the FIPA standard defines how agents can discover and interact with
each other and exchange messages [13]. The basic set of FIPA standards dictates
defining an AMS (Agent Management System), a DF (Directory Facilitator) and an
ACL (Agent Communication Language) for agent-based systems [14].

FIPA addresses some of the main challenges faced with abstracting out the
implementation of multi-agent systems but does not tackle environments that are
dynamic in nature or agent migration between environments [15]. No updates to this
standard have taken place since 2002.

MASIF.

The Mobile Agent System Interoperability Facility (MASIF) is a standard

specifically aimed at interfaces between mobile agent systems. The motivation behind
MASIF is the integration of mobile technologies to produce a distributed computing
model [15]. It presents a set of definitions and interfaces that provide an interoperable
interface for mobile agent systems.

The MASIF specification defines a common model that encompasses all the major
abstractions found in every mobile agent platform [16]. MASIF is similar to FIPA, in
that FIPA starts with an abstract architecture description. MASIF relies heavily on the
use of Common Object Request Broker Architecture (CORBA), which allows for
access to CORBA- enabled objects. MASIF standardises agent management, agent
transfer, agent and agent system names, agent system type, and location syntax [17].

MASIF addresses the interfaces between disparate systems that exist in a multi-
agent system but does not define how agents migrated between environments and is
dependent on the specific implementation details such as CORBA [12]. MASIF does
not address how agents communicate [15], as it is assumed that CORBA addresses this
issue, and does not deal with the dynamic environments.

KQML.

KQML is a message handling protocol and message format that can be used by

agents to communicate [18]. KQML is based on speech acts and is a message format
and handling protocol based on Lisp [19,20]. KQML supports direct and mediated
communication, which is in line with the abstraction process that is the focus of this

research [18]. The KQML standard provides guidance on how the performatives are
required to handle the various scenarios required by multi-agent system and contains
all the required communication formats for decoupling an agent from its environment.
This entails publication and subscribe models, to brokered messaging and peer-to-peer
communications.

KQML is human-readable and straightforward for programs to interpret. KQML
leverages performatives as message types and relate to basic speech acts in human
speech [19], which is similar to the FIPA ACL [15].

2.3 Existing Solutions

There are a number of implementations, for example SMART (Scalable Mobile and
Reliable Technology), D’Agents, Grasshopper, Aglets, SOMA, S-Aframe, and MiLog
[16] [21] [22] [23] [24].

The literature study researched the various challenges and identifying existing
solutions for dynamic environments. An issue identified was that agent frameworks
have stagnated and are not updated as new knowledge emerges, or that they are based
on and limited to specific technologies. Separation from these technologies and
introduction of a core messaging system structure goes a long way to decouple agent
functioning from the specifics of the environment. This use of web standards allows for
an agent to execute in any format that it requires, from an executable to a JavaScript,
and within an application framework.

The creation of a message handling mechanism allows for higher levels of
interoperability between the various components in an agent system through providing
a standardized mechanism for the components to interact.

The heterogeneous ontologies that exist for agents and the mechanisms for control
and information retrieval present an additional problem. The introduction of an
ontology framework for the messaging system to handle the various types of ontologies
is important to ensure that agent queries result in meaningful and appropriate results.
Section 4 details the Decoupled Environment Agent Model and Systems.

3 Materials and Methods

The model aims to provide a solution that decouples agents from the environments they
execute in. This is done by leveraging interactions with the environment that are based
on a similar concept to modern web services. The model caters for the dynamic
changing components of the environment and is based on the FIPA standard. It includes
changes aimed at simplifying the model.

The FIPA standard is well-established and was identified throughout the literature
study. FIPA was used as a guideline for the architecture, and expanded upon to support
a model based on web standards such as HTTP and REST-based communications.

The architecture is based on the FIPA Abstract Architecture, and further abstractions
were set up to ensure the flexibility of the system. At the heart of the architecture is the
messaging system, which is a standards-based cross-platform messaging bus. This

messaging system is a key mechanism for abstracting agent functioning and the
environment it is executing in.

Fig. 2 gives a basic overview of the model architecture and how it is related to the
various components of the multi-agent system.

Fig. 2. Decoupled Environment Agent Model Architecture

The loosely coupled architecture of each of the components is based on existing
standards. This model differs in a number of different ways, namely: The agent and
service directory functionalities are merged into a single component. The messaging
system follows more of a service bus mechanism that specifically handles synchronous
and asynchronous communications between the various components. each
agent/service within the ecosystem handles security internally and independently.
Communications take place over HTTP using REST-based URI (Uniform Resource
Identifier) and the JSON message format as opposed to ACL.

Throughout the investigation of intelligent agents, the need to differentiate between
agents and services became trivial in nature, as agents can provide the functionality of
a service. In the Decoupled Environment Agent Model (DEAM), an agent only needs
information and the ability to perform control tasks. This information can come from
any of the many diverse sources available in the environment. To address the problem
of separating agent functioning from the environment, one needs to abstract the source
of information from the agent. An agent is considered any component in an
environment that either provides or consumes information with the aim of performing
a task. For example, a web service which provides messages from a third-party service
is considered an agent, as well as the agent calling the service.

The messaging system is the core of DEAM which enables the loose coupling of the
agents from the environment. The messaging system focuses on coordinating messages
between the various components of the environment from agent communication,
security, agent directory, and message relays.

For the purposes of DEAM, the agent communication language is based on the
KQML keyword sets but applied in a JSON format, as this is a simple mapping for
KQML.

The model consists of three core components: the messaging model, the agent
directory and the security provider. The messaging system is responsible for

coordinating all communication in the Decoupled Environment Agent System. The
agent directory manages the agents that are resident within DEAM. The security
provider a universal mechanism that handles authentication and authorization within
DEAM.

The building of a simplified version of a system to act as a proving ground for a
solution is the prototype, which is not a complete solution and serves as a demonstration
and proof of concept of the model. The features excluded from the Decoupled
Environment Agent System (DEAS) were: Agent Query Ontology, and security.

DEAS is a proof of concept to assist in validating the proposed DEAM, and to
demonstrate that the technologies selected in this dissertation are suitable in
demonstrating the model. The test scenario provides a simple world example of an
agent and agent environment that the implementation can be tested against. The test
scenario covers multiple agents attempting to perform different tasks. Table 1 describes
the scenario in detail, and a visual representation is detailed in Fig. 3.

The DEAS applications focus on the core functionality of the platform and
encapsulates the logic and interaction between the various components within the agent
directory and the messaging systems.

Fig. 3. Diagram of the prototype components

The first technology is Node.js server. Node.js is an application server which leverages
JavaScript as its core language to build modular, single threaded and scalable websites.
Node.js is a cross-platform framework that runs on Linux, Mac OS X, and Windows.
Node.js is the core application and establishes connections to the data store, initialises
the object-relational mapping, controls all URL routing, passes on the web rendering to
the browser, initialises an HTTPS web server, and manages configuration for the sub-
components.

The framework used for HTTP handling is Express.js which is a Node.js web
application framework and leverages the Model View Controller (MVC) design pattern
for the structuring of its various components.

JavaScript Object Notation (JSON) is an information interchange format that is
lightweight and human-readable. JSON is built using two structures, a collection of
name-value pairs, and ordered lists of values. The JSON format is described in du
Rhone (2013). JSON is text-based and leverages Unicode code points.

The nature of the platform allows for agents to connect from any operating system
or platform if it supports HTTP, REST and JSON. This prototype implements a number
of agents, one being a Node.js Agent which can run on any operating system; another
is a Windows Universal Application (UWP) which runs on any Windows 10 device;
the last is an Arduino Agent which runs on the Huzzah Feather ESP8266 development
board.

Scenario:

The scenario represents a decoupled visualisation of environment “health”. The definition of “health” is whether the environment is

inside specific parameters. The “health” of the environment is determined by humidity and temperature, which in turn is determined by a

standalone agent with no direct access to either sensor or actuator.

There are three agents within the environment:

• Agent A is a physical device that produces humidity and temperature values when they change as well and supports requesting the

information via an ask request.

• Agent B is a physical device which also produces humidity and temperature values from a different type of sensor. Agent B can show

a value of Bad, Medium, and Good through a Red, Blue and Green LED respectively.

• Agent C is a processing agent which reads temperature and humidity values and tries to indicate whether the conditions are Good, Bad,

or Medium.

The rules for the “health” of the environment are arbitrarily determined by the following:

�
19 < 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 < 21 and 25 < 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 < 35 ∶ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 < 0 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 > 30 or 10 > 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 > 80 ∶ 𝐵𝐵𝐵𝐵𝐵𝐵
𝑎𝑎𝑎𝑎𝑎𝑎 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ∶ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

�

Agent D is a simulation application that tests the system and simulates Agent A and Agent B.

Task:

Agent C needs to display the status of the environment by whichever means necessary by finding out what the current Temperature and

Humidity values are and displaying health values through whatever means possible. Agent C will discover the sources of information as

well as actuators and attempt to perform its task.

Table 1. Prototype Scenario

The nature of the platform allows for agents to connect from any operating system or
platform if it supports HTTP, REST and JSON. This prototype implements a number
of agents, one being a Node.js Agent which can run on any operating system; another
is a Windows Universal Application (UWP) which runs on any Windows 10 device;
the last is an Arduino Agent which runs on the Huzzah Feather ESP8266 development
board.

The agents will have the following roles in the scenario:

• Coordination agent – coordinates information and sets the status;
• Sensor agent – primary agent that provides temperature and humidity information;
• Status and Sensor agent – provides a mechanism to display the status as well as

secondary temperature and humidity information; and
• Simulation agent – an agent for testing.

The coordination agent is the agent that will control system health indicators by
leveraging the various sources of information in the system to determine the health and
then set the health actuator appropriately. The coordination agent will also play a role
in ensuring that the various scenarios are exercised. The application implemented as a
simple .Net Command Line application is written in C#.

The sensor agent provides temperature and humidity information. The sensor agent
is implemented using a physical device, specifically the Huzzah Feather ESP 8266.
Demonstrates the flexibility of the framework for platforms which leverage native
development such as C++ and are not based on x86 technologies.

The status and sensor agent provide the is the actuator for the scenario and is a
secondary source of temperature and humidity information. The status and sensor agent
are implemented using a RaspBerry Pi 3 kit with a GrovePI+ shield. This agent provides
temperature and humidity with a similar sensor as the ESP 8266 module, but also has
the additional facility of visualising health via 3 LEDs and an RGB Display.

The simulation agent replicates the sensor agent and status and sensor agent by
producing both temperature and humidity values for each, and the actuator
representation for the status and sensor agent. The simulation agent initialises the
messaging system and begins broadcasting temperature and humidity information. The
simulator listens for status updates in parallel with the broadcast functionality that sends
temperature, humidity and status information.

The next section will discuss the results of testing the prototype.

4 Results

To determine the effectiveness and success of a system, the system needs to be tested
and checked against requirements and the design goals. Section 4 details the aspects
that were tested for in the DEASP, and the test cases that were undertaken to determine
whether the DEAM fulfils the requirements of a loosely coupling agent functioning
from an environment.

As part of the testing of the DEAS, a full set of logs were produced which recorded
each of the requests passed through the messaging system as well as the time it took to
process the requests. DEAS successfully completed the test cases and demonstrated the
DEAS can provide the functionality of a FIPA, KQML-based agent system while using
REST and JSON. The DEAS was an effective solution to solving the specific scenario
although has numerous gaps that would need to be addressed.

An issue identified during execution was the dependency on the successful running
of the agent directory to perform security authentication. This dependency on a service
for authentication allows for the system to scale in a more granular fashion, but creates
more points of failure.

Language and ontology terms remain a challenge, as a dictionary that covers the
lexicon does not exist. `s new ontology mechanism which automatically learns about
the mappings, similar to the one described by Tao et al. (2017) in their paper Ontology-
based data semantic management and application in IoT- and cloud-enabled smart
homes would help resolve this problem.

The current framework requires agents to be configured with endpoint information
which reduces flexibility of the system. A solution would be to leverage UDP protocol
or similar mechanism to broadcast endpoint information.

The prototype proves that it is possible to create a framework that can fulfil the
requirements of an agent framework, although there are still several challenges to be
addressed to ensure the provision of a more real-world workable solution. The model
was effective in addressing the scenario in that all test cases passed and performance
was acceptable for a near real time system.

5 Conclusion

The research focused on the problem of loosely coupled agent frameworks. The
dissertation has presented a literature review, a model (DEAM) and a prototype
(DEAS). The research covered the current state of the art of agent theory and multi-
agent systems as well as the various standards that exist today. The model provided a
structure to build the prototype, and the prototype detailed the implementation of a
loosely coupled framework.

The model defined a structure based on the FIPA standard, and leveraged modern
development technologies such as HTTP / REST and JSON protocols. The FIPA
standard was found to provide a sound basis, as well as leveraging KQML as the
foundation of a communication language. KQML was easily translated from a LISP-
based language to JSON, although there were some areas in the prototype that were not
catered for by KQML such as the management of agents in the agent directory.

The DEAM and DEAS have proved that it is possible to build a completely
decoupled multi-agent framework. This framework can support any operating system,
environment, or agent execution environment. At this point in time, there is no widely
adopted agent standards body such as the IEEE or the W3C. There is no standardisation
on transport mechanism, and many of the proposed systems rely on different transport
level protocols, which creates an additional barrier to integration.

DEAS used HTTP / REST and JSON and the performance demonstrated a reliable
and suitable standard-based technology can be used in the future. The addition of
SWAGGER on top of JSON could be considered for the more machine-based discovery
of services. This would add to the level of automation and enable the messaging service
to crawl for the services within the environment dynamically.

A loosely-coupled agent framework is completely possible, although there would be
various challenges to face, specifically around the adoption of the framework in the
industry, leveraging or establishing standards which are consistent, and ensuring that
the framework is a living and growing artefact that will accept change as new
technologies emerge. If a universal framework is the goal, more collaborative work
would have to be done to further extend and improve on the existing standards to unify
the separate frameworks into a single agreed-upon framework. The framework
proposed demonstrates that a universal decoupled platform is possible that can handle
the performance requirements of a real-time multi-agent system where the agents are
loosely coupled to the environment.

6 Bibliography

1. Cohen, W., Koedinger, K. R., Li, N., Matusda, N.: Integrating representation
learning and skill learning in a human-like intelligent agent. Artificial Intelligence
219(1), 67-91 (2015)

2. Bellavista, P., Corradi, A., Stefanelli, C.: Middleware services for interoperability
in open mobile agent systems. Microprocessors and Microsystems 25(2), 75-83 (2001)

3. Catterson, S., McArthur, D., Davidson, E., M., V., Dimeas, A., Hatziargyriou, N.,
Ponci, F., Funabashi, T.: Multi-Agent Systems for Power Engineering Applications
Part II: Technologies, Standards, and Tools for Building Multi-agent Systems. IEEE
Transactions on Power Systems 22(4), 1753-1759 (2007)

4. Corradi, A., Cremonini, M., Stefanelli, C.: Locality Abstraction and Security
Models in a Mobile Agent Environment. In : Proceedings of the 7th Workshop on
Enabling Technologies: Infrastructure for Collaborative Enterprises, Washington, DC,
USA, pp.230-235 (1998)

5. Cucurull, J., Marti, R., Navarro-Arribas, G., Robles, S., Borrell, J.: Full mobile
agent interoperability in an IEEE-FIPA context. The Journal of Systems and Software
82(12), 1927-1940 (2009)

6. Farahvash, P., Boucher, T.: A multi-agent architecture for control of AGV systems.
Robotics and Computer-Integrated Manufacturing 20(6), 473-483 (2004)

7. Helleboogh, A., Vizzari, G., Uhrmacher, A., Michel, F.: Modeling Dynamic
Environments in Multi-agent Simulation. Autonomous Agents and Multi-Agent
Systems 14(1), 87-116 (2007)

8. Higashino, M., Takahashi, K., Kawamura, T., Sugahara, K.: Mobile Agent
Migration Based on Code Caching. In : 2012 26th International Conference on
Advanced Information Networking and Applications Workshops, Fukuoka, Japan,
pp.651-656 (2012)

9. Higashino, M., Osaki, S., Otagaki, S., Takahashi, K., Kawamura, T., Sugahara, K.:
Debugging Mobile Agent Systems., Vienna, Austria, pp.667-670 (2013)

10. Islam, N., Mallah, G., Shaikh, Z.: FIPA and MASIF Standards: A Comparative
Study and Strategies for Integration. Proceedings of the 2010 National Software
Engineering Conference 7, 1-6 (2010)

11. Kone, M., Shimazu, A., Nakajima, T.: The State of the Art in Agent
Communication. Knowledge and Information Systems 2(3), 259-284 (2000)

12. Milojicic, S., Breugst, M., Busse, I., Campbell, J., Covaci, S., Friedman, B., Kosaka,
K., Lange, D., Ono, K., Oshima, M., Tham, C., Virdhagriswaran, S.: MASIF: The
OMG Mobile Agent System Interoperability Facility. Personal and Ubiquitous
Computing - PUC 2(2), 50-67 (1998)

13. O'Reilly, G., Ehlers, E.: Synthesizing Stigmergy for Multi Agent Systems. In :
Agent Computing and Multi-Agent Systems: 9th Pacific Rim International Workshop
on Multi-Agents, PRIMA 2006, Guilin, China, August 7-8, 2006. Proceedings, Guilin,
China, pp.34-45 (2006)

14. O'Reilly, G.: Utilizing Multi-agent technology and swarm intelligence for automatic
frequency planning. (Accessed 2007) Available at: http://hdl.handle.net/10210/5670

15. Perdikeas, M., Chatzipapadopoulos, F., Venieris, I., Marino, G.: Mobile agent
standards and available platforms. Computer Networks 31(1), 1999-2016 (1999)

16. Schoeman, M., Cloete, E.: Architectural Components for the Efficient Design of
Mobile Agent Systems. In : Proceedings of the 2003 Annual Research Conference of
the South African Institute of Computer Scientists and Information Technologists on
Enablement Through Technology, Johannesburg, pp.48-58 (2003)

17. Stone, P., Veloso, M.: Multiagent Systems: A Survey from a Machine Learning
Perspective. Autonomous Robots 8(3), 345-383 (2000)

18. Tao, M., Ota, K., Dong, M.: Ontology-based data semantic management and
application in IoT- and cloud-enabled smart homes. Future Generation Computer
Systems 76(1), 528-539 (2017)

19. Tung Do, T., Faulkner, S., Kolp, M.: Organizational Multi-agent architectures for
Information Systems. In : International Conference on Enterprise Information Systems
- ICEIS , Angers, France , pp.89-96 (2003)

20. Urra, O., Ilarri, S., Trillo-Lado, R.: An approach driven by mobile agents for data
management in vehicular networks. Information Sciences 381(1), 55-77 (2017)

21. Valckenaers, P., Sauter, J., Sierra, C., Rodrigues-Aguilar, J.: Applications and
environments for multi-agent systems. Autonomous Agents and Multi-Agent Systems
14(1), 61-85 (2007)

22. Weyns, D., Omicini, A., Odell, J.: Environment as a first class abstraction in
multiagent systems. Autonomous Agents and Multi-Agent Systems 14(1), 5-30 (2007)

23. Weyns, D., Helleboogh, A., Holvoet, T., Schumacher, M.: The agent environment
in multi-agent systems: A middleware perspective. Multiagent and Grid Systems 5(1),
93-108 (2009)

24. Yang, J., Zhu, F., Yu, K., Bu, X.: Observer-based state estimation and unknown
input reconstruction for nonlinear complex dynamical systems. Communications in
Nonlinear Science and Numerical Simulation 20(3), 927-939 (2015)

25. Yang, Y., Sung, T.-W., Wu, C., Chen, H.-Y.: An agent-based workflow system for
enterprise based on FIPA-OS framework. Expert Systems with Applications 37(1),
393-400 (2010)

http://hdl.handle.net/10210/5670

	1 Introduction
	2 Literature Review
	2.1 Definitions
	2.2 Standards
	FIPA.
	MASIF.
	KQML.

	2.3 Existing Solutions

	3 Materials and Methods
	4 Results
	5 Conclusion
	6 Bibliography

