G. E. Hinton and R. R. Salakhutdinov, Reducing the dimensionality of data with neural networks, Science, vol.313, issue.5786, pp.504-507, 2006.

N. Zhang, S. Ding, J. Zhang, and Y. Xue, An overview on restricted boltzmann machines, Neurocomputing, vol.275, pp.1186-1199, 2018.

A. Courville, G. Desjardins, J. Bergstra, and Y. Bengio, The spike-and-slab RBM and extensions to discrete and sparse data distributions, vol.36, pp.1874-1887, 2014.

R. Mittelman, B. Kuipers, S. Savarese, and H. Lee, Structured recurrent temporal restricted boltzmann machines, Proceedings of International Conference on Machine Learning ICML'14, pp.1647-1655, 2014.

N. Zhang, S. Ding, J. Zhang, and Y. Xue, Research on Point-wise Gated Deep Networks. Applied Soft Computing, vol.52, pp.1210-1221, 2017.

T. D. Nguyen, T. Tran, D. Phung, and S. Venkatesh, Graph-induced restricted Boltzmann machines for document modelling, Information Sciences, vol.328, pp.60-75, 2016.

M. R. Amer, T. Shields, B. Siddiquie, A. Tamrakar, A. Divakaran et al., Deep multimodal fusion: A hybrid approach, International Journal of Computer Vision, vol.126, issue.2-4, pp.440-456, 2018.

R. R. Salakhutdinov and G. E. Hinton, Deep Boltzmann Machines, Proceedings of International Conference on Artificial Intelligence and Statistics AISTATS'09, pp.448-455, 2009.

J. Zhao, X. Xie, X. Xu, and S. Sun, Multi-view learning overview: Recent progress and new challenges. Information Fusion, vol.38, pp.43-54, 2017.

Q. Liu and S. Sun, Multi-view regularized Gaussian processes, Proceedings of Pacific-Asia Conference on Knowledge Discovery and Data Mining PAKDD'17, pp.655-667, 2017.

G. Chao and S. Sun, Consensus and complementarity based maximum entropy discrimination for multi-view classification, Information Sciences, vol.367, pp.296-310, 2016.

S. Ravanbakhsh, B. Póczos, J. Schneider, D. Schuurmans, and R. Greiner, Stochastic neural net-works with monotonic activation functions, Proceedings of International Conference on Artificial Intelligence and Statistics AISTATS'16, pp.809-818, 2016.

G. E. Hinton, Training products of experts by minimizing contrastive divergence, Neural Computation, vol.14, issue.8, pp.1711-1800, 2002.

S. Ding, X. Zhang, Y. An, and Y. Xue, Weighted linear loss multiple birth support vector machine based on information granulation for multi-class classification, Pattern Recognition, vol.67, pp.32-46, 2017.