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ABSTRACT. Deep learning approaches have been used successfully in computer 

vision, natural language processing and speech processing. However, the num-

ber of studies that employ deep learning on brain-computer interface (BCI) 

based on electroencephalography (EEG) is very limited. In this paper, we pre-

sent a deep learning approach for motor imagery (MI) EEG signal classifica-

tion. We perform spatial projection using common spatial pattern (CSP) for the 

EEG signal and then temporal projection is applied to the spatially filtered sig-

nal. The signal is next fed to a single-layer neural network for classification. We 

apply backpropagation (BP) algorithm to fine-tune the parameters of the ap-

proach. The effectiveness of the proposed approach has been evaluated using 

datasets of BCI competition III and BCI competition IV.  

KEYWORDS: brain-computer interface (BCI), electroencephalography (EEG), 

motor imagery (MI), common spatial pattern (CSP), backpropagation (BP) 

1 Introduction 

Brain-computer interface (BCI) is a communication system that is established be-

tween the human brain and computers or external devices without relying on the regu-

lar brain peripheral nerve and muscle systems [1]. BCI system acquire human brain 

EEG signals, extract features, classify EEG and translate EEG into machine-readable 

control commands. The main goal of BCI system is to strengthen the ability of disa-

bled persons affected by a number of motor disabilities. The application of BCI in the 

medical field mainly includes sensory recovery, cognitive recovery, rehabilitation 

treatment, and brain-control wheelchairs [2]. In non-medical areas, BCI can be ap-

plied to new types of entertainment games, car driving, robot replacements, lie detec-

tors [3], etc. In addition, in the field of aviation and military industry, BCI also has a 

wide range of applications.  

mailto:wenchao_h@outlook.com
mailto:fuwenli@gxu.edu.cn


MI-BCI is the BCI application based on MI-EEG, and it is one of the main direc-

tions of brain-computer interface research. Many successful MI-BCI relies on subjects 

learning to control specific EEG rhythms that manifest as EEG potentials oscillating 

at a particular frequency. The EEG rhythms related to motor imagery tasks consist of 

mu (8-13 Hz) rhythm and beta (13-30 Hz) rhythm. The energy in mu band observed 

in motor cortex of the brain decreases by performing an MI task [4]. This decrease is 

called event related desynchronization (ERD). An MI task also causes an energy in-

crease in the beta band that is called event related synchronization (ERS) [5]. For 

different MI tasks, the brain motor cortex produces discriminative ERD/ERS. Fea-

tures are extracted by analysing ERD/ERS, and then a classification algorithm is 

adopted to construct a MI-BCI. Two main techniques for MI-EEG analysis are feature 

extraction and classification algorithms. Several feature extraction techniques such as 

power spectral density (PSD), common spatial pattern (CSP) [6-9], autoregressive 

(AR) model, adoptive autoregressive (AAR) model, independent components analysis 

(ICA) and wavelet transform [10,11] have been studied. Classifiers such as support 

vector machine (SVM) [12], k-nearest neighbors (KNN) [13,14], random forest (RF) 

[15], linear discriminant analysis (LDA) [16], etc. have been explored for classifica-

tion of MI-EEG signals. 

In recent years, deep learning’s revolutionary advances in audio and visual signals 

recognition have gained significant attentions. Some recent deep learning based EEG 

classification approaches have enhanced the recognition accuracy. In a study by An et 

al, a deep belief network (DBN) model was applied for two class MI classification 

and DBN was shown more successful than the SVM method [17]. Yousef et al ap-

plied convolutional neural networks (CNN) and stacked autoencoders (SAE) to classi-

fy EEG Motor Imagery signals [18,19]. Schirrmeister proposed a convolutional neural 

network (deep ConvNets) for end to end EEG analysis. Their study shows how to 

design and train ConvNets to decode task-related information from the raw EEG 

without handcrafted features and highlights the potential of deep ConvNets combined 

with advanced visualization techniques for EEG based brain mapping [20].  

In this paper, we propose a framework based on CSP and backpropagation algo-

rithm for MI-EEG analysis. In order to evaluate the proposed framework, we trained 

and tested with BCI competition II dataset III and BCI competition IV dataset 2a. The 

remainder of this paper is organized as follows. Section 2 provides a description of 

the proposed framework. Section 3 describes the experimental studies and results on 

the evaluation data of the BCI competition II datasets III and BCI competition IV 

datasets 2a. Finally, section 4 concludes this paper with the results. 

2 Methods 

The structure of the proposed framework is shown in Fig.1. The proposed framework 

consists of 4 stages. The first stage is a band-pass filter for raw EEG data. The second 

stage performs spatial filtering using CSP algorithm. The third stage consists of the 

temporal projection of the spatial filtered signal. The last stage is a single-layer neural 



network that is implemented as a classification layer. The following sections explain 

the different stages of the proposed framework in detail.  

2.1 Band-pass filtering 

As described in section 1, there are ERS/ERD when human perform MI tasks. In or-

der to extract the EEG signals in mu band and beta band, the raw EEG data is first 

filtered by a band-pass filter that covers 8-30 Hz. 

 

Fig. 1. Diagram of the proposed framework 

2.2 CSP algorithm 

The CSP algorithm is highly successful in calculating spatial filters for detecting 

ERD/ERS. The main idea is to use a linear transform to project the multi-channel 

EEG data into low-dimensional spatial subspace with a projection matrix, of which 

each row consists of weights for channels [21]. This transformation can maximize the 

variance of two-class signal matrices. The CSP algorithm perform spatial filtering 

using 

 
T

i csp iZ W E=  (1) 

where 
iE  is an n t  matrix representing the raw EEG measurement data of the i th 

trial, n  is the number of channels, t  is the number of measurement samples per 

channel. cspW  denotes the CSP projection matrix, T denotes transpose operator.  Z

denotes the spatially filtered signal. The CSP matrix can be computed by solving the 

eigenvalue decomposition problem 

 1 1 2( )csp cspS W S S W D= +  (2) 



where 
1S and 

2S  are estimates of the covariance matrices of the band-pass filtered 

EEG measurements of the respective motor imagery action, D  is the diagonal matrix 

that contains the eigenvalues of 
1S . 

However, only a small number m of the spatial filtered signal is generally used as 

features. We perform another transform to get the spatially filtered signal. It is given 

by  

 
T

i csp iZ W E=  (3) 

where 
cspW represents the first m and the last m columns of cspW , the spatial fil-

tered signal Z is a 2m t  matrix. 

2.3 Joint optimization using backpropagation 

Mathematically, the 3th stage and the 4th stage can be described as follows. Given the 

spatial filtered signal Z , the temporal projection matrix V , the classifier weights 

cW and bias b , we have 

 
2log( )T

cS W Z V b= +  (4) 

where S denotes the input that is a vector containing class scores and will be plugged 

into an activation function. The output of the framework is given by 

 ( )y f S=  (5) 

where y is a vector of probability for the classes and ( )f  is the activation function 

that is the softmax function. The softmax function (sofmax regression) is a generaliza-

tion of logistic regression to the case where we want to handle multiple classes. The 

softmax output is given by  
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where 
kS  is an element for a certain class k in all j classes. The cost function is the 

cross-entropy cost function, which is  

 log( )
kyE p= −  (7) 



The free parameters of the 3th stage and the 4th stage are the temporal projection 

matrix V , the classifier weights 
cW and the bias b . The parameters are learned by 

using back-propagation algorithm. In this method, the labeled training set is fed to the 

network and the error E (cost function) is computed. Then the model parameter can 

be updated using gradient descent method. The error can be minimized by changing 

network parameters as shown as follows 
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where   denotes the learning rate of the algorithm. V is initialized to a matrix of all 

ones, 
cW is randomly initialized from a Gaussian distribution. Finally, the trained 

framework is used for classification of the new samples in the test set.  

3 Experiments with BCI competition datasets 

In this section, we apply the proposed framework to the BCI competition datasets, and 

the results of the proposed approach on these datasets are presented. 

3.1 BCI competition II, dataset III 

The first dataset is dataset III from BCI competition II. The dataset includes MI task 

experiments for right hand and left hand movements. EEG signals are recorded at C3, 

Cz and C4 channels. During acquisition of the EEG signals, at t = 2s an acoustic 

stimulus indicating the beginning of the trial was used and a cross ‘+’ was displayed 

for 1s. Then, at t = 3s, the subject was asked to perform the related MI task by dis-

playing an arrow (left or right). There were 280 trials in the dataset, 140 trials for 

training and another 140 trials for test. 

For each EEG trial, we extracted the time interval between 0.5s to 3.5s after the 

cue was displayed. To evaluate our method on the dataset, we used the network 

shown in Fig.1 and described in section 2, which consists of a band-pass filter,  CSP 

spatial projection, temporal projection and a single-layer neural network. The frame-

work was trained with 140 trials in the training set and tested on 140 trials in the test 

set. Stochastic gradient descent (SGD) was used to update the parameters and mini-

mize the error E . For each training epoch, the mini-batch was set to be 1/2 of the 

training data randomly.   



The results of BCI competition II dataset III are shown in table 1. When learning 

rate   was fixed to be 0.03, we obtained the best results. The accuracy performance 

of our method was obtained as 90.0%. The accuracy of the winner algorithm of the 

competition is 89.3%. We compared our results to some study (CNN and CNN-SAE) 

where deep learning network is used [18,19]. The results of CNN and CNN-SAE are 

90.0% and 89.3% respectively. The CSP-LR method is the normal method without 

using deep learning methods for MI-EEG analysis, which use CSP for feature extrac-

tion and logistic regression algorithm for classification. We also compared our results 

to the CSP-LR method. The CSP-LR method got an accuracy of 88.9%. The kappa 

values of those methods are also in the table 1. The kappa value is a measure for clas-

sification performance removing the effect of accuracy of random classification. Kap-

pa is calculated as 

 
1

1 1

acc N
kappa

N

−
=

−
 (11) 

where N denotes the number of classes. In this dataset N is 2. As described in table 

1, the accuracy of the proposed method is equal to CNN-SAE, and is better than the 

winner of competition, CNN method and CSP-LR. 

Table 1. The accuracy (%) and kappa results of BCI competition II dataset III 

Method Proposed 

method 

Winner CNN CNN-SAE CSP-LR 

Accuracy % 90.0 89.3 89.3 90.0 88.6 

Kappa 0.800 0.786 0.786 0.800 0.772 

 

3.2 BCI competition IV, dataset 2a 

BCI competition IV dataset 2a comprised 4 classes of motor imagery EEG measure-

ments from 9 subjects, namely, left hand, right hand, feet, and tongue. Two sessions, 

one for training and the other for evaluation, were recorded from each subject. Each 

session comprised 288 trials of data recorded with 22 EEG channels and 3 monopolar 

electrooculogram (EOG) channels. Each trial starts with a short acoustic stimulus and 

a fixation cross. Then, at t = 3s an arrow indicates the MI task. The arrow is displayed 

for 1.25s. Then the subjects have 4 s to imagine the task.  

There are 4 classes in dataset 2a that is different from BCI competition II dataset 

III. When performing the spatial projection, we use OVR-CSP [22] to get the spatial 

filtered signals. The architecture of framework described in section 2 can be changed 

as Fig.2. The number of temporal projection matrices needed to be fine-tuned increase 

to 4. The 4 temporal projection matrices are initialized to matrices of all ones and will 

be updated together using back propagation algorithm. 



 

Fig. 2. Diagram of the proposed framework based on OVR-CSP 

For each EEG trial, we extracted the time interval between 1s to 5s after the cue was 

displayed. The framework was trained with training data and tested on test data. SGD 

was used to update the parameters. The Mini-batch was set to be 1/4 of the training 

data randomly. 

The accuracy results of the proposed method and CSP-LR are shown in table 2. 

Kappa values of the proposed method and CSP-LR are compared to FBCSP (winner 

algorithm of competition) [9] in table 3. With the deep learning method, the proposed 

method obtained higher accuracies and better kappa values than CSP-LR method for 

all subjects. For subject 1, subject 2, subject 3, subject 8 and subject 9, our approach 

has better kappa values than FBCSP. For subject 4, subject 5, subject 6 and subject 7, 

our approach has worse kappa values. The average kappa value of our approach is 

0.583, which is higher than FBCSP (0.569). 

Table 2. The accuracy (%) results for the proposed method and CSP-LR 

 Accuracy % 

Subject Proposed method CSP-LR 

1 78.1 73.3 

2 58.4 50.7 

3 81.2 59.0 

4 60.1 45.8 

5 53.0 47.2 

6 42.3 37.2 

7 80.0 40.3 

8 84.7 64.3 

9 81.2 64.9 

Average      68.7      53.6 

 



Table 3. The kappa results for the proposed method, FBCSP and CSP-LR 

  Kappa 

Subject Proposed method FBCSP CSP-LR 

1 0.708 0.676 0.644 

2 0.445 0.417 0.343 

3 0.749 0.745 0.453 

4 0.468 0.481 0.277 

5 0.373 0.398 0.296 

6 0.231 0.273 0.163 

7 0.733 0.773 0.204 

8 0.796 0.755 0.524 

9 0.749 0.606 0.532 

Average      0.583      0.569      0.382 

 

4 Conclusion 

In this study, we propose a deep learning approach for MI-EEG analysis. We de-

signed a framework by combining backpropagation algorithm and CSP. We use a 

band-pass filter for processing the raw EEG data. And CSP algorithm is used for spa-

tial filtering. Then we perform temporal projection and obtain the features which are 

fed to a single-layer neural network for classification. The free parameters of the 

framework can be fine-tuned by applying the backpropagation algorithm for the best 

classification accuracy. 

We apply the proposed framework to the BCI competition datasets. Dataset III 

from BCI competition II and dataset 2a from BCI competition IV were used in this 

study. The accuracy result of our method on dataset III is 90.0% that is equal to CNN-

SAE method. And it is higher than the winner algorithm of competition II and CNN 

method. On dataset 2a from BCI competition IV, our method obtained average kappa 

value of 0.583 which is better than FBCSP. Furthermore, on both datasets our method 

outperformed CSP-LR method that is not using deep learning methods. 

Though deep learning methods have achieved great development in computer vi-

sion, natural language processing and speech processing, its application in EEG-based 

BCI is still rare. Our results show that deep learning methods have great potential to 

be a powerful tool for EEG analysis and EEG-BCI. We believe that the number of 

further BCI studies using deep learning methods will increase rapidly. 
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