C. L. Vaughan, B. L. Davis, and J. C. O'connor, Dynamics of Human Gait, 1999.

V. Santilli, M. A. Frascarelli, M. Paoloni, F. Frascarelli, F. Camerota et al., Peroneus Longus Muscle Activation Pattern During Gait Cycle in Athletes Affected by Functional Ankle Instability: A Surface Electromyographic Study, American Journal of Sports Medicine, vol.33, pp.1183-1187, 2005.

U. Bogataj, N. Gros, M. Kljaji?, R. A?imovi?, and M. Malezic, The Rehabilitation of Gait in Patients with Hemiplegia: A Comparison between Conventional Therapy and Multichannel Functional Electrical Stimulation Therapy, Physical Therapy, vol.75, pp.490-502, 1995.

D. J. Fish and J. Nielsen, Clinical Assessment of Human Gait. Journal of Prosthetics & Orthotics, vol.5, pp.39-48, 1993.

W. Tao, T. Liu, R. Zheng, and H. Feng, Gait Analysis Using Wearable Sensors, vol.12, pp.2255-2283, 2012.

H. Jy, Clinical Applications of Surface Electromyography in Neuromuscular Disorders, Clinical Neurophysiology, vol.35, pp.59-71, 2005.

P. Wang and K. H. Low, Qualitative Evaluations of Gait Rehabilitation via EMG Muscle Activation Pattern: Repetition, Symmetry, and Smoothness, IEEE International Conference on Robotics and Biomimetics, pp.215-220, 2009.

R. Boostani and M. H. Moradi, Evaluation of the Forearm EMG Signal Features for the Control of A Prosthetic Hand, Physiological Measurement, vol.24, pp.309-319, 2003.

M. Zecca, S. Micera, M. C. Carrozza, and P. Dario, Control of Multifunctional Prosthetic Hands by Processing the Electromyographic Signal, Critical Reviews in Biomedical Engeneering, vol.30, pp.459-485, 2002.

N. Burhan, M. A. Kasno, and R. Ghazali, Feature Extraction of Surface Electromyography (sEMG) and Signal Processing Technique in Wavelet Transform: A Review, IEEE International Conference on Automatic Control and Intelligent Systems, pp.141-146, 2017.

A. Oskoei, M. Hu, and H. , Myoelectric Control Systems-A Survey, Biomedical Signal Processing and Control, vol.2, pp.275-294, 2007.

J. Too, A. R. Abdullah, T. N. Zawawi, N. M. Saad, and H. Musa, Classification of EMG Signal Based on Time Domain and Frequency Domain Features, International Journal of Human and Technology Interaction, vol.1, pp.25-29, 2017.

M. A. Oskoei and H. Hu, Support Vector Machine-based Classification Scheme for Myoelectric Control Applied to Upper Limb, IEEE Transactions on Biomedical Engineering, vol.55, pp.1956-1965, 2008.

C. Alt?n and O. Er, Comparison of Different Time and Frequency Domain Feature Extraction Methods on Elbow Gesture's EMG, European Journal of Interdisciplinary Studies, vol.5, pp.35-44, 2017.

A. Phinyomark, F. Quaine, S. Charbonnier, C. Serviere, F. Tarpin-bernard et al., EMG Feature Evaluation for Improving Myoelectric Pattern Recognition Robustness, Expert Systems with Applications, vol.40, pp.4832-4840, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00831643

J. Wang, F. Gao, S. Yao, and Z. Luo, Non-Uniform Characteristics and Its Recognition Effects for Walking Gait Based on sEMG, Chinese Journal of Sensors & Actuators, 2016.

A. Phinyomark, P. Phukpattaranont, and C. Limsakul, Feature Reduction and Selection for EMG Signal Classification, Expert Systems with Applications, vol.38, pp.7420-7431, 2011.

R. Kohavi, A Study of Cross-validation and Bootstrap for Accuracy Estimation and Model Selection, International Joint Conference on Artificial Intelligence, pp.1137-1143, 1995.

B. Hudgins, P. Parker, and R. N. Scott, A New Strategy for Multifunction Myoelectric Control, IEEE Transactions on Biomedical Engineering, vol.40, pp.82-94, 1993.

F. R. Gao, J. J. Wang, X. G. Xi, Q. S. She, and Z. Z. Luo, Gait Recognition for Lower Extremity Electromyographic Signals Based on PSO-SVM Method, Journal of Electronics & Information Technology, vol.37, pp.1154-1159, 2015.