R. A. Adams and J. J. Fournier, Sobolev spaces, 2003.

I. Babu?ka and S. A. Sauter, Is the pollution effect of the FEM avoidable for the Helmholtz equation considering high wave numbers?, SIAM J. Numer. Anal, vol.34, issue.6, pp.2392-2423, 1997.

T. Chaumont-frelet and S. Nicaise, Wavenumber explicit convergence analysis for finite element discretizations of general wave propagation problems, ESAIM Math. Model. Numer. Anal, vol.5, 2018.

T. Chaumont-frelet, S. Nicaise, and D. Pardo, Finite element approximation of electromagnetic fields using nonfitting meshes for Geophysics, SIAM J. Numer. Anal, vol.56, issue.4, pp.2288-2321, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01706452

P. G. Ciarlet, The finite element method for elliptic problems, 2002.

D. Colton and R. Kress, Inverse acoustic and electromagnetic scattering theory, Integral equation methods in scattering theory, vol.8, 2012.

M. Costabel, A remark on the regularity of solutions of Maxwell's equations on Lipschitz domains, Math. Method Appl. Sci, vol.12, pp.365-368, 1990.

M. Dauge, Elliptic bounday balue problems on corner domains, 1988.

A. Bonnet-ben-dhia, E. Duclairoir, G. Legendre, and J. Mercier, Time-harmonic acoustic propagation in the presence of a shear flow, J. Comp. Appl. Math, vol.204, pp.428-439, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00876232

J. Diaz, Approches analytiques et numériques de problèmes de transmission en propagation dondes en rgime transitoire. application au couplage fluide-structure et aux méthodes de couches parfaitement adaptées, vol.6, 2005.

B. Engquist and A. Majda, Absorbing boundary conditions for the numerical simulation of waves, Math. Comp, vol.31, issue.139, pp.629-651, 1977.

A. Ern and J. L. Guermond, Mollification in strongly Lipshitz domains with application to continuous and discrete De Rham complexes, Comput. Meth. Appl. Math, vol.16, issue.1, pp.918-932, 2016.

L. Gastaldi, Mixed finite elemnet methods in fluid structure systems, Numer. Math, vol.74, pp.153-176, 1996.

V. Girault and P. A. Raviart, Finite element methods for Navier-Stokes equations, 1986.

P. Grisvard, Elliptic problems in nonsmooth domains, 1985.

U. Hetmaniuk, Stability estimates for a class of Helmholtz problems, Commun. Math. Sci, vol.5, issue.3, pp.665-678, 2007.

F. Ihlenburg and I. Babu?ka, Finite element solution of the Helmholtz equation with high wave number. Part I: The h-version of the FEM, Comp. Math. Appl, vol.30, issue.9, pp.9-37, 1995.

J. M. Melenk and S. Sauter, Wavenumber explicit convergence analysis for Galerkin discretizations of the Helmholtz equation, SIAM J. Numer. Anal, vol.49, issue.3, pp.1210-1243, 2011.

P. Monk, Finite element methods for Maxwell's equations, Oxford science publications, 2003.

J. C. Nédélec, Mixed finite elements in R 3, Numer. Math, vol.35, pp.315-341, 1980.

L. E. Payne and H. F. Weinberger, An optimal Poincaré inequality for convex domains, Arch. Ration. Mech. Anal, vol.5, issue.1, pp.286-292, 1960.

P. A. Raviart and J. M. Thomas, A mixed finite element method for 2nd order elliptic problems, Mathematical Aspect of Finite Element Methods, 1977.

S. Retka and S. Marburg, An infinite element for the solution of Galbrun equation, Z. Angew. Math. Mech, vol.93, issue.2-3, pp.154-162, 2013.

A. H. Schatz, An observation concerning Ritz-Galerkin methods with indefinite bilinear forms, Math. Comp, vol.28, issue.128, pp.959-962, 1974.

J. Schoberl, Commuting quasi-interpolation operators for mixed finite elements, 2001.

I. Singer and E. Turkel, High-order finite difference methods for the Helmholtz equation, Comput. Meth. Appl. Mech. Engin, vol.163, pp.343-358, 1998.

L. Tartar, An introduction to Sobolev spaces and interpolation spaces, 2007.

X. Wang and K. Bathe, On mixed elements for acoustic fluid-structure interactions, Math. Models Meth. Appl. Sci, vol.7, issue.3, pp.329-343, 1997.