R. Adams and J. Fournier, Sobolev spaces, 2003.

M. Ainsworth, Discrete dispersion relation for hp-version finite element approximation at high wave number, SIAM J. Numer. Anal, vol.42, issue.2, pp.553-575, 2004.

R. Arcangeli and J. L. Gout, Sur l'évaluation de l'erreur d'interpolation de lagrange dans un ouvert de R n, R.A.I.R.O. Analyse numérique, vol.10, issue.3, pp.5-27, 1976.

I. Babu?ka, F. Ihlenburg, T. Strouboulis, and S. K. Gangaraj, A posteriori error estimation for finite element solutions of Helmholtz equation. Part I: the quality of local indicators and estimators, Int. J. Numer. Meth. Engrg, vol.40, pp.3883-3900, 1997.

H. Bériot, A. Prinn, and G. Gabard, Efficient implementation of high-order finite elements for Helmholtz problems, Int. J. Numer. Meth. Engng, vol.106, pp.213-240, 2016.

D. Braess, V. Pillwein, and J. Schöberl, Equilibrated residual error estimates are p-robust, Comput. Meth. Appl. Mech. Engrg, vol.198, pp.1189-1197, 2009.

E. Cancès, G. Dusson, Y. Maday, B. Stamm, and M. Vohralík, Guaranteed and robust a posteriori bounds for Laplace eigenvalues and eigenvectors: conforming approximations, SIAM J. Numer. Anal, vol.55, issue.5, pp.2228-2254, 2017.

C. Carstensen and J. Gedicke, Guaranteed lower bounds for eigenvalues, Math. Comp, vol.83, issue.290, pp.2605-2629, 2014.

C. Carstensen, J. Gedicke, and D. Rim, Explicit error estimates for Courant, Crouzeix-Raviart and Raviart-Thomas finite element methods, J. Comp. Math, vol.30, issue.4, pp.337-353, 2012.

C. Carstensen and J. Storn, Asymptotic exactness of the least-squares finite element residual, SIAM J. Numer. Anal, vol.56, issue.4, 2008.

S. N. Chandler-wilde, E. A. Spence, A. Gibbs, and V. P. Smyshlyaev, High-frequency bounds for the Helmholtz equation under parabolic trapping and applications in numerical analysis, 2017.

T. Chaumont-frelet and S. Nicaise, Wavenumber explicit convergence analysis for finite element discretizations of general wave propagation problems, ESAIM Math. Model. Numer. Anal, vol.5, 2018.

T. Chaumont-frelet, S. Nicaise, and J. Tomezyk, Uniform a priori estimates for elliptic problems with impedance boundary conditions, submitted, p.1887269, 2018.

G. Chavent, G. Papanicolaou, P. Sacks, and W. W. Symes, Inverse problems in wave propagation, 2012.

I. Cheddadi, R. Fu?ík, M. I. Prieto, and M. Vohralík, Guaranteed and robust a posteriori error estimates for singularly perturbed reaction-diffusion problems, ESAIM Math. Model. Numer. Anal, vol.43, pp.867-888, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00271527

P. G. Ciarlet, The finite element method for elliptic problems, 2002.

D. Colton and R. Kress, Inverse acoustic and electromagnetic scattering theory, 2012.

S. Congreve, J. Gedicke, and I. Perugia, Robust adaptive hp discontinuous Galerkin finite element methods for the Helmholtz equation, SIAM J. Sci. Comput, vol.41, issue.2, pp.1121-1147, 2019.

M. Costabel, A remark on the regularity of solutions to Maxwell's equations in Lipschitz domains, Math. Meth. Appl. Sci, vol.12, pp.365-368, 1990.

V. Darrigrand, D. Pardo, and I. Muga, Goal-oriented adaptivity using unconventional error representations for the 1D Helmholtz equation, Comput. Math. Appl, vol.69, pp.964-979, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01140748

R. B. Davidson, Computational electromagnetics for RF and microwave engineering, 2010.

L. Demkowicz, Computing with hp-adaptive finite elements, vol.1, 2006.

. Ph, B. Destuynder, and . Métivet, Explicit error bounds in a conforming finite element method, Math. Comp, vol.68, issue.228, pp.1379-1396, 1999.

C. Dobrzynski, MMG3D: User guide, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00681813

V. Dolej?í, A. Ern, and M. Vohralík, hp-adaptation driven by polynomial-degree-robust a posteriori error estimates for elliptic problems, SIAM J. Sci. Comput, vol.38, issue.5, pp.3220-3246, 2016.

W. Dörfler and S. Sauter, A posteriori error estimation for highly indefinite Helmholtz problems, Comput. Meth. Appl. Math, vol.13, pp.333-347, 2013.

A. Ern and M. Vohralík, Polynomial-degree-robust a posteriori estimates in a unified setting for conforming, nonconforming, discontinuous Galerkin, and mixed discretizations, SIAM J. Numer. Anal, vol.53, issue.2, 2015.
URL : https://hal.archives-ouvertes.fr/hal-00921583

V. Girault and P. A. Raviart, Finite element methods for Navier-Stokes equations: theory and algorithms, 1986.

P. Grisvard, Singularities in boundary value problems, 1992.

U. Hetmaniuk, Stability estimates for a class of Helmholtz problems, Commun. Math. Sci, vol.5, issue.3, pp.665-678, 2007.

R. Hiptmair and C. Pechstein, Discrete regular decomposition of tetrahedral discrete 1-forms, 2017.

S. Irimie, . Ph, and . Bouillard, A residual a posteriori error estimator for the finite element solution of the Helmholtz equation, Comput. Meth. Appl. Mech. Engrg, vol.190, pp.4027-4042, 2001.

K. Kobayashi and T. Tsuchiya, A Babu?ka-Aziz proof of the circumradius condition, Japan J. Indust. Appl. Math, vol.31, pp.193-210, 2014.

P. Ladevèze, Comparaison de modèles de milieux continus, 1975.

X. Liu, A framework of verified eigenvalue bounds for self-adjoint differential operators, Appl. Math. Comput, vol.267, pp.341-355, 2015.

X. Liu and F. Kikuchi, Analysis and estimation of error constants for P 0 and P 1 interpolations over triangular finite elements, J. Math. Sci. Univ. Tokyo, vol.17, issue.1, pp.27-78, 2010.

S. Marburg, Developments in structural-acoustic optimization for passive noise control, Arch. Comput. Meth. Engng, vol.9, issue.4, pp.291-370, 2002.

J. M. Melenk, 42. , hp-interpolation of nonsmooth functions and an aplication to hp-a posteriori error estimation, SIAM J. Numer. Anal, vol.43, issue.1, pp.127-155, 1995.

J. M. Melenk and S. Sauter, Wavenumber explicit convergence analysis for Galerkin discretizations of the Helmholtz equation, SIAM J. Numer. Anal, vol.49, issue.3, pp.1210-1243, 2011.

J. C. Nédélec, Mixed finite elements in R 3, Numer. Math, vol.35, pp.315-341, 1980.

J. Peraire and A. T. Patera, Asymptotic a posteriori finite element bounds for the outputs of noncoercive problems: the Helmholtz and Burgers equations, Comput. Meth. Appl. Mech. Engrg, vol.171, pp.77-86, 1999.

W. Prager and J. L. Synge, Approximations in elasticity based on the concept of function space, Quart. Appl. Math, vol.5, issue.3, pp.241-269, 1947.

P. A. Raviart and J. M. Thomas, A mixed finite element method for 2nd order elliptic problems, Mathematical Aspect of Finite Element Methods, 1977.

J. Sarrate, J. Peraire, and A. Patera, A posteriori finite element error bounds for non-linear outputs of the Helmholtz equation, Int. J. Numer. Meth. Fluids, vol.31, pp.17-36, 1999.

S. Sauter and J. Zech, A posteriori error estimation of hp-dG finite element methods for highly indefinite Helmholtz problems, SIAM J. Numer. Anal, vol.53, issue.5, pp.2414-2440, 2015.

E. A. Spence, Wavenumber-explicit bounds in time-harmonic acoustic scattering, SIAM J. Math. Anal, vol.46, issue.4, pp.2987-3024, 2014.

J. R. Stewart and T. J. Hughes, Explicit residual-based a posteriori error estimation for finite element discretizations of the Helmholtz equation: computation of the constant and new measures of error estimator quality, Comput. Meth. Appl. Mech. Engrg, vol.131, pp.1-26, 1996.

M. Taus, L. Zepeda-nunez, R. Hewett, and L. Demanet, Pollution-free and fast hybridizable discontinuous Galerkin solvers for the high-frequency Helmholtz equation, Proc. SEG annual meeting, 2017.

A. Veeser and R. Verfürth, Poincaré constants for finite element stars, IMA J. Numer. Anal, vol.32, issue.1, pp.30-47, 2012.

R. Verfürth, A posteriori error estimation techniques for finite element methods, Numerical Mathematics and Scientific Computation, 2013.

O. C. Zienkiewicz and J. Z. Zhu, A simple error estimator and adaptive procedure for practical engineering analysis, Internat. J. Numer. Methods Engrg, vol.24, issue.2, pp.337-357, 1987.