
HAL Id: hal-02238256
https://inria.hal.science/hal-02238256

Submitted on 1 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

When the Power of the Crowd Meets the Intelligence of
the Middleware : The Mobile Phone Sensing Case

Yifan Du, Valerie Issarny, Francoise Sailhan

To cite this version:
Yifan Du, Valerie Issarny, Francoise Sailhan. When the Power of the Crowd Meets the Intelligence of
the Middleware : The Mobile Phone Sensing Case. Operating Systems Review, 2019, 53 (1), pp.85-90.
�10.1145/3352020.3352033�. �hal-02238256�

https://inria.hal.science/hal-02238256
https://hal.archives-ouvertes.fr


When the Power of the Crowd Meets the Intelligence of the Middleware:
The Mobile Phone Sensing Case

Yifan Du1, Valérie Issarny1, and Françoise Sailhan2

1Inria Paris, France, {firstname.lastname}@inria.fr
2CNAM Paris, France, {firstname.lastname}@cnam.fr

Abstract
The data gluttony of AI is well known: Data fuels the artifi-
cial intelligence. Technologies that help to gather the needed
data are then essential, among which the IoT. However, the
deployment of IoT solutions raises significant challenges, es-
pecially regarding the resource and financial costs at stake. It
is our view that mobile crowdsensing, aka phone sensing, has
a major role to play because it potentially contributes massive
data at a relatively low cost. Still, crowdsensing is useless,
and even harmful, if the contributed data are not properly
analyzed. This paper surveys our work on the development
of systems facing this challenge, which also illustrates the
virtuous circles of AI. We specifically focus on how intelli-
gent crowdsensing middleware leverages on-device machine
learning to enhance the reported physical observations.
Keywords: Crowdsensing, Middleware, Online learning.

1 Crowdsensing, IoT, AI & Middleware

Crowdsensing aka Mobile Phone Sensing (MPS) is a promis-
ing approach to observe real-world phenomena at a very large
scale. The many MPS applications that have emerged over
the years illustrate well the added value: micro-blogging [25],
mobile social networking [16], quantified selves [23], urban
tomography [1], environmental monitoring [26], transporta-
tion [4], or dynamic indoor map construction [6] all benefit
from MPS. It is our perspective that MPS has been and will
continue generating drastic changes in the way we approach
science in the years to come. The development of citizen sci-
ence illustrates well the trend [18]. The AI dependence on big
data is another reason why MPS is likely to continue to grow:
MPS has the potential to contribute the needed massive data
at a relatively low cost.

In general, MPS holds the promise of enhancing our knowl-
edge of the physical world. That is, MPS supports the IoT
vision with the additional benefit that it does not require
the costly deployment of dedicated sensors. For illustra-
tion, we refer to our background experience with the Am-
biciti/SoundCity solution (http://ambiciti.io/), which

features a MPS application and cloud-based platform for
monitoring the individual and collective exposure to environ-
mental pollution, and particularly noise [8]. The development
of Ambiciti started in 2014 to result in the first launch of the
application with the support of the city of Paris in summer
20151. We have then shown that the assimilation of MPS
observations allows generating street-level noise pollution
maps that enhance traditional simulated maps [20], provided
the calibration of the application [21].

Nonetheless, we need to admit that the above is one side of
the coin, which is, the much positive one. MPS comes with
hurdles too, and the underlying system must beat them. The
major challenge facing effective crowdsensing is certainly be-
ing able to collect data of sufficient quality, starting with the
ability to characterize the provided observations. Still refer-
ring to our experience with the Ambiciti solution, the analyses
of the noise data collected in Paris over a one-year period in
2015-16 [9], and then in 2017 [11], have both highlighted that
less than 10% of the observations actually contribute to the as-
similation of relevant knowledge. Of course, one may consider
that 10% of huge is still a valuable source of data. However,
this incurs a significant waste of computing and networking
resources, from device to cloud, which is not sustainable. And,
in the –not so exceptional– case where the MPS application
attracts a few committed users, then the knowledge from the
collected observations is not worth the spending. Participa-
tory sensing allows enhancing the data quality [10] but results
in much less data than the opportunistic approach.

Following, we posit the need for developing intelligent
middleware to support opportunistic MPS. The intelligent
middleware that collects the sensing data on the device must
act beyond merely interfacing with the embedded/connected
sensors to transfer the data to the cloud. The middleware
must as far as possible enhance locally the quality of the
observations, from calibration to contextualization. While cal-
ibration may be achieved through regression analysis [19],
contextualization requires prediction. The intelligent mid-

1https://www.inria.fr/en/centre/paris/news/
launch-of-soundcity-mobile-application

1

http://ambiciti.io/
https://www.inria.fr/en/centre/paris/news/launch-of-soundcity-mobile-application
https://www.inria.fr/en/centre/paris/news/launch-of-soundcity-mobile-application


dleware must implement soft/virtual sensors (as opposed to
hardware/physical sensors) that run on the user device to fur-
ther analyze and mine the data provided by the ever growing
set of embedded cheap sensors. However, there is not a single
implementation for soft sensors because the set of embedded
sensors differs from one phone to the other, and the charac-
teristic of the environment impacts on the inference of the
observations.

This paper discusses our recent contribution in the area of
self-adaptive intelligent middleware for MPS, which imple-
ments soft sensors that contextualize the observations that
are sent to the cloud for global analyses. The intelligent mid-
dleware leverages online machine learning so that learning
the context of the observations adapts to the available base
sensors and the sensing environment. Prior to the presenta-
tion of our intelligent middleware solution in Section 3, we
first highlight the importance of carefully selecting the sensor
data –aka features– that inform the context definition, while
distinguishing the many dimensions of a context.

2 Machine Learning to the Rescue

The accurate monitoring of the physical environment through
crowdsensing requires knowing the location of the contributed
observations, but such contextualization is not sufficient. The
mobility of the user impacts the quality of the quantitative
observations that mobile crowdsensing gathers [15], which
may be inferred from machine learning over motion sensor
data [5]. Knowing whether the smartphone/sensor is in-/out-
pocket, in-/out-door and under-/on-ground is also essential
because the device needs to be in a position that enables -yet
does not interfere with- sensing the physical characteristics
of the surrounding [21]. The literature investigates separately
the inference of each of these context elements, while they
are all equally important. Moreover, the proposed solutions
do not account for the diversity of the contributing devices.

The features that classify: Today’s smartphones embed an
increasing number of sensors that may serve to contextualize
the observations that the crowdsensors gather. Although the
list of relevant sensors varies from one phone to another,
high-end phones may provide the following features: Light
density, Abstract proximity (the distance from an object to the
screen of the device), Magnetic strength, Temperature of the
ambient air, Pressure, Humidity, GPS accuracy, GSM RSSI
value, Wifi raw RSSI, and Abstract RSSI level (i.e., the overall
signal quality). We specifically focus on eliciting the features
that best contribute to classify the observation context with
respect to: in-/out-pocket (Mpocket ), in-/out-door (Mdoor), and
under-/on-ground (Mground).

We leverage the DATASET1 data set, which provides us
with the supporting ground truth, for the above selection.
DATASET1 assembles labeled sensor data from a Crosscall

Trekker-X3 phone, covering all the candidate features for all
the scenarios to be classified. All the environmental sensors
and network modules were active during the data collection.
DATASET1 comprises 20k instances and the amount of la-
beled data for each class is uniform. Each instance has three
user-encoded labels, which represent the ground truth result
for the three classifications.

We assess the significance of each candidate feature us-
ing the following scoring metrics [2]. Information gain is
the expected amount of gained information aka reduction of
entropy. Gain ratio is a ratio of the information gain and
the attribute’s intrinsic information, which reduces the bias
towards multi-valued features that occur in information gain.
Gini is the inequality among values of a frequency distribu-
tion. Chi2 (χ2) is the dependency between the feature and the
class as measured by the chi-square statistic. Finally, ReliefF
is the ability of an attribute to distinguish between classes on
similar data instances. Table 1 provides the significance of the
features to Mpocket , Mdoor, and Mground within DATASET1.

Feature/Metric Info. G. G. Ratio Gini χ2 ReliefF
In-/Out-Pocket classification Mpocket

Light density 0.310 0.155 0.169 3758.434 0.034
Proximity 0.931 0.720 0.478 17776.819 0.329
Magnetic strength 0.024 0.012 0.016 405.081 0.011
Temperature 0.344 0.172 0.213 273.650 0.097
Pressure 0.063 0.032 0.042 298.334 0.036
Humidity 0.096 0.048 0.064 1276.633 0.076
GPS accuracy 0.057 0.042 0.037 165.818 0.001
GSM RSSI value 0.017 0.008 0.011 256.149 0.034
Wifi raw RSSI 0.073 0.069 0.040 682.765 0.030
Abstract RSSI level 0.027 0.017 0.017 382.020 0.058

In-/Out-Door classification Mdoor
Light density 0.255 0.127 0.157 5041.293 0.050
Proximity 0.098 0.076 0.063 1427.619 0.038
Magnetic strength 0.167 0.084 0.093 2633.329 0.008
Temperature 0.228 0.114 0.125 50.212 0.070
Pressure 0.127 0.064 0.077 341.875 0.127
Humidity 0.045 0.022 0.029 0.343 0.094
GPS accuracy 0.974 0.715 0.482 9085.097 0.996
GSM RSSI value 0.738 0.370 0.384 11211.066 0.157
Wifi raw RSSI 0.320 0.180 0.148 437.694 0.133
Abstract RSSI level 0.794 0.493 0.416 15416.226 0.293

Under-/On-Ground classification Mground
Light density 0.102 0.050 0.061 1662.044 0.009
Proximity 0.078 0.060 0.051 1599.679 0.007
Magnetic strength 0.017 0.008 0.011 297.901 0.006
Temperature 0.485 0.243 0.255 1905.520 0.255
Pressure 0.376 0.188 0.202 6136.352 0.224
Humidity 0.276 0.138 0.142 2475.257 0.161
GPS accuracy 0.434 0.318 0.222 4182.467 0.528
GSM RSSI value 0.463 0.232 0.262 8031.071 0.143
Wifi raw RSSI 0.181 0.170 0.086 5594.195 0.103
Abstract RSSI level 0.547 0.340 0.296 11586.949 0.250

Table 1: The significance of features to the classifications.

2



Figure 1: The features selection per classifier.

We note that the features that show a higher information
gain and gain ratio, also show higher Gini and ReliefF. We
then select the features that give both high information gain
and high gain ratio, while we set the required threshold value
to 0.1 for both. This leads to the selection depicted in Figure 1
for each of the three classifiers.

Training the classifiers: We may now train the three classi-
fiers –Mpocket , Mdoor, and Mground– using the most significant
features associated with each of them. Using mixed training
sources causes the risk of weakening the ability of classifi-
cation due to the diversity of the feature values across de-
vices and user behavior. As an illustration, Figure 2 shows
the distribution of the proximity feature in the in/out-pocket
scenarios in the case of a pure training set (2a: single user
device) and a mixed training set (2b: three user devices),
respectively. We observe that involving more devices and
users in the training set creates interference between the
distribution of the individual’s features and results in blur-
ring the features. The same phenomenon for light density
has been observed in [13, 14]. Crucially, the single user-
specific model outperforms the model trained on data pooled
from several users [22]. Similarly, a model for each smart-
phone/sensor brand would provide a better classification. But,
in practice, this is hardly feasible given the diversity of smart-
phones/sensors as it would require to perform training for
each smartphone/sensor brand.Thus, we initialize our three
classifiers, i.e., learning models, with DATASET1 (20k entries)
that we used for the feature selection.

Our classifiers must be effective both in terms of classifi-
cation accuracy and time/space cost, especially with respect
to their local update on the device. There are various algo-
rithms eligible for the classification problem [17] although
fewer are updatable. We have specifically selected six candi-
date updatable algorithms: Hoeffding Tree –H.Tree for short–
(Very Fast Decision Tree), IBk (Instance Based K-nearest
neighbors classifier), KStar (Instance-based Learner), LWL
(Locally Weighted Learning), updatable Naive Bayes (Naive-

Proximity

(a) 1 device contribution.

Proximity

(b) 3 devices contribution.

Figure 2: Distribution wrt In(1)/Out(0)-Pocket classification.

Bayes for short), and SGD (Stochastic Gradient Descent) [24].

Metric/Model H.Tree IBk KStar LWL NaiveBayes SGD
Mpocket

Size (kB) 16 1158 1157 1158 3 5
CVCA (%) 99.1538 99.469 99.350 99.149 98.999 99.180
OLR (ms) 0.020 3.809 0.081 4.344 0.012 0.123
IR (ms) 0.057 10.545 165.844 91.325 1.635 0.018

Mdoor
Size (kB) 9 1612 1791 1764 4 6
CVCA (%) 100 100 100 100 100 100
OLR (ms) 0.036 5.150 0.062 5.813 0.011 0.172
IR (ms) 0.071 11.823 364.790 109.644 1.610 0.047

Mground
Size (kB) 13 1763 1763 1763 4 6
CVCA (%) 100 100 100 98.060 97.105 100
OLR (ms) 0.024 4.628 0.062 6.720 0.009 0.111
IR (ms) 0.061 15.160 238.916 128.149 1.223 0.018

Table 2: Initial learning models.

Table 2 compares the selected algorithms according to the
same four metrics for our three classifications: Mpocket , Mdoor
and Mground . Size is the serialized model size of the initial
classifier; it is an important metric due to the (relative) re-
source constraint of the mobile device and the fact that the
size may increase as the model gets updated locally. CVCA
(10-fold Cross Validation Classification Accuracy) character-
izes the cross-validation split of the data into 10 folds where
the learning model is tested by holding out examples from 1
fold at a time; the model is then induced from other 9 folds
and examples from the 1 fold are classified and this is repeated
for all the 10 folds. The classification accuracy is the propor-
tion of correctly classified examples. OLR (Online Learning
Runtime) indicates the time taken for updating a learning
model with a fresh instance (i.e., user feedback). Finally, IR
(Inference Runtime) indicates the time taken for carrying out
an inference using an incoming feature vector.

The result for Mpocket in Table 2 shows that all the classi-
fiers can provide a similar high CVCA of about 99%. However,

3



a significant difference appears among the sterilized sizes:
IBk, KStar and LWL are storing training instances inside the
learning model, which makes the size of the classifier pro-
portional to the size of the training dataset. Instead, H.Tree,
NaiveBayes and SGD require a much lower Size. IBk and
LWL have an OLR greater than 3ms, while it is less than 1ms
for the other four. IBk, KStar and LWL all have much longer
IR than H.Tree, NaiveBayes and SGD. A better cross valida-
tion result is discovered for Mdoor: All the algorithms provide
the maximum classification accuracy in cross validation of
100%. However, although the dataset is unchanged compared
to Mpocket , the serialized size of IBk, KStar and LWL increases
due to the number of selected features. Besides, the OLRs do
not change significantly, and are less than 1ms except for IBk
and LWL. IBk, KStar and LWL still have a longer IR than the
other three algorithms. Result for Mground shows that LWL
and NaiveBayes give lower classification accuracy in cross
validation than other algorithms but still over 95%. The high
storage cost remains for IBk, KStar and LWL as they require
storing historical data. They further cost a much longer IR
than the other three algorithms. As for H.Tree, NaiveBayes
and SGD, both their OLR and IR remain below 1ms, with
the negligible exception of the IR of NaiveBayes at 1.223.
Overall, IBk, KStar and LWL show the highest space and time
costs, and we discard them. We specifically select H.Tree [7]
that offers the highest accuracy and lowest space/time costs.

3 Empowering MPS Middleware with AI

SenseTogether is our middleware solution to opportunis-
tic MPS, which is available at https://github.com/
sensetogether/. We outline below the integration of our
online learning approach to the contextualization of the con-
tributed observations (see Figure 3), while detail may be found
in [3].

Figure 3: The SenseTogether middleware.

On-device learning: The initial classifiers are trained only
once on a computer, and are deployed at the time of the in-

stallation of SenseTogether. Then, the H.Tree classifiers get
updated across time so as to cope with: (i) the biases in the
feature value across diverse device models, (ii) the difference
in the availability of features depending on the device and
user preferences, and (iii) the classification on new scenarios
not covered during the initial training.

While the inference of the sensing context is running on the
device, the middleware needs to collect the user feedback to
assess the correctness of the inference result. The feedback is
then converted to a labeled training instance that updates the
current learning models. However, the requests for feedback
should be limited as much as possible to minimize the burden
on the user, while still enhancing the accuracy of the classi-
fiers (in our case: Mpocket , Mdoor and Mground) over time. We
achieve this by applying a hierarchical inference and update
of the three classifiers. The hierarchical algorithm follows
from the predominant role of the in-pocket classifier over the
two others, and of the in-door classifier over the under-ground
one when sensing the physical environment. In more detail, a
crowdsensed measurement is relevant for the analysis of most
environmental phenomenon if out-pocket, while a in-pocket
device has less opportunity to be contributing to the mobile
crowdsensing. The in-door/out-door detection is meaningful
only when the device is out-pocket and ready for sensing. Fur-
thermore, the under-ground/on-ground case is a sub-scenario
of the in-door situation. Also, while requesting the user’s feed-
back about a single inference may be acceptable, requesting
the feedback about three inferences is too much to ask. Prac-
tically, the opportunistic feedback from the user is collected
using a permanent notification. The notification provides the
user with information about the inferred context. Then, the
user decides if and when to provide feedback upon incorrect
inferences.

Performance evaluation: We evaluate our updatable ap-
proach using a new testing dataset DATASET2. Similarly to
DATASET1, DATASET2 contains 20k instances, each embed-
ding three labels representing the ground truth, and covers
all the relevant scenarios (i.e., in/out-pocket, in/out-door and
under/on-ground) uniformly. Differently to DATASET1, the
environment sensors including temperature, humidity, pres-
sure are not available on the contributing device Xiaomi
Redmi Note 4, and the available sensors are from a distinct
manufacturer. In addition, the user switches off the Wifi mod-
ule from time to time. Furthermore, the data gathered for
DATASET1 and DATASET2 correspond to two different phys-
ical environments as they were collected in two different city
areas and at different months.

The F1 score is a measure of a test accuracy considering
both the precision and the recall of the test. The F1 score
ranges from 1 (best) to 0 (worst). We assess the F1 score
of the hierarchical algorithm according to the number of oc-
currences of negative user feedback (i.e., when the inference
is wrong). We performed 500 experiments where the initial

4

https://github.com/sensetogether/
https://github.com/sensetogether/


8 1 2 4

Num ber of Negat ive Feedback

0.0

0.2

0.4

0.6

0.8

1.0

E
n

h
a

n
c
e

d
 F

1
S

c
o

re

(a) Mpocket

2 3 4 5 6 7 8 9 10 11 12

Num ber of Negat ive Feedback

0.70

0.75

0.80

0.85

0.90

E
n

h
a

n
c
e

d
 F

1
S

c
o

re

(b) Mdoor

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Num ber of Negat ive Feedback

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

E
n

h
a

n
c
e

d
 F

1
S

c
o

re

(c) Mground

Figure 4: Enhancement of the F1 score according to the number of (hierarchical and negative) feedback occurrences.

Figure 5: Performance on an Android
phone - red dots represent user feedback.

Figure 6: Multi-class H.Tree classifica-
tion accuracy wrt # of feedback.

0.0 0.2 0.4 0.6 0.8

Runt im e (m s)

Hierarchical Classifiers 
Inference

Mult i-class classifier 
Inference

Hierarchical Classifiers 
Update

Mult i-class classifier 
Update

Figure 7: Execution time of a multi-class
H.Tree vs hierarchical binary H.Trees.

classifiers trained with DATASET1 are evaluated by simu-
lating negative feedback for which we leverage DATASET2.
Figure 4 provides the F1 score according to the number of
(negative and hierarchical) feedback occurrences. Among the
15 occurrences, at most 4 are related to Mpocket , 12 to Mdoor
and 15 to Mground . The F1 score gets an enhancement 100%,
90% and 71% of the time for Mpocket , Mdoor and Mground ,
respectively. The enhancement of the F1 score is the most sig-
nificant for Mpocket and the least significant for Mdoor. Overall,
8 hierarchical feedback occurrences provide a high F1 score
for all the three classifiers.

The SenseTogether middleware requires around 100MB of
memory on a smartphone (Qualcomm Snapdragon 636). The
inference and update of contexts necessitate around 3MB of
memory. The inference execution time is on average 0.2ms,
0.1ms and 0.1ms for Mpocket , Mdoor and Mground , respectively,
while the execution time necessary to update the model is
7.3ms, 7.5ms and 10.0ms on average. Summarizing, our ap-
proach allows adapting the tradeoffs between power consump-
tion and accuracy, while inducing limited resource consump-
tion on the smartphone. Figure 5 shows the CPU, memory, and
energy consumption of running SenseTogether with machine
learning performing hierarchical inference every second, and
opportunistic update according to the user feedback. When
receiving feedback from the user, the CPU usage slightly in-
creases due to the update of the models. The memory contains
the amount consumed by basic Android APP components and
the computing does not obviously affect the memory. There

is no impact on the network consumption and the level of
energy consumption remains light.

Multi-class Classifier v.s. Hierarchical Classifiers: An
alternative to our online learning per classifier would be per-
forming a single and multi-class classification, which dis-
tinguishes 8 combinations of in/out-pocket, in/out-door and
under/on-ground. We compare the two approaches using 100
runs of experiment. As illustrated in Figure 6, the mean of
the enhanced accuracy (triangles in plot) of the multi-class
classification always remains below 45%. Also, the initial and
enhanced classification accuracy of a multi-class classifier is
1/2 time lower compared to hierarchical classifiers. Besides,
the multi-class classifier requires more feedback compared to
the hierarchical classifiers: Up to 28 feedback occurrences are
required. Also, with the multi-class classifier, the user must
select among 7 options instead of one or two options. Finally,
our hierarchical classifier involves a much shorter update and
a slightly shorter inference compared to the multi-class classi-
fier because the hierarchical classifiers do not always perform
all the classifications (see Figure 7).

Overall, the hierarchical classifiers offer many advantages:
(1) A classifier per context element results in a high classifi-
cation accuracy; (2) Each classifier only relies on the most
relevant features, which reduces the inference and update ex-
ecution time; (3) A classifier is easily added/removed when a
new context element is handled for the benefit of the crowd-

5



sensing application; (4) Hierarchical classifiers limit the num-
ber of inferences that are triggered; (5) The required user
feedback is simple and reduced.

4 Conclusion

AI needs data, and data needs AI. We tackle both perspectives
in our work where we aim at fostering the collection of high-
quality observations from the contribution of the crowd. To
do so, we leverage online machine learning so as to contextu-
alize the gathered observation, in a way that is both resource-
efficient and accounts for the specific of the crowdsensors
–spanning the device characteristics, the end-user’s behavior
and the environment. Our work builds on the assumption that
crowdsensing will be increasingly a significant source of data
for AI. However, this also means attracting a large-enough
crowd over time. This is known to be a hard problem and
solutions lie in the ability for the crowdsensing application
to self-adapt to the user’s expected gain [12]. We are cur-
rently investigating such solutions where AI and intelligent
middleware again have a major role to play.

References

[1] M. Chi, Z. Sun, Y. Qin, J. Shen, and J. A. Benediktsson. A
novel methodology to label urban remote sensing images based
on location-based social media photos. Proc. IEEE, 105(10),
2017.

[2] J. Demšar, T. Curk, A. Erjavec, C. Gorup, T. Hočevar, M. Mi-
lutinovič, M. Možina, M. Polajnar, M. Toplak, A. Starič, M. Šta-
jdohar, L. Umek, L. Žagar, J. Žbontar, M. Žitnik, and B. Zupan.
Orange: Data Mining Toolbox in Python. J. Mach. Learn. Res.,
14(1), 2013.

[3] Y. Du, V. Issarny, and F. Sailhan. User-centric context inference
for mobile crowdsensing. In Proc. ACM/IEEE IoTDI, 2019.

[4] M. Elhamshary, M. Youssef, A. Uchiyama, H. Yamaguchi,
and T. Higashino. Transitlabel: A crowd-sensing system for
automatic labeling of transit stations semantics. In Proc. ACM
Conf. on Mobile Systems, Applications, and Services, 2016.

[5] M. Elhoushi, J. Georgy, A. Noureldin, and M.J. Korenberg. A
Survey on Approaches of Motion Mode Recognition Using
Sensors. IEEE Trans. Intelligent Transportation Systems, 18(7),
2017.

[6] R. Gao, M. Zhao, T. Ye, F. Ye, G. Luo, Y. Wang, K. Bian,
T. Wang, and X. Li. Multi-story indoor floor plan reconstruc-
tion via mobile crowdsensing. IEEE Trans. Mobile Computing,
15(6), 2016.

[7] Geoff H., L. Spencer, and P. Domingos. Mining time-changing
data streams. In Proc. ACM SIGKDD Conf. on Knowledge
Discovery and Data Mining, 2001.

[8] S. Hachem, V. Mallet, R. Ventura, A. Pathak, V. Issarny, P. G.
Raverdy, and R. Bhatia. Monitoring noise pollution using the
urban civics middleware. In Proc. IEEE BigDataService, 2015.

[9] V. Issarny, V. Mallet, K. Nguyen, P-G Raverdy, F. Rebhi, and
R. Ventura. Dos and Don’ts in Mobile Phone Sensing Middle-
ware: Learning from a Large-Scale Experiment. In Proc. ACM
Middleware, 2016.

[10] H. Jin, L. Su, H. Xiao, and K. Nahrstedt. Incentive mechanism
for privacy-aware data aggregation in mobile crowd sensing
systems. IEEE/ACM Trans. Networking, 26(5), 2018.

[11] B. Lefèvre, R. Agarwal, V. Issarny, and V. Mallet. Mobile
Crowd-Sensing as a Resource for Contextualized Urban Pub-
lic Policies: A Study using Three Use Cases on Noise and
Soundscape Monitoring. Cities & Health, May 2019.

[12] B. Lefèvre and V. Issarny. Matching Technological & Societal
Innovations: The Social Design of a Mobile Collaborative App
for Urban Noise Monitoring. In Proc. IEEE SmartComp, 2018.

[13] M. Li, P. Zhou, and Y. Zheng. IODetector: A Generic Service
for Indoor/Outdoor Detection. ACM Trans. Sensor Networks,
11(2), 2014.

[14] S. Li, Z. Qin, H. Song, C. Si, B. Sun, X. Yang, and R. Zhang.
A lightweight and aggregated system for indoor/outdoor de-
tection using smart devices. Future Generation Computer
Systems, 2017.

[15] S. Liu, Z. Zheng, F. Wu, S. Tang, and G. Chen. Context-aware
data quality estimation in mobile crowdsensing. In Proc. IEEE
INFOCOM, 2017.

[16] Y. Meng, C. Jiang, T. Q. S. Quek, Z. Han, and Y. Ren. Social
learning based inference for crowdsensing in mobile social
networks. IEEE Trans. Mobile Computing, 17(8), 2017.

[17] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Ma-
chine Learning in Python. J. Mach. Learn. Res., 12, 2011.

[18] Sharman Apt Russel. Diary of a Citizen Scientist. Oregon
State University Press, 2014.

[19] F. Sailhan, V. Issarny, and O. Tavares Nascimento. Opportunis-
tic Multiparty Calibration for Robust Participatory Sensing. In
Proc. IEEE MASS, 2017.

[20] R. Ventura, V. Mallet, and V. Issarny. Assimilation of mobile
phone measurements for noise mapping of a neighborhood.
Journal of the Acoustical Society of America, 144(3), 2018.

[21] R. Ventura, V. Mallet, V. Issarny, P.G. Raverdy, and F. Rebhi.
Evaluation and calibration of mobile phones for noise monitor-
ing application. Journal of the Acoustical Society of America,
142(5), 2017.

[22] D. Weir, S. Rogers, R. Murray-Smith, and M. Lochtefeld. A
user-specific machine learning approach for improving touch
accuracy on mobile devices. In Proc. ACM UIST, 2012.

[23] G. M. Weiss, J. W. Lockhart, T. T. Pulickal, P. T. McHugh,
I. H. Ronan, and J. L. Timko. Actitracker: a smartphone-
based activity recognition system for improving health and
well-being. In Proc. IEEE DSAA, 2016.

[24] I. H Witten, F. Eibe, M. A. Hall, and C. J. Pal. Data mining
practical machine learning tools and techniques. Morgan
Kaufmann, 2017.

[25] Z. Xu, Y. Liu, and N.Y Yen. Editorial for crowdsensing and
intelligent sensing on mobile media analytics special issue.
Mobile Networks and Applications, 22(2), 2017.

[26] M. Zappatore, A. Longo, and M.A. Bochicchio. Using mobile
crowd sensing for noise monitoring in smart cities. In Proc.
IEEE SpliTech, 2016.

6


	Crowdsensing, IoT, AI & Middleware
	Machine Learning to the Rescue
	Empowering MPS Middleware with AI
	Conclusion

