
HAL Id: hal-02239080
https://inria.hal.science/hal-02239080

Submitted on 1 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modeling Novel Soft Mechanosensors based on Air-Flow
Measurements

Stefan Escaida Navarro, Olivier Goury, Gang Zheng, Thor Morales Bieze,
Christian Duriez

To cite this version:
Stefan Escaida Navarro, Olivier Goury, Gang Zheng, Thor Morales Bieze, Christian Duriez. Modeling
Novel Soft Mechanosensors based on Air-Flow Measurements. IEEE Robotics and Automation Letters,
2019, 4 (4), pp.4338 - 4345. �10.1109/LRA.2019.2932604�. �hal-02239080�

https://inria.hal.science/hal-02239080
https://hal.archives-ouvertes.fr


IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JULY, 2019 1

Modeling Novel Soft Mechanosensors based on
Air-Flow Measurements

Stefan Escaida Navarro, Olivier Goury, Gang Zheng, Member, IEEE, Thor Morales Bieze and Christian Duriez,
Member, IEEE

Abstract—In this paper, we introduce a new pneumatic
mechanosensor dedicated to Soft Robotics and propose a generic
method to reconstruct the magnitude of a contact-force acting
on it. Changes in cavity volumes inside a soft silicon pad are
measured by air-flow sensors. The resulting mechanosensor is
characterized by its high sensitivity, repeatability, dynamic range
and accurate localization capability in 2D. Using a regression
found by machine learning techniques we can predict the
contact location and force magnitude accurately when the force
magnitudes are within the range of the training data. To be able
to provide a more general model, a novel approach based on a
Finite Element Method (FEM) is introduced. We formulate an
optimization problem, which yields the contact load that best
explains the observed changes in cavity volumes. This method
makes no assumptions on the force range, the shape of the soft
pad or the shape of its cavities. The prediction of the force
also results in a model for the deformation of the soft pad. We
characterize our sensor and evaluate two designs, a soft pad and
a kidney-shaped sensor, in different scenarios.

Index Terms—Soft Sensors and Actuators; Force and Tactile
Sensing; Modeling, Control, and Learning for Soft Robots

I. INTRODUCTION

ONE of the big current challenges in Soft Robotics is
the handling of contact situations. On the one hand,

researchers are exploring new sensor technologies that are
capable of detecting contacts and deformations in compliant
structures especially. On the other hand, there is also the need
to process the sensor signals to help modeling the robot. There
is already a large body of work showing different sensors and
measuring principles, but an important part of the modeling of
force and deformation is still done using regression techniques
rather than generic models.

In recent years it has been shown that it is possible to use
the FEM (Finite Element Method) to simulate the behavior of
soft structures at interactive update rates, and to transfer these
results to real robots made out of deformable materials. In
the work of our team, these methods are implemented within
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Fig. 1. In this work we show two designs of a novel soft mechanosensor
made out of silicone (top, a soft pad and a kidney). When an external force
is applied, the volume of cavities embedded in the silicone changes (left).
This change in volume is registered through air-flow sensors. Using machine
learning and FEM-based techniques, we show that it is possible to estimate
the location and magnitude of an external force on the mechanosensor. Using
the FEM also yields an estimation of the deformation of the sensor (left and
right).

the multiphysics simulation framework SOFA [1], [2].1 In this
approach we see an opportunity to advance towards generic
models that can integrate measurements from a diversity of
sensors. In fact, vision-based approaches, i. e. using extrinsic
sensing, have been used in the previous work of our team
to estimate interaction forces with soft robot structures [3].
Respective methods for including the contacts in direct and
inverse simulation have also been developed [4]. However,
until now we have not explored intrinsic sensing modalities.

This work has two main contributions. The first one is to
show the design of novel pneumatic mechanosensors, a soft
pad and a kidney, pictured in Fig. 1. They are blocks made
out of silicone with generic shape and internal cavities that
are connected to the outside world through tubes. The sensors
work by measuring the changes of cavity volumes with air-
flow sensors. We show that the sensors have a very good
localization capability. For example, we obtain a mean error
of 0.79mm for the soft pad. With respect to force estimation,
we obtain an error of down to 3.52% over the whole area of

1https://www.sofa-framework.org/
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the soft pad sensor when using an artificial neural neutwork
(ANN) to model its behavior. The measurement principle is
also responsible for the availability of a high force dynamic
range. The second contribution is a novel method for esti-
mating the magnitude of a contact force and the resulting
deformation using a FEM-based approach (see also Fig. 1). We
model the sensor with the help of the FEM and numerically
find the force magnitude that best explains the changes in
volume observed. The method is generic, i. e. it makes no
assumptions on the geometry of the sensor or the cavities
inside it and can be used without relying on a previously
found regression for the force. For example, we reach a force
reconstruction error of 7.72% with the soft pad, while having
a better generalization than the ANN-based approach. Results
for the kidney sensor are similar. The optimization-based
approach is a first step towards a fully numerical estimation
of all force parameters including the localization. We evaluate
our sensor designs in detail.

The remainder of the paper is organized as follows: in
the next section we discuss the related work from the field.
In Sec. III we describe the design of the sensor and its
characterization. In Sec. IV we introduce the approaches for
force reconstruction. Then, in Sec. V, we show an evaluation
of our soft pad and kidney sensor’s performance in different
scenarios. Finally, in Sec. VI, we summarize our work, give
conclusions and an outlook for future research.

II. STATE OF THE ART

Recently, many new soft mechanosensors with a variety of
measurement principles have been proposed. A 2018 survey
paper by Wang et al. discusses many contributions [5]. As
can be recognized from this article, the most popular sensing
principles are based on changes in electrical properties of ma-
terials to transduce mechanoperception, i. e. tactile information
(force, slip) and proprioception (shape, bending). Examples are
due to Lucarotti et al. [6], Truby et al. [7] and Wall et al. [8].
Other measuring principles discussed are optical, e. g. [9]. In
these works the sensors are modeled with regression tech-
niques. Also, these designs require one or more additional
manufacturing steps that bond the sensing elements inside
the soft structure by glueing, casting, etc. By comparison,
fabricating a soft structure with a cavity for pneumatic sensing
is streamlined with the fabrication of the structure itself.

Pneumatic sensing is less prominently featured in the lit-
erature, indicating that it is an underexplored option in Soft
Robotics. Recent contributions in this field are due to Soter
et al., Yang et al., Gong et al. and Choi et al. [10], [11],
[12], [13]. Soter et al. propose a design in which cavities
inside a soft pad are are filled with a colored liquid [10]. The
cavities are connected to an (analog) thermometer-like display
for each cavity. Pressing on the cavities makes the level of the
liquid in the display rise. This change in level is captured by
a camera for all cavities at once and measured as change in
pressure/volume. In terms of modeling, the sensor is identified
at a single contact location through a linear regression. Yang
et al. propose a design of a soft sensor with a cuboid-shaped
cavity [11]. With a beam model they show that measuring

Fig. 2. Left: One half of our sensor, with a demonstration of the dimensions
of the soft pad as well as the arrangement and geometry of its cavities. Right:
The test bench used to evaluate the performance of the sensor, which is based
around a 3D printer and a force sensor: (1) is the soft pad, (2) are the air-flow
sensors, (3) is the Arduino board used to digitize the sensor values and (4) is
the force sensor.

pressure inside the cavity can be used to detect contact force
or curvature of the cavity (not at the same time) with quite
accurate results. However, the range of forces tested is rather
limited (20g-130g). Also, in their work the loading of the
sensor is restricted to happen only along one direction, because
the model can not account for general deformations of the
cavity. A comparable design is due to Gong et al. [12] where
a deformable tube (bladder) is used to implement a tactile
sensor. The authors identify the pressure vs. force behavior as
well as investigating the capabilities of slip detection through
FFT-analysis, i. e. retrieving the frequencies of vibrations that
are detected by the pressure sensor. Yet, due to the lack of
spatial resolution, this sensor can not distinguish the location
of the force or slip event. Finally, Choi et al. propose a
three-axis force sensor based on pressure sensing inside of
three cavities arranged symmetrically in a circle at 120◦ [13].
The authors show a method to de-correlate the signals of the
cavities in order to find the independent axes and magnitude
of a force acting upon the configuration. This is an example
of use of a spatial resolution or array to detect forces, but the
reconstruction of the forces is restricted to forces applied at
the center-point.

All in all, the pneumatic sensors proposed so far in literature
lack the use of a spatial resolution to locate the points of
contact as well as a seamless integration into a simulation
framework for generic sensor modeling, as proposed in this
document. The lack of generic modeling is also true for the
other measurement principles discussed above. Finally, to the
best of our knowledge, no recent works exist that use air-flow
measurements as we do in this work, which in our opinion
is key to capture the deformation of our soft pad sensor and
responsible for a high sensitivity, repeatability and dynamic
range.

III. SENSOR DESIGN AND CHARACTERIZATION

In this section we provide the design and characterization
of our mechanosensor as well as description of the test bench
used (see Figs. 1, 2 and 11).

A. Sensor Design

The design of the soft pad, which is shown in Fig. 2
(left), is relatively straightforward. The figure shows one of
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Fig. 3. Left: An iterative sampling to demonstrate the sensitivity at location
(0,0.5), directly in the middle over the red cavity. Right: An iterative sampling
at the center, the least sensitive part of the sensor, i. e. at coordinates (0.5,0.5).
The threshold for contact detection of 5µLs−1 is also shown. Please refer to
Fig. 2 for the correspondence of the signal colors to each cavity.

two symmetric parts that are glued together to form the
soft pad sensor. The arrangement of the cavities enables the
localization of a contact along two directions, i. e. on a plane.
The fabrication of the kidney is analogous. We define the
sensor origin (0,0) at the border between the left (red) and
the bottom (magenta) cavity. The distance between the corner
points of this array is 37mm. We chose elongated, cylindrical
cavities over spherical cavities, because the distance of the
center point of the pad to any of the cavities is smaller. This
allows to maintain the best possible sensitivity at the center
point (see also Sec. III-C). The colors shown for the cavities
correspond to the colors provided in the signal vs. time plots
throughout the paper, see for example Fig. 3.

To measure the changes in volume, we use the air flow
sensor D6F-P0001A1 by Omron [14, pp. 25-27]. Its measure-
ment principle is shorty illustrated in the data-sheet [14, p.
3]. For our scenario, measuring air-flow is advantageous in
comparison to measuring pressure changes, because we do not
have to use the ideal gas law to find the change in volume, we
only have to integrate the signal over time. In this way we do
not have to know the exact volume of the tubing and can be
more resilient to inaccuracies in the fabrication process. The
sensors are rated for measuring air (gas) flow between 0 and
0.1Lmin−1 (= 1.66mLs−1). In practice, this allows for a fairly
high sensitivity to contact and dynamic range, as discussed in
Sec. III-C. The Arduino transmits digitized data at a rate of
about 230 FPS with four sensors. Before that, a mean filter
with a window size of 5 frames is used to smooth the signal
on the microcontroller.

B. Test Bench

Our test bench consists of a CR10 3D printer by Creality and
a Omni-Instruments DBCR force sensor rated for measuring

forces between −20N and 20N (<±0.03% FS repeatability,
< ±0.05% FS non-linearity) [15] that is attached to the
carriage of the printer instead of the printing nozzle. The
sensor is read out by a PhidgetBride 1046 0B2 load cell
digitizer. Attached to the force sensor is a load-button with
a width of 12.5mm, which is roughly the size of a index
finger tip. The placement of the sensor can be seen in Fig. 2
(right). The positioning accuracy in the z-axis of the CR10
is theoretically 0.01mm for microsteps of the stepper motor.
Full steps achieve a displacement of 0.04mm. To register our
sensor to the printer, we attach a pen to the force sensor. This
enables us to trace an accurate outline of the soft pad sensor
on a white piece of paper in order to place it at a known
location on the test bench.

C. Sensitivity

To give an idea about the sensitivity of the air-flow measure-
ments and how they relate to the forces exerted, we present
example data in Fig. 3. On the left, the figure shows measure-
ments for the most sensitive spots of the sensor, i. e. directly
above any of the cavities. Fig. 3 (left) shows an example for
the red cavity. For each force level, the printer is moved by
0.04mm downwards. A change in force down to 40mN can
be registered by the flow sensors at this position when using
a threshold of 5µLs−1 for contact detection, corresponding to
volume changes in the range of nano liters. This is roughly
equivalent to 4g, i. e. very light touch. The threshold for the
air-flow signal is used to avoid false readings due to the
noise in the signal. On the right, the figure shows the least
sensitive spot of the sensor, i. e. directly in the center. Here,
the printer is moved by steps of 0.1mm. A difference of about
100mN (≈ 10g) is necessary to surpass the established flow
threshold for all cavities. In the force reading at the 1.2s mark,
a first touch event is recognizeable. It is barely detected by the
blue sensor that triggers. At the 1.4s mark, where all sensors
trigger, it has therefore already accumulated a small volume
reading. Together with the evaluation discussed in Sec. V it
becomes clear that the soft pad sensor proposed here is capable
of detecting contact situations with a force range of about 2
orders of magnitude (presumably more, but not tested). Finally,
it is worth noting that the flow measurements are sensitive to
the rate of change of the force, which is something that needs
further attention for future works. Another variable that will
modulate sensitivity is material stiffness. Softer materials will
deform more and therefore increase sensitivity.

D. Repeatability

We conducted an experiment with repeated indentation on
the soft pad directly above one cavity with three indentation
levels. For each level the soft pad was sampled 10 times.
The statistics of the experiment are summarized in Table I.
The repeatability of the soft pad sensor is high, i. e. better
than 0.5% standard deviation for the volume estimation. This
number is consistent with the data sheet of the air-flow sensor,
where it is indicated that the repeatability is within ±1.0% FS

2https://www.phidgets.com/?tier=3&catid=98&pcid=78&prodid=1027
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Force (N) Volume (µL)
Level mean std % mean std %

1 3.30 0.01 0.26 37.37 0.11 0.30
2 6.19 0.02 0.35 71.50 0.30 0.42
3 9.42 0.04 0.44 114.54 0.54 0.47

TABLE I
REPEATABILITY TEST FOR THREE DIFFERENT INDENTATION LEVELS
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Fig. 4. A plot showing the offset-voltage drift related to time and temperature
for four air-flow sensors over the course of 14 hours.

deviation [14, p. 26]. We think this is the factor that allows
precise localization with our sensors, as seen in the evaluation
(see Sec. V).

E. Drift Related to Time and Temperature

According to the data sheet of the air-flow sensors, a
±5% FS drift can be expected in the range of −10 ◦C and
60 ◦C [14, p. 26]. A time related drift is not mentioned in
the document. We let four sensors run without any contact
interactions for 14 continuous hours in which the temperature
reached a maximum of about 5 ◦C difference. As can be seen
in Fig. 4 there is a very small drift of only a few mV in the
offset voltage, which is correlated to the temperature change.
It is more significant for one of the sensors than for the
other three, indicating fabrication tolerances. The maximum
drift of 3mV translates to a drift in air-flow of 2.5µLs−1,
which is lower than the threshold established for contact, i. e.
5µLs−1 (see Fig. 3). We think that it is unproblematic to
adjust these offsets regularly to account for the small changes
related to time and temperature drift. Silicone changes its
mechanical properties only beyond 100 ◦C, so it is not a factor
of immediate concern.

F. Hysteresis

Measuring the volume through the air-flow sensing principle
is highly repeatable as shown in Sec. III-D. However, it is
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Fig. 5. Left: Hysteresis curve for a load of about 10N. Right: Signals for force
and air-flow illustrating the different moments in time at which the unloading
is first detected in the force and in the air-flow.
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F (Hz) 30 40 50 60 70 80 90 100
A (dB) -13 -18 -31 -36 -38 -47 -55 -60

TABLE II
AIR-FLOW SIGNAL RESPONSES FOR VIBRATION AT CONSTANT AMPLITUDE

prone to hysteresis behavior as shown by Fig. 5. There are
at least two possible explanations for this behavior: First,
the accuracy of the air-flow sensor is not as high as its
repeatability, i. e. only ±5.0% FS [14, p. 26]. This means
the non-linearity in the flow measurement will lead to errors
in the integration. For example, the range in which the
sensor represents positive flow is likely to behave somewhat
differently than the range for negative flow. Second, as the air-
flow sensor relies on a differential temperature measurement
it is susceptible to inertia effects. As shown on Fig. 5 (right),
after the moment when the unloading phase starts according
to the force readings (force turn, force starts decreasing), the
flow readings continue to be positive for a brief moment
(0.05s), i. e. contributing to measure increasing volume. This
effectively generates an offset for the unloading curve with
respect to the loading curve. In addition, the value for the
volume does not go entirely back to 0 when there is no more
load. In many practical use cases, however, it is possible to
detect a full release due to the high negative air flow. To
provide an absolute reference in all scenarios it would be
necessary to complement the air-flow measurements with an
absolute measurement principle like pressure sensing.

G. Bandwidth

To obtain an idea of the bandwidth of vibration frequencies
that can be detected by soft pad, we conducted an experiment
exciting the soft pad with vibrations at different frequencies
ranging from 30Hz to 100Hz. The soft pad was placed on
top of a studio speaker with linear reproduction characteristic
between 30Hz and 22kHz. An additional weight was placed
on top of the soft pad to improve the transmission of the
vibration from the chassis of the speakers to the soft pad. The
analog voltage output from one air-flow sensor was connected
through a jack plug to the input of a sound card sampling at
48kHz. Fig. 6 shows an example of the wave recorded for
the vibration at 30Hz as well as a spectrogram for all the
frequencies testet. The vibration amplitudes obtained for each
frequency are listed in Table II.

From the results it is recognizeable that the soft pad together
with the air-flow sensor act as a low-pass filter with significant
dampening, i. e. 47dB from 30Hz to 100Hz. However, vibra-
tions with frequencies as high as 100Hz can still be clearly
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found by a spectral analysis, showing the potential for slip
detection for example.

IV. SENSOR MODELING TECHNIQUES

In this section we describe the methods used to predict
the force parameters from the measured volumes using an
Artificial Neural Network-based approach and a FEM-based
approach.

A. ANN-based Approach for Force Localization and Magni-
tude Estimation Using Volume Measurements

Given there is a (single) contact with the sensor, the goal
of this method is to predict the contact’s location and the
magnitude of the force applied from the changes in volume ob-
served. In our case a simple Artificial Neural Network (ANN)
approach is sufficient, as the input and output dimensionalities
are low (four or six input parameters, three outputs). The
training data is used to train a feed-forward ANN implemented
in Keras with a Tensorflow back-end.3 The four or six volumes
of each cavity are connected to a layer of 128 neurons. These
are in turn connected to a hidden layer of 40 neurons, which
are finally connected to the output layer that predicts x and
y coordinates and a corresponding force. The ANN is trained
with the goal of minimizing the squared error of the outputs
against ground truth data in a given data set. The training is
done using gradient back propagation. This method by itself,
i. e. without the use of an additional linear elastic model, does
not predict the deformation of the soft sensor.

B. Numerical Approach for Force Magnitude Estimation Us-
ing Volume Measurements

The goal of this approach is to offer an alternative to the
force magnitude estimation based on regression techniques
with the advantage of better generalization. The idea is to use
a numerical model of the physics (FEM) and an optimization
method to find the force magnitude that best explains the
volume changes. It is this approach that will simultaneously
yield a model for the deformation of the soft sensor. At the
moment this method cannot predict the contact position from
the volumes, which is assumed to be a given. It is, however,
a first step towards a fully numerical-based force parameter
estimation.

1) Online FEM: We use the FEM, which yields the forces
F(q), given that the nodes of the FEM mesh are at positions
q (see Fig. 1 left). The model used for the silicone is linear
elastic with a corotational formulation (efficient, physically
plausible finite elements [16]) that can be evaluated at in-
teractive or near interactive update rates, depending mostly
on the number of elements. The model is characterized by
Young’s Modulus and Poisson’s Ratio. During each step i
of the simulation, a linearization of the internal forces is
computed:

F(qi)≈ F(qi−1)+K(qi−1)dq, (1)

where dq = qi− qi−1 is the displacement of the nodes and
K =

∂F(qi−1)
∂q is the tangential stiffness matrix for the current

3https://keras.io/

node positions q. To complete the picture, external forces are
included:

−K(qi−1)dq = P+F(qi−1)+HT
λ f . (2)

HT
f λ f is the expression that gathers constraining forces, such

as contacts or external controlled inputs, i. e. actuators. P
represents known external forces, such as gravity. Then, (2) is
solved under the assumption of static equilibrium, delivering
a motion that is a succession of quasi static states. In this
framework, we can in principle map the quantities measured
by the pneumatic sensors to force constraints in HT

f λ f if
we can derive an estimate of the external force location and
magnitude from the sensor values. Please refer to [1] for a
more in-depth discussion about the FEM formulation used
here.

2) Finding the Contact Force Magnitude through Optimiza-
tion: Using inverse problem solving, we can optimize for the
force magnitude that best explains the volume change given
that the contact is at a specific location. In other words, the
contact can be seen as a new force constraint for which the
magnitude should be determined. The estimated deformation
of the soft pad sensor is the one that includes this force
condition.

Let Φi(q) be the function that maps the positions of the
nodes to the volume of a cavity with index i. Φi(q) can be
calculated using the triangles of the mesh defining the cavity
and is already implemented in SOFA. To find the relation
between the change in an external force ∆λ f applied to the
object and the change in the (simulated) volume ∆Vsim we can
write:

∆Vsim =
∂Φi(q)

∂q
K−1HT

∆λ f . (3)

That is to say that first the changes of forces are mapped to the
corresponding nodes through HT . The tangential compliance
matrix K−1 transforms these forces to displacements, which
finally can be mapped to changes in volume through the
derivative of Φ with respect to q. For ∂Φi(q)

∂q K−1HT we write
Wi,v f , which is the matrix that directly maps changes in force
to changes in volume. Now, we can formulate the optimization
problem. We want to find the actuation force magnitude ∆λ f
that best explains the sum of changes in the simulated volumes
∆Vi,sim =Wi,v f ∆λ f so that the difference to the sum of the real
changes in volume ∆Vi,real is minimized:

∆λout = argmin
∆λ f

‖∑Wi,v f ∆λ f −∑∆Vi,real‖2. (4)

Finally, we can write out the squared expression. There, we
can ignore the constant term corresponding to the sum of
the changes in real volumes for the optimization. We also
substitute ∑Wi,v f for S and ∑∆Vi,real for ∆Vtotal for notation
convenience in (4), so we arrive at:

∆λout = argmin
∆λ f

(∆λ
T
f ST S∆λ f −2∆λ

T
f ST

∆Vtotal). (5)

This quadratic program (QP) can be solved using a QP-solver
with the method presented in [2].4

4In this work ∆λ f in (5) is actually a scalar, but we provided the formulation
for the general case where ∆λ f is a vector.
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Fig. 7. Top: A close-up of the sampling procedure that is used to collect
training and test data for our evaluation scenarios. Bottom: An example for
a time-series corresponding to one of the points in the training set. The
coordinates of the point are (0, 0.8) on the soft pad.

V. EVALUATION

In this section, we discuss the performance in localization
and force estimation using the soft pad and the kidney sensor.
We show in three scenarios how force can be estimated from
the changes in volumes of the cavities. Fig. 7 shows a close-
up of the sampling procedure using the setup described in
Sec. III-B and an example for data collected for training
purposes.

A. Experiment Description

In this section we present the results of the force recon-
struction for our sensors. There are three scenarios in which
the soft pad and the kidney sensor were tested:
• R(eal)-ANN: An ANN-model is trained on real data

(see Sec. IV-A) collected with the setup described in
Sec. III-B. The model predicts both position and force
when provided with changes in volumes as inputs.

• Opti(mization): The same model as in the previous sce-
nario is used to predict only the contact location. The
force magnitude is reconstructed using the optimization
method presented in Sec. IV-B.

• Transfer: An ANN-model is trained on simulated data,
that is, the sampling procedure is simulated in SOFA.
The force position is predicted by the simulation-based
ANN and the magnitude is reconstructed, again, using the
method described in Sec. IV-B. This is a transfer learning
approach.

To train the ANN models, data is collected with the real
setup or in simulation by sampling the sensor in regular
intervals, with 2 or 3 indentation depths per point. First, the
sensors are sampled in 3.7mm intervals (a 11×11 grid on the
soft pad) with three force levels: approx. 0.5N, 3N and 9N
and then with an interval of 6.1mm (a 7×7 grid) with approx.
4N and 10N. The two or three levels correspond to two or
three target indentations, i. e. all the samples of one level have
the same indentation depth, but have varying forces depending
on where on the array the sample is taken, which is mainly
due to the cavities locally affecting the stiffness.

Pos. err. (mm) F err. (N)
Scenario mean std F err. (%) mean std

R-ANNsp (All) 0.79 0.74 11.46 1.46 1.85
R-ANNsp < 11N 0.62 0.60 3.52 0.21 0.20

Optisp (All) 0.79 0.74 7.72 0.68 0.66
Optisp > 11N 1.12 0.86 7.95 1.15 0.82

Transfersp (All) 2.88 2.03 8.34 0.74 0.74
TABLE III

MEAN LOCALIZATION AND FORCE RECONSTRUCTION ERRORS FOR THE
DIFFERENT SCENARIOS EVALUATED
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Fig. 8. Points of the test set (blue) plotted against the predicted output (red)
in the R-ANNsp scenario. Transparent lines connect corresponding points from
the test set to their predicted values.

Each of the three scenarios is evaluated with a data-set
that is aimed at testing the performance and generalization
capabilities of each approach. The test set consists of data
collected by sampling in intervals of 5.3mm (a 8×8 grid) with
three force levels: approx. 3N, 10N and 15N. Therefore, this
set is mostly based on different positions and indentation/force
levels than the data used for training. Also, while the training
data contains force levels between approx. 0.5N and 10N, the
test set goes beyond that range. This will allow us to see how
the different approaches generalize in terms of localization and
force magnitude.

B. Results Soft Pad

The results of the different approaches for the soft pad are
summarized by Table III. Figs. 8-10 show the detail of each
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Fig. 9. Same as Fig. 8 for the Optisp scenario.



ESCAIDA NAVARRO et al.: MODELING NOVEL SOFT MECHANOSENSORS BASED ON AIR-FLOW MEASUREMENTS 7

Fo
rc

e
 (

N
)

Y (mm) X (mm)0 5 10 15 20 25 30 35

05101520253035

0

2

4

6

8

10

12

14

16

Fig. 10. Same as Fig. 8 for the Transfersp scenario.

test sample compared to its predicted value. First, from the
results it becomes clear that the localization accuracy possible
with the soft pad sensor is high, that is, only a 0.79mm error
for all the data in the R-ANNsp scenario. We attribute this
to the sensitivity and repeatability provided by the air-flow
sensors, meaning the volume measurements serve to predict a
contact’s exact position.

With respect to the force reconstruction, the R-ANNsp <11N
scenario shows the best performance in correctly predicting
the test data (3.52% mean error). Here, the forces are within
the margin established for the training data. It is also the
best predictor for the position of the contact, with a mean
error of only 0.62mm. It is worth noting that tuning the
parameters of the ANN did not significantly affect the results.
We deal with low-dimensionality inputs and outputs, highly
repeatable measurements (see Sec. III-D) as well as a good
amount of training data. These are very promising conditions
for any statistical learning approach. Therefore, we consider
that these force magnitude and localization results are a
reflection of actual behavior of the soft pad sensor, being
a baseline for the possible performance. As expected, the
network fails at predicting forces that are significantly outside
of the force range for the training data, as can be seen by
Fig. 9. Considering all test data (R-ANNsp), the deviation of
the absolute force magnitude is worse than the Optisp and
Transfersp scenarios (1.46N against 0.68N and 0.74N).

The Optisp scenario shows the most consistent performance
overall, as can be seen in Fig. 9. For the prediction of the
position it relies on the previous approach, so the results are
the same in that category. While it is outperformed by the R-
ANNsp scenario for data points lying within the force intervals
considered for training, it generalizes better to forces that had
previously not been seen. In fact, when isolating these points in
the scenario Optisp > 11N, we see that in terms of percentual
error the values are not significantly worse (7.72% vs. 7.95%),
indicating a strong capability of generalization. As a result, it
outperforms the R-ANNsp scenario in terms of percentual force
error. We should also mention that these results show that the
ANN-based approach generalizes well in terms of localization
accuracy, with a mean error of 1.12mm (see Optisp > 11N).
This is plausible as the localization depends mostly on the
relative magnitudes of the volumes, not on the total amplitude.

Finally, the Transfersp scenario delivers acceptable results

Fig. 11. The kidney sensor and the layout of its cavities.

at the current state, but there is a significant deterioration
regarding the localization compared to R-ANNsp. However,
with an error of 2.88mm it is still usable. With the less
accurate localization, the force magnitude estimation also
deteriorates (8.43% mean error), while still being within
reasonable margins and generalizing well to unforeseen forces
(better than R-ANNsp). This lets us conclude that for the force
estimation the most important factor is the total amount of
volume change (deformation), rather than where exactly the
contact happens.

C. Results Kidney

The kidney-shaped sensor is motivated by the idea of
creating active phantoms with sensing capabilities or similar
devices for the purpose of medical training. The kidney differs
from the soft pad in its shape but also in the amount of cavities
embedded. As seen in Fig. 11 there are six cavities arranged
to follow the shape of the sensor and to cover the area where
touch interactions are expected. Beyond that, the cavities are
generally somewhat closer to each other than in the case of
the soft pad. In order to guarantee a good sampling rate of the
air-flow sensors, two Arduinos where used.

The results for the kidney are shown in Table IV. In the
greater picture these results are very similar to the ones
obtained with the soft pad. The R-ANNk is the best in
the interpolation regime, but is outperformed by the other
approaches when the task is to generalize to unforseen forces.
Overall the accuracy of contact location is slightly better than
for the soft pad. For example, the mean error for R-ANNk <
11N is only 0.56mm while it was 0.62mm for R-ANNsp. A
plot showing the data for R-ANNk < 11N is shown in Fig. 12.
To us, this is an effect of the cavities being closer together.

It is interesting that the result for the localization error for
Transferk is noticeably better than for the soft pad (a mean
error of 1.94mm vs 2.88mm). Again, the fact that cavities
are closer together and that they are less regular seems to
help to inform the machine learning approach, even if it is
executed on simulated data. Interestingly, the force predic-
tion is slightly better in the transfer learning-based approach
(Transferk) than in the optimization-based approach. As seen
in Figs. 9 and 10 the force reconstruction tends to deviate
most directly above the cavities. Due to the errors in position
estimation in Transferk, the location is shifted towards a place
were the force estimated is slightly more reliable. However,
besides that, the force reconstruction is slightly worse for some
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Fig. 12. Same as Fig. 8 for the R-ANNk < 11N scenario. The contour defined
by the center of the cavities is shown below the data.

Pos. err. (mm) F err. (N)
Scenario mean std F err. (%) mean std

R-ANNk (All) 0.64 0.45 10.27 1.20 1.42
R-ANNk < 11N 0.56 0.39 4.00 0.24 0.23

Optik (All) 0.64 0.45 7.66 0.72 0.77
Optik > 11N 0.80 0.53 10.19 1.38 0.88

Transferk (All) 1.94 0.94 6.98 0.64 0.65
TABLE IV

MEAN LOCALIZATION AND FORCE RECONSTRUCTION ERRORS FOR THE
DIFFERENT SCENARIOS EVALUATED KIDNEY

scenarios than in the case of the soft pad. This could be related
to the increased variations in the stiffnes of the kidney due to
the increased number of cavities.

VI. CONCLUSIONS

This work has two main contributions: first, we showed
novel designs for soft sensors made out of silicone, a soft
pad and a kidney shaped sensor. When there is a contact,
the volumes of cavities inside the silicone structure change.
These changes are measured through air-flow sensors. The
air-flow sensors and the cavity arrangement allow for the
detection of contact events within a large range of forces
and provide precise cues for the force localization, as they
provide measurements even for tiny deformations. Second,
we compared two approaches for reconstructing the actual
magnitude of the force. In the first approach a calibration of the
sensors was obtained by training an artificial neural network
(ANN) with samples from the real world. In the second
approach we used an inverse problem solving approach: with
the help of a FEM-model of the sensors we find the force
magnitude that best explains the observed change in volume
of the cavities. We found that the accuracy of the ANN-
model is best for forces within the range of the samples
used for training, but that it does generalize poorly outside
of that range. The FEM-based optimization approach is more
coarse, but generalizes well to different force magnitudes. In
the process, the deformation of the sensor is also estimated. To
us, these are encouraging results that could be a contribution
to observability and controllability in Soft Robotics.

One of the next steps in our work will be including the
force position as a parameter in our optimization framework.
This could make our method less reliant on real world data
for accurate performance. One of the next steps will also be
to apply the approach presented here to a soft robot that is
actuated by cables. There we can study the possibility of
estimating the contact force location and magnitude and how
this force affects the shape of the robot. Another domain of
interest is medicine technologies. Our efforts could be used to
create smart phantoms of organs that can help assessing the
performance of trainees who use them in palpation scenarios.
In general, there is still room for improvement of the sensor
design in terms of cavity shape and dimensions for the
different use cases. Also, as the FEM-techniques progress, the
precision in force reconstruction will also improve.
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