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Abstract

In this paper, we tackle the problem of 3D human shape
estimation from single RGB images. While the recent
progress in convolutional neural networks has allowed im-
pressive results for 3D human pose estimation, estimat-
ing the full 3D shape of a person is still an open is-
sue. Model-based approaches can output precise meshes
of naked under-cloth human bodies but fail to estimate de-
tails and un-modelled elements such as hair or clothing. On
the other hand, non-parametric volumetric approaches can

poteptlglly estimate comp.lete shapes but, in practlce, theyFigure 1. Our non-parametric representation for human 3D shape:
are limited by th? reso'”_tlon of the Oqtput grid and can- given a single image, we estimate the “visible” and the “hidden”
not produce det_a'IEd estimates. In this work, we propose depth maps from the camera point of view. The two depth maps
a non-parametric approach that employs a double depth ¢4 pe seen as the two halves of a virtual “mould”. We show this
map to represent the 3D shape of a person: a visible depthrepresentation for one of the images of our new dataset.

map and a “hidden” depth map are estimated and com-
bined, to reconstruct the human 3D shape as done with a
“mould”. This representation through 2D depth maps al-
lows a higher resolution output with a much lower dimen-
sion than voxel-based volumetric representations. Addi-
tionally, our fully derivable depth-based model allows us

the applicability of these methodologies for the more chal-
lenging problem of end-to-end full 3D human shape re-
trieval [2, 18]. The ability to retrieve such information from
single images or videos is relevant to a broad number of ap-
4 . L . plications, from self-driving cars, where spatial understand-
to ef ciently incorporate a discriminator in an adversar- ing of surrounding obstacles and pedestrians plays a key

'ﬁl fgghlon 0 |r\r/1\f)rov¢ thedaccurapy f"m? hulﬂanness of role, to animation or augmented reality applications such as
the hOUtgﬁﬁREXEm %n q;g”ﬂﬁ&\/:gsva' ate o;‘” apP- yirtual change rooms that can offer the E-commerce indus-
proach on andon st , &new photore- try a virtual tting solution for clothing or bodywear.

alistic dataset made of semi-synthetic in-house images an- Designing a deep architecture that produces full 3D

notated with 3D ground truth surfaces. shapes of humans observed in an input image or a sequence
of input images raises several key challenges. First, there is
a representational issue. While the comfort zone of CNNs
is in dealing with regular 2D input and output grids, the gap
must be bridged between the 2D nature of inputs and the 3D
Recent works have shown the success of deep networkessence of the desired outputs. One solution is to follow a
architectures for the problem of retrieving 3D features such parametric method and estimate the deformation parameters
as kinematic joints [4, 33] or surface characterizations [43] of a prede ned human 3D model [2, 18]. These methods are
from single images, with extremely encouraging results. limited to the level of details covered by the model. In con-
Such successes, sometimes achieved with simple, stantrast, non parametric approaches can potentially account for
dard network architectures [30], have naturally motivated shape surface details but are prone to produce physically-
Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LJK, 38000 impossible body shapes. This is the case of the recent vol-

Grenoble, France¥ Most of the work was done while the last author was UMetric approach Pmposed ir‘ [ ]_that ?ncc_)des the human
a research scientist at Inria. body as a voxel grid whose dimensionality directly impacts

1. Introduction




Figure 2. Overview. Given a single image, we estimate the “visible” and the “hidden” depth maps. The 3D point clouds of these 2 depth
maps are combined to form a full-body 3D point cloud, as if lining up the 2 halves of a “mould”. The 3D shape is then reconstructed using
Poisson reconstruction [19]. An adversarial training with a discriminator is employed to increase the humanness of the estimation.

the precision of the estimation. This highlights a second the accuracy and “humanness” of the 3D output, especially
challenge: the dimensionality of the problem is consider- in the case of strong occlusions. See Figure 2. To train
ably higher than what existing networks have been shownand quantitatively evaluate our network in near real-world
to handle, because the parametrisation sought is no longeconditions, we captured a large-scale dataset of textured 3D
restricted to a subset of the variability, e.g. kinematic pose meshes that we augment with realistic backgrounds. To ac-
of humans or body shape parameters, but to an intrinsicallycount for the large variability in human appearance, we took
ner description of the body. Finally, the training data for special care in capturing data with enough variability in
this problem, yet to be produced, requires a particularly de- movements, clothing and activities. Compared to paramet-
manding de nition and acquisition effort. The large data ric methods, our method can estimate detailed 3D human
variability of 3D problems has motivated some initial ef- shapes including hair, clothing and manipulated objects.
forts to produce fully synthetic training sets [39], where After reviewing the related work in Section 2, we present
such variability can be partially scripted. Yet recent suc- our two-fold contribution: our new non-parametric 3D sur-
cessful methods underscore the necessity for realistic dataface estimation method is explained in Section 3 while our
for both the general applicability of the estimation, and to large-scale dataset of real humans with ground-truth 3D
keep the underlying network architecture simple, as devoiddata is detailed in Section 4. Experiments are presented in
as possible of any domain speci ¢ adaptations. Section 5 and conclusions drawn in Section 6.

In order to overcome these dif culties, we propose a 2 Related Work
non-parametric approach that employs a double depth map
representation to encode the 3D shape of a person: a “visi-3D object from single images. Various representations
ble” depth map capturing the observable human shape andave been adopted for 3D object shape estimation. Voxel-
a “hidden” depth map representing the occluded surface arebased representations [5] consist in representing the 3D
estimated and combined to reconstruct the full human 3D shape as an occupancy map de ned on a xed resolution
shape. In this encoding of the 3D surface, the two depthvoxel grid. Octree methods [36] improve the computabil-
maps can be seen as the two halves of a virtual “mould”, ity of volumetric results by reducing the memory require-
see Figure 1. This representation allows a higher resolu-ments. Point-clouds are another widely employed represen-
tion output, potentially the same as the image input, with a tation for 3D shapes. In [7], Fan et al. estimate sets of 1024
much lower dimension than voxel-based volumetric repre- points from single images. Jiang et al. [15] build on this
sentations, i.eO(N 2) vs O(N ). We designed an encoder- idea and incorporate a geometric adversarial loss (GAL) to
decoder architecture that takes as input a single image andmprove the realism of the estimations. AtlasNet [10] di-
simultaneously produces an estimate for both depth mapsrectly estimates a collection of parametric surface elements
These depth maps are then combined to obtain a point cloudo represent a 3D shape. Our representation combines two
of the full 3D surface which can be readily reconstructed us- complementary depth maps aligned with the image, simi-
ing Poisson reconstruction [19]. Importantly, our fully dif- lar in spirit to the two halves of a “mould”, and shares the
ferentiable depth-based model allows us to ef ciently incor- resolution of the input image, capturing ner details while
porate a discriminator in an adversarial fashion to improve keeping output dimensionality reasonable.



Similarly to the work of Tatarchenko et al. [35] on re- of appearance. We instead propose to tackle real-world situ-
constructing vehicle images from different viewpoints, we ations, modeling and estimating the detailed 3D body shape
combine the estimation of several depth maps to obtain aincluding clothes, hair and manipulated objects.
3D shape. For human shape estimation, however, we work3D human datasets. Current approaches for human 3D
on a deformable object. Also, we focus on the visible and pose estimation are built on deep architectures trained and
hidden depth maps rather than any other because of theievaluated on large datasets acquired in controlled environ-
direct correspondence with the input image. Our two depth ments with Motion Capture systems [1, 14, 34]. However,
maps being aligned with the image, details as well as con-while the typology of human poses on these datasets cap-
textual image information are directly exploited by the skip tures the space of human motions very well, the visual ap-
connections to estimate the depth values. Multi-views [35] pearance of the corresponding images is not representative
do not necessarily have pixel-to-pixel correspondences withof the scenarios one may nd in unconstrained real-world
the image making depth prediction less straightforward.  images. There has been a recent effort to generate in-the-
3D human body shape from imagesMost existing meth- ~ Wild data with ground truth pose annotation [26, 32]. All
ods for body shape estimation from Sing|e images re|y these datasets prOVide accurate 3D annotation for a small
on a parametric model of the human body whose poseSet of body keypoints and ignore 3D surface with the excep-
and shape parameters are optimized to match image evition of [20] and [41] who annotate the SMPL parameters in
dence [2, 11, 20, 29]. This optimization process is usu- real-world images manually or using IMU. Although the re-
ally initialised with an estimate of the human pose supplied sulting dataset can be employed to evaluate under-cloth 3D
by the user [11] or automatically obtained through a detec- Pody shapes, its annotations are not detailed enough, and
tor [2, 20, 29] or inertial sensors [42]. Instead of optimizing importantly, its size is not suf cient to train deep networks.
mesh and skeleton parameters, recent approaches proposed T0 compensate for the lack of large scale training data
to train neural networks that directly predict 3D shape and required to train CNNs, recent work has proposed to gener-
skeleton con gurations given a monocular RGB video [37], ate synthetic images of humans with associated ground truth
multiple silhouettes [6] or a single image [18, 25, 28]. Re- 3D data [4, 31, 39]. In particular, the Surreal dataset [39],
cently, BodyNet [38] was proposed to infer the volumetric Produced by animating and rendering the SMPL model [23]
body shape through the generation of likelihoods on the 3D ©n real background images, has proven to be useful to train
Occupancy gnd of a person from a Sing'e image_ CNN a.rChiteCtUreS for bOdypartS parsing and 2.5D depth

A large body of work exists to extract human representa- prediction [39], 3D pose estimation [31, 33], or 3D shape

tions from multiple input views or sensors, of which some inference [38]. However, because it is based on the SMPL

recently use deep learning to extract 3D human representamOdel' this dataset is not realistic in terms of clothing, hair
tions [ ]. While they intrinsically aren't designed to or interactions with objects and cannot be used to train ar-

deal with monocular input as proposed, multi-view methods chitectures that target the estimation of a detailed 3D human
usually yield more complete and higher precision results asshape. We propose to bridge this gap by leveraging multi-

soon as several viewpoints are available, a useful feature wgamera shape data capture teghnlques [5, : 1, mtroduqng
leverage for creating the 3D HUMANS dataset. the rst large scale dataset of images showing humans in

imil h hods th _ realistic scenes, i.e. wearing real clothes and manipulating
. More similar to ours are t € methods that estimate pro- g, objects, dedicated to training with full 3D mesh and
jections of the human body: in [39], an encoder-decoder

hi di ved deoth t the h pose ground-truth data. Most similar to ours are the CMU
architecture predicts a quantized depth map of the um"’mPanoptic dataset [17] that focus on social interactions and

body while in DensePose [12] a mapping is eStainSheOIthe data of [45] that contains dense unstructured geometric
between the image and the 3D surface. Our method alsomotion data for several dressed subjects

makes predictions aligned with the input image but the

combination of two complementary ‘fvisible" and “hidden” 3 Methodology

depth maps leads to the reconstruction of a full 3D volume.

In [24], the authors complete the 3D point cloud built from  In this section, we present our new non-parametric 3D
the front facing depth map of a person in a canonical posehuman shape representation and detail the architecture that
by estimating a second depth map of the opposite viewpoint.we designed to estimate such 3D shape from a single image.
We instead predict both depth maps simultaneously from
a single RGB image and consider a much wider range of
body poses and camera views. All these methods rely ona We propose to encode the 3D shape of a person through
parametric 3D model [2, 18, 20] or on training data anno- a double 2.5D depth map representation: a “visible” depth
tated [12] or synthesised [39] using such a model. Thesemap that depicts the elements of the surface that are directly
models of humans built from thousands of scans of nakedobservable in the image, and a “hidden” depth map that
people such as the SMPL model [23] lack realism in terms characterises the occluded 3D surface. These two depth

3.1. “Mould” representation



maps can be estimated and combined to reconstruct the
complete human 3D shape as done when lining up the two
halves of a “mould”. See example in Figure 2.

Given a 3D mesh, obtained by animating a 3D human
model or by reconstructing a real person from multiple
views, and given a camera hypothesis, i.e. location and pa-
rameters, we de ne our two 2D depth mapg andzhg
by ray-tracing. Speci cally, we cast a ray from the camera
origin, in the direction of each image pixel locatifu; v)
and nd the closest intersecting point on the mesh surface:

Zyis [U; V] = kz@&'u-v) jipkiiz (1)

for the visible map, and the furthest one for the hidden map:

Zpig [u; V] = kzrggé_v)jjpkjjﬂ ) Figure 3. Reconstruction error for voxel grid and our “mould”
' when augmenting the dimensionality D of the representation,
where 3D points pig = f(pxi ; Py:i; Pzi )9 are expressed  D=N % for voxels grid and D2N ? for ours.
in camera coordinate system and the L2-ngjmji, is the

istance to th mer nter. Rayw notes th t of . . .
distance to the camera cente ) denotes the set o distance) between ground-truth vertices and the resulting

pointsp; on the ray passing through pixel; v) obtained by point clouds. This comparison is shown in Figure 3. The

hidden surface removal and visible surface determination. . . .
. . error obtained with our mould-representation decreases and
To be independent from the distance of the person to the L
?onverges to a minimum value that corresponds to surface

mera, w nter th h val n th nter of m . ) .
camera, ? cente _t € dept 0 _a ues 0_ the cente O_ ass 0deta|ls that cannot be correctly encoded even with high res-
the mesh, i.ezeig : Zyis [U; V]° = Zyis [U; V] Zorig 8u; v,

e ! ; X olution depth maps, i.e. when some rays intersect more than
and similarly forzpig [u; v]. Since they are de ned with re- : . :
I i twice with the human surface for particular poses. In prac-
spect to the same origin, the 2 depth maps[u;v] and . . : .
) . . ) . tice, we show in Section 5 that this can be solved by employ-
Zhid [U; v] can be readily combined in 3D space by merging . . : .
. . ; . 4 ing a Poisson reconstruction to obtain a smooth 3D surface,
their respective 3D point clouds into a global one: : . ;
including those areas. We can extrapolate from Figure 3
3) that voxel grids can reach perfect results with an in nity of
voxels, but for manageable sizes, our representation allows

An example of such a point cloud is depicted in Figure 2, to capture more details.
where points corresponding mis [u; V] andzhi’d [u;v] are 3.2 Architecture
respectively colored in red and blue. In practice, to keep the
depth values within a reasonable range and estimate them We formulate the 3D shape estimation problem as a
more accurately, we place a at background a distance pixel-wise depth prediction task for both visible and hidden
behind the subject to de ne all pixels values in the depths surfaces. Our framework builds on the stacked hourglass
maps in the rang¢ Zorg :::L]. Pointsp; of the point network proposed by Newell et al. [27] that consists of a
clouds are then selected as belonging to the human surfaceequence of modules shaped like an hourglass, each taking
ifps L. as input the prediction from the previous module. Each of
As in volumetric representation through voxel grid, our these modules has a set of convolutional and pooling layers
method also encodes 3D surfaces and point clouds of di-that process features down to a low resolution and then up-
verse sizes into a xed size representation, making a 3D sample them until reaching the nal output resolution. This
surface easier to consider as a deep network target. Howyprocess, combined with intermediate supervision through
ever, in our case, we can work at the image resolution with askip connections, implicitly captures the entire context of
much lower output dimensionali9(N 2) than voxel-based  the image. Originally introduced for the task of 2D pose
volumetric representatior®(N ), N being the size of the  estimation and employed later for part segmentation and
bounding box framing the human in the input image. depth prediction [39], this network is an appropriate choice
We numerically validated the bene t of our representa- as it predicts a dense pixel-wise output while capturing spa-
tion compared to a voxel grid approach by encoding a ran-tial relationships associated with the entire human body.
dom set of 100 meshes (picked from our 3D HUMANS We designed a 2-stack hourglass architecture that takes
dataset presented in Section 4) at different resolutions andas input an RGB imagé cropped around the human and
computing the 3D reconstruction error (average Chamferoutputs the 2 depths mapgs andz,iq aligned withl . We

[
fpig=fpidvis  fPiOhid



use alL| ; loss function de ned on all pixels of both depth The architecture employed as our discriminator is a 4
maps. The loss function to be minimized is thus the averagestack CNN. Each stack is composed of a convolutional layer
distance between the ground trzthand the estimatioy: (kernel size 3, stride 1), a group normalization layer (32
groups), a ReLu activation function and a MaxPool 2x2 op-
eration. There are 64 channels for the rst convolution and
the number of channels is multiplied by 2 at each stack un-
til reaching 512 for the 4th and last stack convolution. We
with P being the number of pixels in the batch atgl then connect our 8x8x512 ultimate feature map with 2 fully-
the network output for pixep, including pixels in both  connected layers of size 1024 and 512 neurons and then our
Zyis [U; V] andzyig [U; V] maps. nal output neuron on which we apply a binary cross en-

We also experimented with dn_, loss but found thatit  tropy loss. We jointly trained our generator and discrimina-
overly penalizes outliers, i.e. pixels incorrectly assigned to tor on 50,000 images for 40 epochs. Training is performed
background and vice versa, and therefore focuses only oron batches of size 8 with the Adam optimizer. Given our
that task. By using the ; norm, we force the network to  small training batch size, we found the use of group norm
not only segment the image correctly, i.e discriminate the [44] to be a great alternative to batch norm that was produc-
subject from the background, but also provide an accurateing training instabilities. The learning rate is kept constant
estimation of the depth at each pixel. at 1e-4 during the rst 20 epochs and is then decreased lin-
early to zero during the following 20 epochs. In practice,
since oulL 1 loss is much smaller than the;ay  l0Ss, we

As observed with other non-parametric methods [38] but multiply theL ; loss by a factor equal to 1e4. With this
also with approaches relying on a model [18], our network adversarial training, we observed that the results are sharper
can sometimes produce implausible shapes that do not lookand more realistic. In cases of deformed or missing limb,
human, especially when a limb is entirely occluded by other e.g. the legs in Figure 7 right, the use of a discriminator
parts of the body. To improve the accuracy and the “hu- forces the generator to produce a better prediction.
manness” of our prediction, we follow an adversarial train-
ing procedure inspired by the Generative Adversarial Net- 4. Dataset generation

works (GAN) [7]. Our fully derivable depth-based model We introduce 3D HUMANS (HUman Motion, Activities

allows us to ef ciently incorporate a discriminator in an ad- aNd Shape), a realistic large-scale dataset of humans in ac-

versarial fashion, i.e., the goal for the discriminator will be . th Pe), d-truth 3D dg h d | |

to correctly identify ground truth depth maps from gener- tion W't. groun -tru.t gta (shape and pose). It consists

ated ones. On the other hand, the generator objective wiIIOf sem|-_synthet|c videos with 3D pose and TQ’D boFiy shape
annotations, as well as 3D detailed surface including cloths

be two-fold: tting the training set distribution through the nd manipulated obiects. First. w tured 3D mesh
minimization of theL | ; loss (Equation 4) and tricking the a anipuiated objects. FIrst, we capture eshes
of humans in real-life situations using a multi-camera plat-

discriminator into classifying the generated depth maps as
ground truth depth maps through the minimization of the form. We then rendered these models on real-world back-

Leay loss: ground scenes. See examples in Figure 4a.
Capture. We employed a state of the art 3D capture

Lean (G;D) = E;;; [logD(l;2)]+ E [log(1 D(I;G(l))]: equipment with 68 color cameras to produce highly de-

(5) tailed shape and appearance information with 3D textured
Our discriminatoD will be trained to maximize the gan meshes. The meshes are reconstructed frame by frame in-
loss by estimating 1 when provided with ground-truth depth dependently. They are not temporally aligned and do not
mapsz and estimating 0 when provided with generated share any common topology. We divided the capture into 2
depth mapsG(l). In order to weigh the contribution of different subsets: in the rst one, 13 subjects (6 male and 7
each loss, we will use a factor, our full objective being  female) were captured with 4 different types of garments

L= g izp  Bj; (4)
p=1

3.3. Adversarial training

modeled as a minimax game: (bathing suit/tight clothing, short/skirt/dress, wide cloths
. and jacket) while performing basic movements e.g., walk,
(G ;D )=argmin max(Lean (G;D)+ LL1(G)): run, bend, squat, knees-up, spinning. In the second subset,

(6) 6 subjects, 4 male and 2 female, were captured while per-
Thel | ; loss will be used to learn the training set distribu- forming 4 different activities (talking on the phone, taking
tion by retrieving the low-frequency coef cients while the pictures, cleaning a window, mopping the oor) in 2 differ-
Lean loss will entice the generator into predicting realis- ent ways: standing/sitting for talking on the phone, stand-
tic and precise depth maps. It is important to note that the ing/kneeling for taking picture, etc. More than 150k meshes
discriminator is only used to guide the generator during the were reconstructed. The dataset was collected at Inria from
learning. The discriminator is not used at test time. consenting and informed participants.



(a) (b)
Figure 4. Data generation. (a) We captured 3D meshes of humans, wearing real clothes, moving and manipulating objects using a multi-
camera platform. We then rendered these models on real-world background scenes and computed ground-truth visible and hidden depths
maps. (b) We also generated a test set by rendering our meshes on realistic 3D environments.

Rendering. We rendered all our videos at a 320 x 240 reso-
lution using a camera of sensor size 32mm and focal length
60mm. Our videos are 100 frames in length and start with
the subject at the center of the frame. For the rst frame of
the sequence, the subject is positioned at a distance of 8 me-
ters of the camera, with a standard deviation of 1 meter. We
used the images of the LSUN dataset [46] for background.
Annotations. We augment our dataset with ground-truth
SMPL pose and body parameters. To do so, we use the Hu-
man3.6M [14] environment as a “virtual MoCap room”: we
render the 3D meshes for which we want to estimate the @ (b)

3D pose within that environment, generate 4 views using Figure 5. Comparaison with state-of-the-art on the SURREAL
cameralparameters and background |m§ges from the datas%rataset: (a) we rst compare against the BodyNet [38] baseline.
and estimate the 2D/3D poses by running LCR-Net++, an ) we analyse the impact of varying the size of the training set on
off-the-shelf 3D pose detector particularly ef cient on Hu- performance on our new 3D HUMANS dataset.

man3.6M. An optimum 3D pose is then computed using . - . .
b P b g iments, both training and test images are tightly cropped

multi-view 3D reconstruction and used as initialization to dth . biect tati Th I
t the SMPL model, estimating pose and shape parametersarour.] € PErson using subjects segmentation. the small-
est dimension of the image is extended to obtain a square

that better match each mesh. The SMPL model is tted to . that is th od 1o 256x256 pixels t
the point clouds both for naked and dressed bodies. Keep-!mage at I1s then resized 10 X PIXEIS 1o SEIve as

ing the body parameters xed (obtained from tsin minimal sz;t 1f(2):3 ourt nett\(/jvorl:r.] Performa?hc N (;S tcomputt)e(tj on both h
clothing) resulted in a lower performance of the baseline X output depth maps as he distance between eac

. - ground truth foreground pixel and its corresponding pixel
when evaluated against ground truth dressed bodies. in the predicted depth map. Background depfs set at

1.5m.

We analyse quantitatively and compare our approach t05'1' SURREAL
the state-of-the-art on two datasets. First, the SURREAL Recent methods [38, 39] evaluate their performance on
dataset [39], a synthetic dataset obtained by animating tex-this dataset. First, we evaluated the performance of our ar-
tured human models using MoCap data and rendering thenchitecture when estimating quantized depth values (19+1
on real background images, and our 3D HUMANS datasetfor background) through classi cation as in [39] and our
introduced in this paper. While SURREAL covers a wider proposed regression method: with a maximum distance to
range of movements since it has been rendered using thougroundtruth of 30mm, the quantity of pixels with a correct
sands of sequences from [1], our data better covers shapéepth estimation increase B% when using regression in-
details such as hair and clothing. In the following exper- stead of classi cation. Then, we compare in Figure 5a our

5. Experiments



(@) (b) (©) (d)
Figure 6. Evaluation on our 3D HUMANS dataset: we rst analyze the in uence of the training data on performance (a). Then, we
compare against the SMPL baseline (b). We compare the performance on visible and hidden depth map separately (c). Finally, we analyse
the training data on a dataset rendered in realistic backgrounds and observe that SURREAL data is important for generalisation (d).

performance against the recent BodyNet voxel grid-basedarchitecture on 50,000 images is suf cient and that using
architecture from [38] who also reported numerical perfor- more training images does not improve much the perfor-
mance on SURREAL. Although good 3D performances are mance. The appearance of our images being quite different
reported in the paper, we can see that when evaluating infrom SURREAL data, we rst compare the performance of
the image domain, i.e., comparing depth maps, the perfor-our method when considering different training strategies:
mance of BodyNet drops. Our method makes 3D estima-training on SURREAL, training on 3D HUMANS, or train-
tions aligned with the image and better recover details, out-ing on a mix of both datasets. In Figure 6a, we can see
performing BodyNet quite substantially. that the best performances are obtained when SURREAL
images are not used. The appearance of the images is too
different and our architecture cannot recover details such
as clothes or hair when trained on data obtained by ren-
dering the SMPL model. This is veri ed by the result de-
picted in Figure 6b: we outperform, by a large margin, a
baseline obtained by tting the SMPL model on the ground
truth meshes, effectively acting as an upper bound for all
methods estimating SMPL meshes [2, 18]. It shows the in-
ef ciency of these methods to estimate clothed body shape
since clothes are not included in the SMPL model.

Finally, we analyse in Figure 6¢c how much our perfor-
mance varies between front and back depth maps. As ex-
pected, we better estimate the visible depth map, but our
hidden depth maps are usually acceptable. See examples

Figure 7. Performance on 3D-HUMANS dataset in presence of N Figure 7 and Figure 8. The quality of the 3D recon-
severe occlusions on three frames: (top) input images, (left) with Structions is remarkable given the low dimensionality of the
GAN, (right) without GAN. Errors above 15cm are shown in red. input. Main failures occur when a limb is completely oc-

The GAN helps increase the “humanness” of the predictions. cluded. In such cases, the network can create non-human
shapes. We proposed to tackle this issue by considering an
5.2 3D HUMANS adversarial training that we analyse in the next section. We

note a higher performance on 3D HUMANS than on SUR-

We consider 14 subjects (8 male, 6 female) for training REAL. We attribute that to several factors including the
and the remaining 5 subjects (2 male, 3 female) for test. higher pose variability in SURREAL (some subjects are in
An interesting aspect of synthetic datasets is that they of-horizontal position) and the absence of lighting in 3D HU-
fer an almost unlimited amount of training data. In our MANS. We also analyzed the results on different subsets of
case, the data generation relies on a capture process with the evaluation set @50mm and obtained with/without cloth-
non-negligible acquisition effort. It is therefore interesting ing: 83.3® and 85.4%6 respectively and with/without ob-
to analyze how adding more training data impacts the per-ject: 79.126 and 84.55%6 respectively, con rming the nui-
formance. Our results in Figure 5b show that training our sance introduced by these elements.



Figure 8. Generalisation to previously unobserved data. We apply
our pipeline to images with 3D realistically rendered backgrounds
(left), and with 3 real-world images from the LSP dataset (right).
These poses, in particular the baseball player, have not been seen
at training time but our model still generalizes well.

5.3. GAN

Severe occlusions (self- or by other elements of the
scene) are a limitation of our model that we address with
adversarial training. We carried out a dedicated experiment
where we arti cially generated such occlusions in train/test
images to quantify improvements. We obtain a 7% cham-
fer distance error drop with adversarial training and a clear
qualitative improvement which we illustrate in Figure 7.
We highlight the differences by showing an error heat-map )
over a Poisson reconstruction of the point cloud for better 6. Conclusion
visualization. The quantitative gain is limited due to the
network sometimes hallucinating plausible limbs far from
groundtruth (red hand in the left Figure 7), resulting in
higher error than a network without GAN that does not es-
timate any limb at all. This is because the metric does not
evaluate the overall plausibility of the produced estimation.

Figure 9. Comparison between HMR [18] (left), Bodynet [38]
(middle) and our method (right). Unlike [18, 38], we do not train
on in-the-wild images but estimate 3D shapes of clothed subjects.

We have proposed a new non-parametric approach to en-
code the 3D shape of a person through a double 2.5D depth
map representation: a “visible” depth map depicts the ele-
ments of the surface that are directly observable in the im-
age while a “hidden” depth map characterises the occluded
3D surface. We have designed an architecture that takes as
5.4. Generalisation input a single image and simultaneously produces an esti-

o ) o mate for both depth maps resulting, once combined, in a

In order to quantitatively measure its generalisation ca- ,int cloud of the full 3D surface. Our method can recover
pability, \{ve have evalugted our netwqu on an additional detailed surfaces while keeping the output to a reasonable
dataset: instead of static background images, we have reng;, This makes the learning stage more ef cient. Our ar-

dered the meshes in realistic 3D environments obtained On.hjectyre can also ef ciently incorporate a discriminator in
the internet (examples in Figure 4b). The results (Figure 6d) 5 5 gyersarial fashion to improve the accuracy and “human-
show that a mix training on both SURREAL and 3D HU- a4 of the output. To train and evaluate our network, we

MANS is ideal for generalisation. We suspect that jointly paye captured a large-scale dataset of textured 3D meshes
rendering the subject and the 3D background at the sam&p a1 \ye rendered on real background images. This dataset

time creates a more realistic image where the subject ISy he extended and released to spur further research.
more complicated to segment, hence the need for more vari-

ability in the training data. We also generated qualitative Acknowledgements. We thank Pau De Jorge and Jinlong
results for LSP images [16], depicted in Figure 8, and for Yang for their help in capturing the data employed in this
the DeepFashion dataset [22], shown in Figure 9 where wepaper. The dataset was acquired using the Kirfopiat-

compare our approach with HMR [18] and BodyNet [38]. form. This work was supported in part by ERC advanced
We can observe that our approach captures more details, ingrant Allegro.

cluding hair, shirt and the belly of the pregnant woman (up),
hair, skirt and body pose (middle) and dress (bottom). 2https://kinovis.inria.fr
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Table 1. Generator architecture.

7.2. Discriminator

ble 2 for details.

For our discriminator, we employed a 4 stacks CNN. It
takes as input a set of 2 depth maps at resolution 128x128
and outputs a scalar: close to 1.0 if it believes they are sam-
pled from the ground truth depth maps and close to O if it
"believes they have been generated by the generator. See Ta-

[44] Y. Wu and K. He. Group normalization. BCCV, 2018. 5,
10
[45] J.Yang, J.-S. Franco, Fdttoy-Wheeler, and S. Wuhrer. Es- Layer | Layertype Output shape
timation of Human Body Shape in Motion with Wide Cloth- Input | Input 128x128x2
ing. INECCV, 2016. 3 Convl | Conv 3x3 stride=1, GroupNorm, Relu | 128x128x64
[46] F. Yu, Y. Zhang, S. Song, A. Seff, and J. Xiao. LSUN: Con- | pp1 MaxPool 2x2 64X64x64
st_ruction of a_large-scale image da_taset u_sing deep leaming™ =2 | Conv 3x3 stride=1, GroupNorm, Relu | 64x64x128
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Conv4 | Conv 3x3 stride=1, GroupNorm, Relu | 16x16x512
MP4 MaxPool 2x2 8x8x512
An nex FC1 Fully connected layer 1024
FC2 Fully connected layer 512
FC3 Fully connected layer 1

7. Architecture details
7.1. Generator

The main difference between our generator architecture
and the stacked hourglass by Newell et al. [27] is the out-
put dimension. Newell et al. estimate a 64x64 resolu-
tion heatmap for each body joint. In our case, we esti-
mate 2 depth maps and aim at a higher 128x128 resolution.
Our hourglass output dimension is 128x128x2. Because of
this difference in output resolution, we apply the following
modi cations to the stacked hourglass [27] architecture: We
do not use a maxpooling operation after layerl, we increase
the depth of the hourglasses from 4 to 5 skipped connec-
tions, we project the hourglass result on 2 channels (one for
each depth map). Also, we use 2 stacked hourglasses and
we replace batch normalization by group normalization [44]
that performs better on small training batches. See architec-
ture details in Table 1.
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Table 2. Discriminator architecture.




