L. Adleman, The function field sieve, Algorithmic Number Theory (ANTS-I), vol.877, pp.108-121

. Springer, , 1994.

M. Leonard, . Adleman, A. Ming-deh, and . Huang, Function field sieve method for discrete logarithms over finite fields. Information and Computation, vol.151, pp.5-16, 1999.

D. F. Aranha and C. P. Gouvêa, RELIC is an Efficient LIbrary for Cryptography

S. Bai, Polynomial Selection for the Number Field Sieve, 2011.

S. Bai, R. P. Brent, and E. Thomé, Root optimization of polynomials in the number field sieve, Math. Comp, vol.84, issue.295, pp.2447-2457, 2015.
URL : https://hal.archives-ouvertes.fr/hal-00919367

R. Barbulescu and S. Duquesne, Updating key size estimations for pairings, Journal of Cryptology, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01534101

R. Barbulescu, P. Gaudry, A. Guillevic, and F. Morain, Improving NFS for the discrete logarithm problem in non-prime finite fields, EUROCRYPT 2015, Part I, vol.9056, pp.129-155, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01112879

R. Barbulescu, P. Gaudry, A. Joux, and E. Thomé, A heuristic quasi-polynomial algorithm for discrete logarithm in finite fields of small characteristic, LNCS, vol.8441, pp.1-16, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00835446

R. Barbulescu, P. Gaudry, and T. Kleinjung, The tower number field sieve, ASIACRYPT 2015, Part II, vol.9453, pp.31-55, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01155635

R. Barbulescu and A. Lachand, Some mathematical remarks on the polynomial selection in NFS, Math. Comp, vol.86, issue.303, pp.397-418, 2017.
URL : https://hal.archives-ouvertes.fr/hal-00954365

R. Barbulescu, N. E. Mrabet, and L. Ghammam, A taxonomy of pairings, their security, their complexity, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02129868

Y. Bistritz and A. Lifshitz, Bounds for resultants of univariate and bivariate polynomials, Special issue devoted to the 15th ILAS Conference at Cancun, vol.432, 1995.

S. Bowe, BLS12-381: New zk-SNARK elliptic curve construction. Zcash blog, 2017.

D. Coppersmith, A. M. Odlyzko, and R. Schroeppel, Discrete logarithms in GF(p), Algorithmica, vol.1, issue.1, pp.1-15, 1986.

C. Costello, K. Lauter, and M. Naehrig, Attractive subfamilies of BLS curves for implementing high-security pairings, LNCS, vol.7107, pp.320-342, 2011.

K. Foster, HT90 and simplest number fields, Illinois J. Math, vol.55, issue.4, pp.1621-1655, 2011.

J. Fried, P. Gaudry, N. Heninger, and E. Thomé, A kilobit hidden SNFS discrete logarithm computation, EUROCRYPT 2017, Part I, volume 10210 of LNCS, pp.202-231, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01376934

P. Gaudry, L. Grémy, and M. Videau, Collecting relations for the number field sieve in GF, LMS Journal of Computation and Mathematics, vol.19, issue.6, pp.332-350, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01273045

R. Granger, T. Kleinjung, and J. Zumbrägel, Breaking '128-bit secure' supersingular binary curves -(or how to solve discrete logarithms in F 2 4·1223 and F 2 12·367 )

, LNCS, vol.II, pp.126-145, 2014.

L. Grémy, Algorithmes de crible pour le logarithme discret dans les corps finis de moyenne caractéristique, 2017.

L. Grémy, Higher dimensional sieving for the number field sieve algorithms, ANTS 2018 -Thirteenth Algorithmic Number Theory Symposium, vol.2, pp.275-291, 2019.

L. Grémy, A. Guillevic, F. Morain, and E. Thomé, Computing discrete logarithms in F p 6, LNCS, vol.10719, pp.85-105, 2017.

A. Guillevic, Faster individual discrete logarithms in finite fields of composite extension degree, Math. Comp, vol.88, issue.317, pp.1273-1301, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01341849

A. Guillevic, S. Masson, and E. Thomé, Cocks-Pinch curves of embedding degrees five to eight and optimal ate pairing computation. Cryptology ePrint Archive, 2019.

A. Joux and R. Lercier, Improvements to the general number field sieve for discrete logarithms in prime fields. A comparison with the Gaussian integer method, Math. Comp, vol.72, issue.242, pp.953-967, 2003.
URL : https://hal.archives-ouvertes.fr/hal-01102016

A. Joux, R. Lercier, N. Smart, and F. Vercauteren, The number field sieve in the medium prime case, LNCS, vol.4117, pp.326-344, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01102034

A. Joux and C. Pierrot, The special number field sieve in F p n -application to pairing-friendly constructions, Zhenfu Cao and Fangguo Zhang, vol.8365, pp.45-61, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01213666

M. Kalkbrener, An upper bound on the number of monomials in determinants of sparse matrices with symbolic entries, Mathematica Pannonica, vol.8, pp.73-82, 1997.

E. Kaltofen, Analysis of Coppersmith's block Wiedemann algorithm for the parallel solution of sparse linear systems, Math. Comp, vol.64, issue.210, pp.777-806, 1995.

T. Kim and R. Barbulescu, Extended tower number field sieve: A new complexity for the medium prime case, CRYPTO 2016, Part I, vol.9814, pp.543-571, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01281966

T. Kim and J. Jeong, Extended tower number field sieve with application to finite fields of arbitrary composite extension degree, Part I, vol.10174, pp.388-408, 2017.

T. Kleinjung, C. Diem, A. K. Lenstra, C. Priplata, and C. Stahlke, Computation of a 768-bit prime field discrete logarithm, Part I, vol.10210, pp.185-201, 2017.

A. Menezes, P. Sarkar, and S. Singh, Challenges with assessing the impact of NFS advances on the security of pairing-based cryptography, Mycrypt Conference, Revised Selected Papers, vol.10311, pp.83-108, 2016.

B. A. Murphy, Polynomial selection for the number field sieve integer factorisation algorithm, 1999.

I. Niven, L. Hugh, H. S. Montgomery, and . Zuckerman, An introduction to the theory of numbers, 1991.

C. C. Geovandro, M. A. Pereira, M. Simplício, P. S. Naehrig, and . Barreto, A family of implementation-friendly BN elliptic curves. Cryptology ePrint Archive, 2010.

P. Sarkar and S. Singh, A general polynomial selection method and new asymptotic complexities for the tower number field sieve algorithm, ASIACRYPT 2016, Part I, vol.10031, pp.37-62, 2016.

P. Sarkar and S. Singh, New complexity trade-offs for the (multiple) number field sieve algorithm in non-prime fields, EUROCRYPT 2016, Part I, vol.9665, pp.429-458, 2016.

P. Sarkar and S. Singh, A unified polynomial selection method for the (tower) number field sieve algorithm, Adv. in Math. of Comm, vol.13, issue.3, pp.435-455, 2019.

O. Schirokauer, Discrete logarithms and local units, Philos. Trans. Roy. Soc. London Ser. A, vol.345, pp.409-423, 1676.

C. The and . Team, CADO-NFS, an implementation of the number field sieve algorithm, 2019.

Y. Zhu, J. Zhuang, C. Lv, and D. Lin, Improvements on the individual logarithm step in extended tower number field sieve, vol.727, 2016.