
HAL Id: hal-02263280
https://inria.hal.science/hal-02263280

Submitted on 3 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Global-in-Time Domain Decomposition for a Nonlinear
Diffusion Problem

Elyes Ahmed, Caroline Japhet, Michel Kern

To cite this version:
Elyes Ahmed, Caroline Japhet, Michel Kern. Global-in-Time Domain Decomposition for a Nonlinear
Diffusion Problem. DD 2018 - 25th International Domain Decomposition Conference, Jul 2018, St
John’s, Canada. pp.202-209, �10.1007/978-3-030-56750-7�. �hal-02263280�

https://inria.hal.science/hal-02263280
https://hal.archives-ouvertes.fr


Global–in–Time Domain Decomposition for a
Nonlinear Diffusion Problem

Elyes Ahmed and Caroline Japhet and Michel Kern

1 Introduction

We study a simplified model for two–phase flow in porous media, where the medium
is made of two (or more) different rock types. Each rock type is a subdomain with
a distinct capillary pressure function so that the saturation becomes discontinuous
across the interface between the different regions. This leads to the phenomenon of
capillary trapping (see [14], or [5]).

In this paper we develop a non-overlapping domain decomposition method that
combines the Optimized Schwarz Waveform Relaxation method with Robin trans-
mission conditions and the discontinuous Galerkin method in time. The domain
decomposition method we present is global-in-time, which provides flexibility for
using non-matching time grids so as to handle the very different time scales that
occur in the different rocks of the porous medium. The method is a generalization of
previous work on linear diffusion or diffusion–advection problems [10, 11].

We state briefly the physical model, referring to [2] for further details. The porous
medium Ω is heterogeneous and made-up of two rock types, represented by open
bounded subsets (Ωi)i∈{1,2} (the restriction to two subdomain is only to simplify the
exposition, and indeed the example given in section 4 uses more than 2 subdomains).
The subdomains share the interface Γ = Ω1 ∩Ω2. We suppose that each subdomain
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Ωi is homogeneous, so that the physical properties depend on space only through
the subdomain index.

We consider the following nonlinear diffusion problem (for some time T > 0)

∂tui − ∇ · (λi (ui)∇πi (ui)) = 0, in Ωi × (0,T ), (1)

for scalar unknowns ui = u |Ωi ∈ [0, 1] representing the gas saturation. This model
can be obtained from the complete two-phase flowmodel by neglecting the advection
terms in the saturation equation, so that the saturation and pressure equations become
completely decoupled (see [5] for details). In the above reference, it is shown that
this simplified model is sufficient to study gas trapping in low capillary pressure
regions. The functions πi (ui) : [0, 1] → R (Lipschitz and strictly increasing) and
λi (ui) : [0, 1] → R are respectively the capillary pressure and the global mobility
of the gas in subdomain Ωi . Initial data u0 ∈ L2([0, 1]) is given with u0 > 0, and for
simplicity we assume homogeneous Neumann boundary conditions on ∂Ω.

Transmission conditions across the interface Γ × [0,T] are needed to comple-
ment (1) (see [6]). In the simple case where π1(0) = π2(0) and π(1) = π2(1), the
transmission conditions are simply the continuity of the capillary pressure and of
the diffusive flux across the interface:

π1(u1) = π2(u2)
λ1∇π1(u1) · n1 = −λ2∇π2(u2) · n2

on Γ × [0,T], (2)

where ni is the unit, outward pointing, normal vector field on ∂Ωi . In the case when
the above matching conditions are not satisfied, one has to truncate the capillary
pressure functions and the transmission conditions are given in terms of the modified
functions (see [1, 2] for details).

In the next section, this physical problem is rewritten in a form better suited for
mathematical and numerical analysis. In particular, the existence of a weak solution
of the local Robin problems is addressed. A semi–discrete formulation based on
discontinuous Galerkin in time is given in section 3 and numerical experiments
using a finite volume method are described in section 4.

2 Space–time domain decomposition at the continuous level

Themodel stated above is well adapted to physical modeling, but is difficult to handle
mathematically because of the low regularity of the solutions. To obtainmathematical
results, it has been found useful to introduce the Kirchhoff transformation [5], so
that λi and πi are replaced by a single function ϕi , and following [4] to introduce
new functions (Πi)i=1,2 that are smoother than πi but satisfy

π1(u1) = π2(u2) ⇔ Π1(u1) = Π2(u2).

In terms of the new functions, the problem becomes
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∂tui − ∆ϕi (ui) = 0, in Ωi × (0,T ), ui (·, 0) = u0, in Ωi, (3)

together with a Neumann boundary condition on ∂Ωi\Γ and the transmission con-
ditions

Π1(u1) = Π2(u2)
∇ϕ1(u1) · n1 = −∇ϕ2(u2) · n2,

on Γ × (0,T ). (4)

An existence theorem is known for the transmission problem (3), (4), see [4, 5]
where existence of a suitably defined weak solution is proved.

An equivalent formulation to the model problem (3)–(4) can be obtained by
replacing (4) by equivalent Robin transmission conditions on Γ × (0,T ):

∇ϕ1(u1)·n1 + α1Π1(u1) = −∇ϕ2(u2)·n2 + α1Π2(u2),
∇ϕ2(u2)·n2 + α2Π2(u2) = −∇ϕ1(u1)·n1 + α2Π1(u1),

on Γ × (0,T ), (5)

where α1 and α2 are two functions on Γ × (0,T ) that can be chosen to enhance the
convergence of the method (see [9, 10] for linear problems and [3] for a reaction-
diffusion problem with nonlinear source term). It is shown in [1] how the Robin
transmission conditions can be extended to Ventcell transmission conditions, to
further improve the convergence of the method.

The Optimized SchwarzWaveformRelaxation with nonlinear Robin transmission
conditions (NL–OSWR) is defined by the following iterations, where Ψ0

i is a given
initial Robin guess on Γ × (0,T ) for i = 1, 2:

∂tuk
i − ∆ϕi (u

k
i ) = 0, in Ωi × (0,T ),

∇ϕi (uk
i ) · ni + αiΠi (uk

i ) = Ψk−1
i , on Γ × (0,T ),

(6)

with suitable initial and boundary conditions, then set

Ψ
k
i := −∇ϕ j (uk

j )·nj + αiΠj (uk
j ), j = (3 − i), k ≥ 1. (7)

We give an existence result for the subdomain problem, namely problem (6) with
the iteration k and the subdomain Ωi fixed. This is needed because of the Robin
boundary condition. First a notion of weak solution is defined:

Definition 1 (Weak solution for the local Robin problem) A function u is said
to be a weak solution of problem (6) (with initial condition u0 and homogeneous
Neumann boundary condition on ∂Ωi\Γ if it satisfies:

1. u ∈ L∞(Ωi × (0,T )), 0 ≤ u ≤ 1 a.e. in Ωi × (0,T ),
2. ϕ(u) ∈ L2(0,T ; H1(Ωi)), and Π(u, ·) ∈ L2(0,T, H1(Ωi)),
3. For all ψ ∈ Ctest =

{
h ∈ H1(Ω × (0,T )), h(.,T ) = 0

}
,
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−

∫ T

0

∫
Ωi

u(x, t)∂tψ(x, t) dxdt −
∫
Ωi

u0ψ(x, 0) dx

+

∫ T

0

∫
Ωi

∇ϕ(u(x, t)) · ∇ψ(x, t) dxdt −
∫ T

0

∫
Γ

αΠ(u(x, t))ψ dγ(x)dt

=

∫ T

0

∫
Γ

Ψ
k−1
i (x, t)ψ dγ(x)dt, (8)

where dγ(x) is the (d − 1)-dimensional Lebesgue measure on ∂Ωi .

The following existence result is proven in [2].

Theorem 1 Assume that the initial condition u0i = u0 |Ωi
is in L∞(Ωi) and satisfies

u0i (x) ∈ [0, 1] for all x ∈ Ωi , that Ψk−1
i ∈ L2(Ωi × (0,T )), that the following

conditions hold:

1. ϕi is a strictly increasing Lipschitz continuous function on (0, 1);
2. Πi is a non–decreasing continuous function on (0, 1);

and that αi is chosen such that holds:

0 < Ψk
i (x, t) < αiΠ(1), ∀(x, t) ∈ Ωi × (0,T ). (9)

Then there exists a weak solution to Problem (6) in the sense of Definition 1.

The proof is an adaptation to Robin boundary conditions of the proof in [4, 5]. It is
based on the convergence of a finite volume scheme.

We have chosen to state assumptions 1) and 2) above in terms of the functions
ϕi and Πi , but of course one can translate the regularity conditions in terms of
(essentially the same) conditions on the original functions πi and λi , as stated in
the introduction. Additionally, note that in the context of the NL–OSWR method
assumption (9) will have to be checked iteratively to prove that the algorithm is well
posed (see section 3).

3 Semi–discrete space–time domain decomposition with different
time steps in the subdomains

In order to focus on the non–conforming in time discretization, we keep the problem
continuous in space.

We introduce a non–conforming time discretization, that is each subdomain Ωi

has its own time discretization, by using a (lowest order) Discontinuous Galerkin
(DG) time discretization on each subdomain, together with a projection across the
interface (see [9, 10] for an analysis in the linear case). More precisely, for integers
Mi , define δti = T/Mi + 1, and and partition [0,T] in sub-intervals Jn

i = (tni , t
n+1
i ]

of size δti , where tni = nδti , for n = 0, . . . , Mi + 1. The time grid is denoted by
Mi = {Jn

i , n = 0, . . . , Mi }.
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In the NL–OSWR method, we have to solve problem (6) in each subdomain over
the whole time interval (0,T ) (or over a time window). In order to deal with the
non–conformity in time, it will be convenient to regard the discrete unknowns as
piece-wise constant functions in time. For each i = 1, 2, we let

uk
i (t) = uk,n

i for t ∈ Jn
i .

where uk,n
i is the semi-discrete counterpart of ui on Jn

i . Given initial iterates
Ψ0
i (t), for i = 1, 2, we describe one iteration of the NL–OSWR method.
Starting from the semi–discrete initial condition uk,0

i = u0i , a semi–discrete
solution

(
uk,n+1
i

)
i=1,2

at time step n ∈ {0, . . . , Mi } is computed by solving

uk,n+1
i − uk,n

i

δti
− ∆ϕi (u

k,n+1
i ) = 0 in Ωi,

∇ϕi (u
k,n+1
i ) · ni + αiΠi (u

k,n+1
i ) =

1
δti

∫
Jn
i

Ψ
k−1
i (t) dt, on Γ × (0,T ),

(10)

We must now define Ψk
i (t) for the next NL–OSWR iteration. As we do not

assume matching time grids across the space–time interface Γ× (0,T ), data must be
transferred from one space–time subdomain to its neighbor. This is done by using a
suitable L2 projection. Thus we define, for n = 1, . . . , Mi , with j = 3 − i,

(Ψk
i (t)) |Jn

i
=

1
δti

Mj∑
m=1

∫
Jn
i ∩J

m
j

(
−∇ϕ j (uk−1

j (t)) · nj + αiΠj (uk−1
j (t))

)
dt. (11)

Last, we check that the NL–OSWR algorithm is well posed. That is, we need to
verify that Assumption 9 holds for every iteration. The initial iterate and the Robin
coefficients are chosen such that it holds for k = 0. We have been able to show that
this remains true throughout the algorithm only in the matching case, that is when
the capillary pressure functions satisfy

π1(0) = π2(0) and π1(1) = π2(1).

4 Numerical experiment

The domain Ω is the unit cube, decomposed into two subdomains with two rock
types (see figure 1). The mobilities and capillary pressure functions are given by

λo,i (u) = u, i ∈ {1, 2}, π1(u) = 5u2, and π2(u) = 5u2 + 1.

The initial condition is that the domain contains some quantity of gas, situated
only within Ω1. The domain is discretized by a mesh of 20 × 20 × 20 elements, the
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time discretization is non–conforming, with constant time steps in each subdomain
δt1 = 10−3, and δt2 =

1
810−2.

The full discretization was carried out with a two–point finite volume scheme [5].
One has to introduce additional unknowns on the interface in order to discretize
the Robin transmission conditions. The method was implemented with the Matlab
Reservoir Simulation Toolbox [13]. The nonlinear subdomain problem is solved with
Newton’s method.

The only change required to the finite volume scheme to cope with a non–
conforming time scheme is the projection of the right hand side of the transmission
condition on the grid of the current subdomain. This is what makes the choice
of a DG formalism important, together with a global in time DD method. The
resulting scheme is non-conforming in time, and the equivalence with the physical
transmission conditions no longer holds. The projections can be computed using an
algorithm with linear complexity described in [7, 8].

Fig. 1 Test case 1: Saturation u(t) for t = 0.3 and t = 3

The evolution of the saturation at two time steps is shown in Fig. 1. We remark
that at the beginning of the simulation, approximately until t ≈ 0.02, the gas cannot
penetrate to the domain Ω2, since the capillary pressure is lower than the threshold
value π2(0) = 1, which is known as the entry pressure. The saturation of the trapped
gas inΩ1 as well as the capillary pressure increase until the capillary pressure reaches
the entry pressure.

We study the convergence behavior of the NL–OSWR algorithm. The tolerance
for Newton’s method is fixed to 10−8. The tolerance of the NL–OSWR algorithm is
10−6. The Robin parameters are chosen for the two subdomains so as to minimize
the convergence rate of a linearized version of the problem. Precisely, we take in the
model problem the capillary pressure as unknown, then linearize the nonlinear terms,
leading to determine the optimal Robin parameters for a linear diffusion problemwith
discontinuous coefficients similar to that in [10, 12]. We show in Fig. 2 (right) the
relative residuals comparing the convergence history with the parameters calculated
numerically by minimizing the convergence factor for the linearized problem and
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that of with the best parameters located in the zone giving the smaller errors after
the same number of iterations (see Fig. 2 left).

Fig. 2 Test case 1: Left: Level curves for the residual error obtained after 10 iterations for various
values of the parameters α1 and α2. The star (in magenta) marked the parameters obtained with the
minimization process of the convergence factor applied to the linearized problem which is close to
the best one marked by times symbol (in black). Right: The convergence curves.

We now analyze the efficiency in time of the method with nonconforming time
steps. We compute a reference solution as the converged multidomain solution with
conforming fine time grids δt f = 1

410−3, and where the relative residual is taken
smaller than 10−12. We then compare the solution obtained with the nonconforming
time steps, as described above with two solutions computed first with conforming
fine time steps (δt1 = δt2 = 10−3) and then with conforming coarse time steps
((δt1 = δt2 =

1
810−2)). Fig. 3 shows the error in the saturation along a line orthogonal

to the interface at three different time steps. One can see that the nonconforming
solution as well as the solution with conforming and fine steps are in close agreement
with the reference solution, whereas the solution with coarse time steps has a larger
error. This confirms that nonconforming time grids with respect to the rock type
numerically preserve the accuracy in time of the multidomain solution.

Fig. 3 Test case 1. Error in saturation along a line orthogonal to the interface, nonconforming and
conforming (coarse and fine) time-steps. Left T = Tf /20, right, T = Tf .
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Other examples with more physical content can be found in [1] and [2].
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