G. Dawson, S. J. Webb, and J. Mcpartland, Understanding the nature of face processing impairment in autism: insights from behavioral and electrophysiological studies, Developmental Neuropsychology, vol.27, issue.3, pp.403-424, 2005.

S. Wang, M. Jiang, X. M. Duchesne, E. A. Laugeson, D. P. Kennedy et al., Atypical visual saliency in autism spectrum disorder quantified through model-based eye tracking, Neuron, vol.88, issue.3, pp.604-616, 2015.

N. J. Sasson, J. T. Elison, L. M. Turner-brown, G. S. Dichter, and J. W. Bodfish, Brief report: Circumscribed attention in young children with autism, Journal of autism developmental disorders Autism Research, vol.41, issue.2, pp.242-247, 2010.

N. J. Sasson, L. M. Turner-brown, T. N. Holtzclaw, K. S. Lam, and J. W. Bodfish, Children with autism demonstrate circumscribed attention during passive viewing of complex social and nonsocial picture arrays, Autism Research, vol.1, issue.1, pp.31-42, 2008.

T. Higuchi, Y. Ishizaki, A. Noritake, Y. Yanagimoto, H. Kobayashi et al., Spatiotemporal characteristics of gaze of children with autism spectrum disorders while looking at classroom scenes, PLoS ONE, vol.12, issue.5, pp.1-19, 2017.

T. Wadhera and D. Kakkar, Emerging Trends in the Diagnosis and Intervention of Neurodevelopmental Disorders, pp.125-152, 2018.

G. Wan, X. Kong, B. Sun, S. Yu, Y. Tu et al., Applying Eye Tracking to Identify Autism Spectrum Disorder in Children, Journal of Autism Developmental Disorders, vol.49, issue.1, pp.209-215, 2019.

M. Jiang and Q. Zhao, Learning visual attention to identify people with autism spectrum disorder, IEEE Int. Conf. on Comput. Vis, pp.3267-3276, 2017.

X. Huang, C. Shen, X. Boix, and Q. Zhao, Salicon: Reducing the semantic gap in saliency prediction by adapting deep neural networks, IEEE Int. Conf. on Comput. Vis, pp.262-270, 2015.

M. Cornia, L. Baraldi, G. Serra, and R. Cucchiara, A deep multi-level network for saliency prediction, Int. Conf. on Pattern Recognit, pp.3488-3493, 2016.

W. Wang and J. Shen, Deep visual attention prediction, IEEE Transactions on Image Processing, vol.27, issue.5, pp.2368-2378, 2018.

M. Cornia, L. Baraldi, G. Serra, and R. Cucchiara, Predicting human eye fixations via an lstm-based saliency attentive model, IEEE Transactions on Image Processing, vol.27, issue.10, pp.5142-5154, 2018.

A. Borji, Saliency prediction in the deep learning era: An empirical investigation, vol.10, 2018.

K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale image recognition, vol.9, 2014.

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh et al., Imagenet large scale visual recognition challenge, International journal of Comput. Vis, vol.115, issue.3, pp.211-252, 2015.

X. Glorot and Y. Bengio, Understanding the difficulty of training deep feedforward neural networks, thirteenth Int. Conf. on Artificial Intelligence and Statistics, pp.249-256, 2010.

T. Judd, K. Ehinger, F. Durand, and A. Torralba, Learning to predict where humans look, Int. Conf. on Comput. Vis. (ICCV), pp.2106-2113, 2009.

J. Pan, C. C. Ferrer, K. Mcguinness, N. E. Oconnor, J. Torres et al., Salgan: Visual saliency prediction with adversarial networks, p.1, 2017.

H. Duan, G. Zhai, X. Min, Y. Fang, Z. Che et al., Learning to Predict where the Children with Asd Look, Proceeding of Int. Conf. on Image Processing, pp.704-708, 2018.

J. Harel, C. Koch, and P. Perona, Graph-Based Visual Saliency, Adv. Neural Inform. Process. Syst, pp.545-552, 2006.

H. Duan, G. Zhai, X. Min, Z. Che, Y. Fang et al., A dataset of eye movements for the children with autism spectrum disorder, ACM Multimedia Systems Conf. (MMSys'19), 2019.

F. Yu and V. Koltun, Multi-scale context aggregation by dilated convolutions, 2015.

, Qualitative comparison with other state-of-the-art models