M. Cruts, I. Gijselinck, and T. Van-langenhove, Current insights into the C9orf72 repeat expansion diseases of the FTLD/ALS spectrum, Trends Neurosci, vol.36, issue.8, pp.450-459, 2013.

B. Swinnen and W. Robberecht, The phenotypic variability of amyotrophic lateral sclerosis, Nature Reviews Neurology, vol.10, issue.11, pp.661-670, 2014.

M. Dejesus-hernandez, I. R. Mackenzie, and B. F. Boeve, Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS, Neuron, vol.72, issue.2, pp.245-256, 2011.

J. P. Pearson, N. M. Williams, and E. Majounie, Familial frontotemporal dementia with amyotrophic lateral sclerosis and a shared haplotype on chromosome 9p, J. Neurol, vol.258, issue.4, pp.647-655, 2011.

S. Byrne, C. Walsh, and C. Lynch, Rate of familial amyotrophic lateral sclerosis: a systematic review and meta-analysis, J. Neurol. Neurosurg. Psychiatry, vol.82, issue.6, pp.623-627, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00591173

J. Van-der-zee, I. Gijselinck, and L. Dillen, A pan-European study of the C9orf72 repeat associated with FTLD: geographic prevalence, genomic instability, and intermediate repeats, Hum. Mutat, vol.34, issue.2, pp.363-373, 2013.

N. A. Murphy, K. C. Arthur, and P. J. Tienari, Age-related penetrance of the C9orf72 repeat expansion, Sci Rep, vol.7, issue.1, p.2116, 2017.

C. Fournier, M. Barbier, and A. Camuzat, Relations between C9orf72 expansion size in blood, age at onset, age at collection and transmission across generations in patients and presymptomatic carriers, Neurobiol. Aging, vol.74, pp.234-235, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02025976

R. Balendra and A. M. Isaacs, C9orf72-mediated ALS and FTD: multiple pathways to disease, Nat Rev Neurol, vol.14, issue.9, pp.544-558, 2018.

I. R. Mackenzie, T. Arzberger, and E. Kremmer, Dipeptide repeat protein pathology in C9ORF72 mutation cases: clinico-pathological correlations, Acta Neuropathol, vol.126, issue.6, pp.859-879, 2013.

M. R. Turner, Non-invasive in vivo neuropathology of the C9orf72-related ALS-FTD syndrome, J. Neurol. Neurosurg. Psychiatry, vol.89, issue.1, pp.4-5, 2018.

P. Bede and O. Hardiman, Longitudinal structural changes in ALS: a three time-point imaging study of white and gray matter degeneration, Amyotroph Lateral Scler Frontotemporal Degener, vol.19, issue.3-4, pp.232-241, 2018.

M. Mis, S. Brajkovic, and F. Tafuri, Development of Therapeutics for C9ORF72 ALS/FTDRelated Disorders, Mol. Neurobiol, vol.54, issue.6, pp.4466-4476, 2017.

R. Walhout, R. Schmidt, and H. Westeneng, Brain morphologic changes in asymptomatic C9orf72 repeat expansion carriers, Neurology, vol.85, issue.20, pp.1780-1788, 2015.

M. K. Floeter, D. Bageac, and L. E. Danielian, Longitudinal imaging in C9orf72 mutation carriers: Relationship to phenotype, Neuroimage Clin, vol.12, pp.1035-1043, 2016.

S. E. Lee, A. C. Sias, and M. L. Mandelli, Network degeneration and dysfunction in presymptomatic C9ORF72 expansion carriers, Neuroimage Clin, vol.14, pp.286-297, 2017.

J. M. Papma, L. C. Jiskoot, and J. L. Panman, Cognition and gray and white matter characteristics of presymptomatic C9orf72 repeat expansion, Neurology, vol.89, issue.12, pp.1256-1264, 2017.

K. Popuri, E. Dowds, and M. F. Beg, Gray matter changes in asymptomatic C9orf72 and GRN mutation carriers, Neuroimage Clin, vol.18, pp.591-598, 2018.

A. Bertrand, J. Wen, and D. Rinaldi, Early Cognitive, Structural, and Microstructural Changes in Presymptomatic C9orf72 Carriers Younger Than 40 Years, JAMA Neurol, vol.75, issue.2, pp.236-245, 2018.

J. Machts, K. Loewe, and J. Kaufmann, Basal ganglia pathology in ALS is associated with neuropsychological deficits, Neurology, vol.85, issue.15, pp.1301-1309, 2015.

J. D. Carew, G. Nair, and P. M. Andersen, Presymptomatic spinal cord neurometabolic findings in SOD1-positive people at risk for familial ALS, Neurology, vol.77, issue.14, pp.1370-1375, 2011.

A. R. Martin, D. Leener, B. Cohen-adad, and J. , A Novel MRI Biomarker of Spinal Cord White Matter Injury: T2*-Weighted White Matter to Gray Matter Signal Intensity Ratio, AJNR Am J Neuroradiol, vol.38, issue.6, pp.1266-1273, 2017.

B. De-leener, M. Taso, J. Cohen-adad, and V. Callot, Segmentation of the human spinal cord, MAGMA, vol.29, issue.2, pp.125-153, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01425526

M. El-mendili, J. Cohen-adad, and M. Pelegrini-issac, Multi-Parametric Spinal Cord MRI as Potential Progression Marker in Amyotrophic Lateral Sclerosis, PLoS ONE, vol.9, issue.4, p.95516, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01358128

G. Querin, M. M. El-mendili, and T. Lenglet, Spinal cord multi-parametric magnetic resonance imaging for survival prediction in amyotrophic lateral sclerosis, European Journal of Neurology, vol.24, issue.8, pp.1040-1046, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01540346

G. Grolez, M. Kyheng, and R. Lopes, MRI of the cervical spinal cord predicts respiratory dysfunction in, ALS. Sci Rep, vol.8, issue.1, p.1828, 2018.

G. Querin, E. Mendili, M. Bede, and P. , Multimodal spinal cord MRI offers accurate diagnostic classification in ALS, J. Neurol. Neurosurg. Psychiatry, vol.89, issue.11, pp.1220-1221, 2018.

J. D. Rohrer, J. M. Nicholas, and D. M. Cash, Presymptomatic cognitive and neuroanatomical changes in genetic frontotemporal dementia in the Genetic Frontotemporal dementia Initiative (GENFI) study: a cross-sectional analysis, Lancet Neurol, vol.14, issue.3, pp.253-262, 2015.

B. De-leener, S. Lévy, and S. M. Dupont, SCT: Spinal Cord Toolbox, an open-source software for processing spinal cord MRI data, Neuroimage, vol.145, pp.24-43, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01425488

B. De-leener, S. Kadoury, J. Cohen-adad, and . Robust, accurate and fast automatic segmentation of the spinal cord, Neuroimage, vol.98, pp.528-536, 2014.

V. S. Fonov, L. Troter, A. Taso, and M. , Framework for integrated MRI average of the spinal cord white and gray matter: the MNI-Poly-AMU template, Neuroimage, vol.102, pp.817-827, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01117512

B. De-leener, V. S. Fonov, and D. L. Collins, Unbiased multimodal template of the brainstem and spinal cord aligned with the ICBM152 space, Neuroimage, vol.165, pp.170-179, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01657949

A. L. Boxer, I. R. Mackenzie, and B. F. Boeve, Clinical, neuroimaging and neuropathological features of a new chromosome 9p-linked FTD-ALS family, J. Neurol. Neurosurg. Psychiatry, vol.82, issue.2, pp.196-203, 2011.

E. Devenney, D. Foxe, and C. Dobson-stone, Clinical heterogeneity of the C9orf72 genetic mutation in frontotemporal dementia, Neurocase, vol.21, issue.4, pp.535-541, 2015.

H. Braak, J. Brettschneider, and A. C. Ludolph, Amyotrophic lateral sclerosis--a model of corticofugal axonal spread, Nat Rev Neurol, vol.9, issue.12, pp.708-714, 2013.

T. Westergard, B. K. Jensen, and X. Wen, Cell-to-Cell Transmission of Dipeptide Repeat Proteins Linked to C9orf72-ALS/FTD, Cell Rep, vol.17, issue.3, pp.645-652, 2016.

L. Branco, M. De-albuquerque, D. Andrade, and H. , Spinal cord atrophy correlates with disease duration and severity in amyotrophic lateral sclerosis, Amyotroph Lateral Scler Frontotemporal Degener, vol.15, issue.1-2, pp.93-97, 2014.

M. De-albuquerque, L. Branco, and T. Rezende, Longitudinal evaluation of cerebral and spinal cord damage in Amyotrophic Lateral Sclerosis, Neuroimage Clin, vol.14, pp.269-276, 2017.

M. Paquin, E. Mendili, M. M. Gros, and C. , Spinal Cord Gray Matter Atrophy in Amyotrophic Lateral Sclerosis, AJNR Am J Neuroradiol, vol.39, issue.1, pp.184-192, 2018.

P. Bede, M. Elamin, and S. Byrne, Basal ganglia involvement in amyotrophic lateral sclerosis, Neurology, vol.81, issue.24, pp.2107-2115, 2013.

F. Agosta, P. M. Ferraro, and N. Riva, Structural and functional brain signatures of C9orf72 in motor neuron disease, Neurobiol. Aging, vol.57, pp.206-219, 2017.

P. Pradat, E. Mendili, and M. , Neuroimaging to investigate multisystem involvement and provide biomarkers in amyotrophic lateral sclerosis, Biomed Res Int, p.467560, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01308317

C. L. , A macroscopic view of microstructure: using diffusion-weighted images to infer damage, repair, and plasticity of white matter, Neuroscience, vol.276, pp.14-28, 2014.

R. J. Broad, M. C. Gabel, and N. G. Dowell, Neurite orientation and dispersion density imaging (NODDI) detects cortical and corticospinal tract degeneration in ALS, J. Neurol. Neurosurg. Psychiatry, vol.pii, pp.2018-318830, 2018.

R. G. Gatto, W. Li, and R. L. Magin, Diffusion tensor imaging identifies presymptomatic axonal degeneration in the spinal cord of ALS mice, Brain Res, vol.1679, pp.45-52, 2018.

J. Wen, H. Zhang, and D. C. Alexander, Neurite density is reduced in the presymptomatic phase of C9orf72 disease, J. Neurol. Neurosurg. Psychiatry, pp.2018-318994, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01907482

S. Marcuzzo, S. Bonanno, and M. Figini, A longitudinal DTI and histological study of the spinal cord reveals early pathological alterations in G93A-SOD1 mouse model of amyotrophic lateral sclerosis, Exp. Neurol, vol.293, pp.43-52, 2017.

J. Mollink, M. Kleinnijenhuis, C. Van-walsum, and A. Van, Evaluating fibre orientation dispersion in white matter: Comparison of diffusion MRI, histology and polarized light imaging, Neuroimage, vol.157, pp.561-574, 2017.