I. Adeniran, J. C. Hancox, and H. Zhang, Effect of cardiac ventricular mechanical contraction on the characteristics of the ECG: A simulation study, Journal of Biomedical Science and Engineering, vol.6, issue.12, p.47, 2013.

R. Aliev and A. Panfilov, A simple two-variable model of cardiac excitation, Chaos, Solitons & Fractals, vol.3, issue.7, pp.293-301, 1996.

G. Allaire, Shape optimization by the homogenization method, vol.146, 2012.

S. Alonso, M. Bär, and B. Echebarria, Nonlinear physics of electrical wave propagation in the heart: a review, Reports on Progress in Physics, vol.79, issue.9, p.96601, 2016.

M. Bishop and G. Plank, Bidomain ecg simulations using an augmented monodomain model for the cardiac source, Biomedical Engineering, vol.58, issue.8, pp.2297-2307, 2011.

M. Boulakia, S. Cazeau, M. A. Fernández, J. Gerbeau, and N. Zemzemi, Mathematical modeling of electrocardiograms: a numerical study, Annals of Biomedical Engineering, vol.38, issue.3, pp.1071-1097, 2010.
URL : https://hal.archives-ouvertes.fr/inria-00400490

M. Boulakia, M. A. Fernández, J. Gerbeau, and N. Zemzemi, A coupled system of PDEs and ODEs arising in electrocardiograms modeling, Applied Mathematics Research eXpress, 2008.

M. Briane, Three models of non periodic fibrous materials obtained by homogenization. RAIRO-Modélisation mathématique et analyse numérique, vol.27, pp.759-775, 1993.

A. Bueno-orovio, E. M. Cherry, and F. H. Fenton, Minimal model for human ventricular action potentials in tissue, Journal of Theretical Biology, vol.253, pp.544-560, 2008.

M. L. Buist and A. J. Pullan, The effect of torso impedance on epicardial and body surface potentials: A modeling study, IEEE Transactions on Biomedical Engineering, vol.50, issue.7, pp.816-824, 2003.

R. Chabiniok, P. Moireau, P. F. Lesault, A. Rahmouni, J. F. Deux et al., Estimation of tissue contractility from cardiac cine-MRI using a biomechanical heart model, Biomechanics and Modeling in Mechanobiology, vol.11, issue.5, pp.609-630, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00654541

R. Chabiniok, V. Y. Wang, M. Hadjicharalambous, L. Asner, J. Lee et al., Multiphysics and multiscale modelling, data-model fusion and integration of organ physiology in the clinic: ventricular cardiac mechanics, Interface Focus, vol.6, issue.2, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01277684

D. Chapelle, P. L. Tallec, P. Moireau, and M. Sorine, Energy-preserving muscle tissue model: formulation and compatible discretizations, International Journal for Multiscale Computational Engineering, vol.10, issue.2, pp.189-211, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00678772

P. Colli-franzone, L. F. Pavarino, and S. Scacchi, Effects of mechanical feedback on the stability of cardiac scroll waves: A bidomain electro-mechanical simulation study, Chaos: An Interdisciplinary Journal of Nonlinear Science, vol.27, issue.9, pp.1-15, 2017.

P. , C. Franzone, L. F. Pavarino, and S. Scacchi, A numerical study of scalable cardiac electro-mechanical solvers on hpc architectures, Frontiers in Physiology, vol.9, pp.1-16, 2018.

P. Colli-franzone, L. F. Pavarino, and S. Scacchi, Bioelectrical effects of mechanical feedbacks in a strongly coupled cardiac electro-mechanical model, Mathematical Models and Methods in Applied Sciences, vol.26, issue.01, pp.27-57, 2016.

P. Colli-franzone, L. F. Pavarino, and B. Taccardi, Simulating patterns of excitation, repolarization and action potential duration with cardiac Bidomain and Monodomain models, Mathematical Biosciences, vol.197, issue.1, pp.35-66, 2005.

P. , C. Franzone, and G. Savaré, Degenerate evolution systems modeling the cardiac electric field at micro and macroscopic level, Progress in Nonlinear Differential Equations and Their Applications, vol.50, pp.49-78, 2002.

A. Collin and S. Imperiale, Mathematical analysis and 2-scale convergence of a heterogeneous microscopic bidomain model, Mathematical Models and Methods in Applied Sciences, vol.28, issue.05, pp.979-1035, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01759914

M. Courtemanche, R. J. Ramirez, and S. Nattel, Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model, American Journal of Physiology, vol.275, pp.301-321, 1998.

M. Favino, S. Pozzi, S. Pezzuto, F. W. Prinzen, A. Auricchio et al., Impact of mechanical deformation on pseudo-ECG: a simulation study, EP Europace, vol.18, issue.4, pp.77-84, 2016.

R. Fitzhugh, Impulses and physiological states in theoretical models of nerve membrane, Biophysical Journal, vol.1, issue.6, pp.445-466, 1961.

P. Frey, Yams: A fully automatic adaptive isotropic surface remeshing procedure, Inria, 2001.
URL : https://hal.archives-ouvertes.fr/inria-00069922

. Pl-george, Tetmesh-ghs3d, tetrahedral mesh generator. INRIA User's Manual, INRIA (Institut National de Recherche en Informatique et Automatique), p.83, 2004.

C. Geuzaine and J. Remacle, Gmsh: A 3-d finite element mesh generator with built-in pre-and post-processing facilities, International journal for numerical methods in engineering, vol.79, issue.11, pp.1309-1331, 2009.

P. E. Hand and C. S. Peskin, Homogenization of an electrophysiological model for a strand of cardiac myocytes with gap-junctional and electric-field coupling, Bulletin of Mathematical Biology, vol.72, pp.1408-1424, 2010.

N. Sarah, A. Healy, and . Mcculloch, An ionic model of stretch-activated and stretchmodulated currents in rabbit ventricular myocytes, Europace, vol.7, issue.s2, pp.128-134, 2005.

F. Hecht, New development in FreeFem++, Journal of Numerical Mathematics, vol.20, issue.3-4, pp.251-265, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01476313

A. L. Hodgkin and A. F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve, Journal of Physiology, vol.117, issue.4, pp.500-544, 1952.

G. Huiskamp, Simulation of depolarization in a membrane-equations-based model of the anisotropic ventricle, Biomedical Engineering, vol.45, issue.7, pp.847-855, 1998.

M. Jolly, Automatic segmentation of the left ventricle in cardiac MR and CT images, International Journal of Computer Vision, vol.70, issue.2, pp.151-163, 2006.

J. Keener, An eikonal-curvature equation for action potential propagation in myocardium, Journal of Mathematical Biology, vol.29, pp.629-651, 1991.

, J. Keener and J. Sneyd. Mathematical Physiology, 2004.

R. H. Keldermann, M. P. Nash, and A. V. Panfilov, Modeling cardiac mechano-electrical feedback using reaction-diffusion-mechanics systems, Physica D, vol.238, pp.1000-1007, 2008.

D. Keller, G. Seemann, D. Weiss, D. Farina, J. Zehelein et al., Computer based modeling of the congenital long-QT 2 syndrome in the visible man torso: From genes to ECG, 29th Annual International Conference of the IEEE, pp.1410-1413, 2007.

B. J. Kirby, Micro-and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices, 2010.

E. Konukoglu, O. Clatz, B. H. Menze, B. Stieltjes, M. Weber et al., Image guided personalization of reaction-diffusion type tumor growth models using modified anisotropic eikonal equations, IEEE Transactions, vol.29, issue.1, pp.77-95, 2010.
URL : https://hal.archives-ouvertes.fr/inria-00616100

G. T. Lines, M. L. Buist, P. Grottum, A. J. Pullan, J. Sundnes et al., Mathematical models and numerical methods for the forward problem in cardiac electrophysiology, Comput. Visual. Sci, vol.5, issue.4, pp.215-239, 2003.

M. Lynch, O. Ghita, and P. F. Whelan, Automatic segmentation of the left ventricle cavity and myocardium in MRI data, Computers in biology and medicine, vol.36, issue.4, pp.389-407, 2006.

J. Malmivuo and R. Plonsey, Bioelectromagnetism -Principles and Applications of Bioelectric and Biomagnetic Fields, 1995.

V. Martin, A. Drochon, O. Fokapu, and J. Gerbeau, Magnetohemodynamics in the aorta and electrocardiograms, Physics in Medicine and Biology, vol.57, pp.3177-3195, 2012.

C. C. Mitchell and D. G. Schaeffer, A two-current model for the dynamics of cardiac membrane, Bulletin Math. Bio, vol.65, pp.767-793, 2003.

Y. Mori, From three-dimensional electrophysiology to the cable model: an asymptotic study, 2009.

Y. Mori, J. W. Jerome, and C. S. Peskin, A three-dimensional model of cellular electrical activity, Bulletin of the Institute of Mathematics, vol.2, issue.2, pp.367-390, 2007.

A. Nagler, C. Bertoglio, C. T. Stoeck, S. Kozerke, and W. A. Wall, Cardiac fibers estimation from arbitrarily spaced diffusion weighted MRI, Functional Imaging and Modeling of the Heart, pp.198-206, 2015.

J. S. Nagumo, S. Arimoto, and S. Yoshizawa, An active pulse transmission line stimulating nerve axon, Proceedings of the IEEE, vol.50, pp.2061-2071, 1962.

M. P. Nash and P. J. Hunter, Computational mechanics of the heart, from tissue structure to ventricular function, vol.61, pp.113-141, 2000.

M. P. Nash and A. V. Panfilov, Electromechanical model of excitable tissue to study reentrant cardiac arrhythmias, Progress in Biophysics and Molecular Biology, vol.85, issue.2-3, pp.501-522, 2004.

J. C. Neu and W. Krassowska, Homogenization of syncytial tissues, Critical Reviews in Biomedical Engineering, vol.21, issue.2, pp.137-199, 1993.

A. Nygren, C. Fiset, L. Firek, J. W. Clark, D. S. Lindblad et al., Mathematical model of an adult human atrial cell the role of K+ currents in repolarization, Circulation Research, vol.82, issue.1, pp.63-81, 1998.

T. O'hara, L. Virág, A. Varró, and Y. Rudy, Simulation of the undiseased human cardiac ventricular action potential: Model formulation and experimental validation, PLoS Comput Biol, vol.7, issue.5, p.1002061, 2011.

. Alexander-v-panfilov, M. P. Rh-keldermann, and . Nash, Self-organized pacemakers in a coupled reaction-diffusion-mechanics system, Physical review letters, vol.95, issue.25, p.258104, 2005.

M. Potse, B. Dubé, and R. M. Gulrajani, ECG simulations with realistic human membrane, heart, and torso models, Proceedings of the 25th Annual International Conference of the IEEE, vol.1, pp.70-73, 2003.

M. Potse, B. Dubé, J. Richer, A. Vinet, and R. M. Gulrajani, A comparison of monodomain and bidomain reaction-diffusion models for action potential propagation in the human heart, IEEE Transactions on Biomedical Engineering, vol.53, issue.12, pp.2425-2435, 2006.

M. Potse, B. Dubé, and A. Vinet, Cardiac anisotropy in boundary-element models for the electrocardiogram, Medical & biological engineering & computing, vol.47, issue.7, pp.719-729, 2009.

M. Potse, B. Dubé, and R. M. Gulrajani, Ecg simulations with realistic human membrane, heart, and torso models, Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol.1, pp.70-73, 2003.

M. Potse, B. Dubé, and A. Vinet, Cardiac anisotropy in boundary-element models for the electrocardiogram, Medical & biological engineering & computing, vol.47, issue.7, pp.719-729, 2009.

M. Ptashnyk, Multiscale modelling and analysis of signalling processes in tissues with non-periodic distribution of cells, Vietnam Journal of Mathematics, vol.45, issue.1, pp.295-316, 2017.

A. Quarteroni, R. Sacco, and F. Saleri, Numerical mathematics, Texts in Applied Mathematics, vol.37, 2007.

A. Quarteroni, L. Formaggia, and A. Veneziani, Complex systems in biomedicine, 2006.

A. Quarteroni, T. Lassila, S. Rossi, and R. Ruiz-baier, Integrated heartcoupling multiscale and multiphysics models for the simulation of the cardiac function, Computer Methods in Applied Mechanics and Engineering, vol.314, pp.345-407, 2017.

G. Richardson, A multiscale approach to modelling electrochemical processes occurring across the cell membrane with application to transmission of action potentials, Mathematical Medicine and Biology, vol.26, issue.3, pp.201-224, 2009.

G. Richardson and J. Chapman, Derivation of the bidomain equations for a beating heart with a general microstructure, SIAM Journal on Applied Mathematics, vol.71, issue.3, pp.657-675, 2011.

J. Rogers and A. Mcculloch, A collocation-Galerkin finite element model of cardiac action potential propagation, IEEE Transactions on Biomedical Engineering, vol.41, issue.8, pp.743-757, 1994.

F. B. Sachse, Computational Cardiology: Modeling of Anatomy, Electrophysiology and Mechanics, 2004.

E. Schenone, A. Collin, and J. Gerbeau, Numerical simulation of electrocardiograms for full cardiac cycles in healthy and pathological conditions, International Journal for Numerical Methods in Biomedical Engineering, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01184744

D. F. Scollan, A. Holmes, J. Zhang, and R. L. Winslow, Reconstruction of cardiac ventricular geometry and fiber orientation using magnetic resonance imaging, Annals of biomedical engineering, vol.28, issue.8, pp.934-944, 2000.

D. D. Streeter, Gross morphology and fiber geometry of the heart, The cardiovascular system, vol.1, pp.61-112, 1979.

R. Temam and A. Miranville, Mathematical Modeling in Continuum Mechanics, 2005.

K. H. Tusscher, D. Noble, P. J. Noble, and A. V. Panfilov, A model for human ventricular tissue, American Journal of Physiology-Heart and Circulatory Physiology, vol.286, issue.4, pp.1573-1589, 2004.

K. H. Tusscher and A. V. Panfilov, Alternans and spiral breakup in a human ventricular tissue model, American Journal of Physiology-Heart and Circulatory Physiology, vol.291, issue.3, pp.1088-1100, 2006.

M. Trudel, B. Dubé, M. Potse, R. M. Gulrajani, and L. J. Leon, Simulation of QRST integral maps with a membrane-based computer heart model employing parallel processing, IEEE Transactions on Biomedical Engineering, vol.51, issue.8, pp.1319-1329, 2004.

L. Tung, A bi-domain model for describing ischemic myocardial d-c potentials. PhD thesis, 1978.

F. Vadakkumpadan, H. Arevalo, C. Ceritoglu, M. Miller, and N. Trayanova, Image-based estimation of ventricular fiber orientations for personalized modeling of cardiac electrophysiology, IEEE Transactions on, vol.31, issue.5, pp.1051-1060, 2012.

T. Samuel, J. M. Wall, . Guccione, B. Mark, J. Ratcliffe et al., Electromechanical feedback with reduced cellular connectivity alters electrical activity in an infarct injured left ventricle: a finite element model study, American Journal of Physiology-Heart and Circulatory Physiology, vol.302, issue.1, pp.206-214, 2012.

F. Wartak, Electrocardiogram interpretation. Medical Education Systems, 1975.

D. Wei, O. Okazaki, K. Harumi, E. Harasawa, and H. Hosaka, Comparative simulation of excitation and body surface electrocardiogram with isotropic and anisotropic computer heart models, Biomedical Engineering, vol.42, issue.4, pp.343-357, 1995.

Y. Zheng, A. Barbu, B. Georgescu, M. Scheuering, and D. Comaniciu, Fast automatic heart chamber segmentation from 3D CT data using marginal space learning and steerable features. In Computer Vision, IEEE 11th International Conference on, pp.1-8, 2007.