A. Brock, T. Lim, J. Ritchie, and N. Weston, Generative and discriminative voxel modeling with convolutional neural networks, NeurIPS 3D deep learning workshop, 2016.

M. Bronstein, J. Bruna, A. Szlam, Y. Lecun, and P. Vandergyst, Geometric deep learning: going beyond Euclidean data, IEEE Signal Processing Magazine, vol.34, issue.4, pp.18-42, 2017.

A. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang et al., ShapeNet: An information-rich 3D model repository, 2015.

C. Choy, D. Xu, J. Gwak, K. Chen, and S. Savarese, 3D-R2N2: A unified approach for single and multi-view 3d object reconstruction, ECCV, 2016.

R. Girdhar, D. Fouhey, M. Rodriguez, and A. Gupta, Learning a predictable and generative vector representation for objects, ECCV, 2016.

J. Gordon, J. Bronskill, M. Bauer, S. Nowozin, and R. Turner, Meta-learning probabilistic inference for prediction, ICLR, 2019.

B. Graham, M. Engelcke, and L. Van-der-maaten, 3D semantic segmentation with submanifold sparse convolutional networks, CVPR, 2018.

T. Groueix, M. Fisher, V. Kim, B. Russell, and M. Aubry, A papier-mâché approach to learning 3D surface generation, CVPR, 2018.

K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition, CVPR, 2016.

K. He, X. Zhang, S. Ren, and J. Sun, Identity mappings in deep residual networks, ECCV, 2016.

P. Henderson and V. Ferrari, Learning to generate and reconstruct 3d meshes with only 2d supervision, BMVC, 2018.

Z. Hu, Z. Yang, R. Salakhutdinov, and E. P. Xing, On unifying deep generative models, ICLR, 2018.

E. Insafutdinov and A. Dosovitskiy, Unsupervised learning of shape and pose with differentiable point clouds, 2018.

D. Kingma and M. Welling, Auto-encoding variational Bayes, ICLR, 2014.

R. Klokov and V. Lempitsky, Escape from cells: Deep Kd-networks for the recognition of 3D point cloud models, 2017.

A. Krizhevsky, I. Sutskever, and G. Hinton, ImageNet classification with deep convolutional neural networks, In NeurIPS, 2012.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document recognition, Proceedings of the IEEE, vol.86, issue.11, pp.2278-2324, 1998.

T. Lewiner, H. Lopes, A. Vieira, and G. Tavares, Efficient implementation of marching cubes' cases with topological guarantees, GPU, & Game Tools, vol.8, pp.1-15, 2003.

I. Loshchilov and F. Hutter, Decoupled weight decay regularization, ICLR, 2019.

P. Mandikal, K. Navaneet, M. Agarwal, and R. Babu, 3D-LMNet: Latent embedding matching for accurate and diverse 3D point cloud reconstruction from a single image, BMVC, 2018.

D. Maturana and S. Scherer, VoxNet: A 3D convolutional neural network for real-time object recognition, IROS, 2015.

F. Monti, D. Boscaini, J. Masci, E. Rodolà, J. Svoboda et al., Geometric deep learning on graphs and manifolds using mixture model CNNs, CVPR, 2017.

E. Perez, F. Strub, H. De, V. Vries, A. Dumoulin et al., FiLM: Visual reasoning with a general conditioning layer, AAAI, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01648685

C. Qi, H. Su, K. Mo, and L. Guibas, Pointnet: Deep learning on point sets for 3D classification and segmentation, CVPR, 2017.

C. Qi, L. Yi, H. Su, and L. Guibas, Pointnet++: Deep hierarchical feature learning on point sets in a metric space, 2017.

S. Reddi, S. Kale, and S. Kumar, On the convergence of Adam and beyond, ICLR, 2018.

D. Rezende, S. Mohamed, and D. Wierstra, Stochastic backpropagation and approximate inference in deep generative models, ICML, 2014.

S. R. Richter and S. Roth, Matryoshka Networks: Predicting 3d geometry via nested shape layers, CVPR, 2018.

D. Shin, C. C. Fowlkes, and D. Hoiem, Pixels, voxels, and views: A study of shape representations for single view 3d object shape prediction, CVPR, 2018.

A. Sinha, J. Bai, and K. Ramani, Deep learning 3D shape surfaces using geometry images, ECCV, 2016.

E. Smith and D. Meger, Improved adversarial systems for 3d object generation and reconstruction, CoRL, 2017.

A. Soltani, H. Huang, J. Wu, T. Kulkarni, and J. Tenenbaum, Synthesizing 3D shapes via modeling multi-view depth maps and silhouettes with deep generative networks, CVPR, 2017.

H. Su, S. Maji, E. Kalogerakis, and E. Learned-miller, Multi-view convolutional neural networks for 3D shape recognition, ICCV, 2015.

H. Su, H. Fan, and L. Guibas, A point set generation network for 3D object reconstruction from a single image, CVPR, 2017.

X. Sun, J. Wu, X. Zhang, Z. Zhang, C. Zhang et al., Pix3D: Dataset and methods for single-image 3D shape modeling, CVPR, 2018.

M. Tatarchenko, A. Dosovitskiy, and T. Brox, Octree generating networks: Efficient convolutional architectures for high-resolution 3D outputs, 2017.

S. Tulsiani, T. Zhou, A. Efros, and J. Malik, Multi-view supervision for single-view reconstruction via differentiable ray consistency, CVPR, 2017.

N. Verma, E. Boyer, and J. Verbeek, Feastnet: Feature-steered graph convolutions for 3D shape analysis, CVPR, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01540389

N. Wang, Y. Zhang, Z. Li, Y. Fu, W. Liu et al., Pixel2Mesh: Generating 3D mesh models from single RGB images, ECCV, 2018.

O. Wiles and A. Zisserman, SilNet: Single-and multi-view reconstruction by learning from silhouettes, BMVC, 2017.

J. Wu, C. Zhang, T. Xue, W. Freeman, and J. Tenenbaum, Learning a probabilistic latent space of object shapes via 3D generative-adversarial modeling, 2016.

J. Wu, Y. Wang, T. Xue, X. Sun, B. Freeman et al., MarrNet: 3D shape reconstruction via 2.5D sketches, 2017.

J. Wu, C. Zhang, X. Zhang, Z. Zhang, W. Freeman et al., Learning shape priors for single-view 3D completion and reconstruction, ECCV, 2018.

Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang et al., 3D ShapeNets: A deep representation for volumetric shapes, CVPR, 2015.

X. Yan, J. Yang, E. Yumer, Y. Guo, and H. Lee, Perspective Transformer Nets: Learning single-view 3D object reconstruction without 3D supervision, 2016.