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Abstract

This paper evaluates a method for motion-based prediction of external forces and moments on manual material
handling (MMH) tasks. From a set of hypothesized contact points between the subject and the environment (ground
and load), external forces were calculated as the minimal forces at each contact point while ensuring the dynamics
equilibrium. Ground reaction forces and moments (GRF&M) and load contact forces and moments (LCF&M)
were computed from motion data alone. With an inverse dynamics method, the predicted data were then used to
compute kinetic variables such as back loading. On a cohort of 65 subjects performing MMH tasks, the mean
correlation coefficients between predicted and experimentally measured GRF for the vertical, antero-posterior and
medio-lateral components were 0.91 (0.08), 0.95 (0.03) and 0.94 (0.08), respectively. The associated RMSE were
0.51 N/kg, 0.22 N/kg and 0.19 N/kg. The correlation coefficient between L5/S1 joint moments computed from
predicted and measured data was 0.95 with a RMSE of 14 Nm for the flexion / extension component. In conclusion,
this method allows the assessment of MMH tasks without force platforms, which increases the ecological aspect
of the tasks studied and enables performance of dynamic analyses in real settings outside the laboratory.

Keywords: Ground reaction forces and moments, lifting, kinematics, inverse dynamics, L5/S1 joint moment

1. Introduction

The National Research Council (2001) reported that
there is a clear relationship between back disorders and
physical load. In this context, numerous studies have
evaluated back loading in manual materials handling
(MMH) (Marras et al., 2006; Plamondon et al., 2010;
Ning et al., 2014; Corbeil et al., 2019; Gagnon et al.,
2018). In most of these studies, back loading was as-
sessed from the L5/S1 joint moments, based on a mo-
tion capture system associated to one or more force
platforms, usually in a motion analysis laboratory. The
use of such devices reduces the ecological aspect of
the tasks (i.e. close to workplace conditions) by con-
straining the analysis area to the force platforms. To
remove this barrier, several studies have been proposed
that predict the external forces and moments from mo-
tion data only. In the great majority of studies, the ex-
ternal forces and moments were limited to the ground
reaction forces and moments (GRF&M). They could
be estimated by directly solving the inverse dynamics
problem (Delisle et al., 1999; Faber et al., 2016). How-
ever, this method uses only one global contact since the
problem is undetermined with multiple contacts. Three
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motion-based prediction approaches to solve this inde-
terminacy have been identified in the literature.

A first approach uses empirical functions to link the
motion and associated GRF&M (Koopman et al., 1995;
Dijkstra and Gutierrez-Farewik, 2015). This approach
has only been applied on gait.

A second approach is based on machine learning
methods (Choi et al., 2013; Oh et al., 2013; Johnson
et al., 2018). From data set using force platforms, a
neural network establishes a link between the motion
and the GRF&M. These methods, based on a learning
phase, have the disadvantage of requiring a set of mo-
tions close to the one studied and thus are only applica-
ble to standardized motions. In addition, a large motion
set is needed for the learning phase to be efficient.

A third approach uses a contact model with op-
timization techniques (Fluit et al., 2014; Jung et al.,
2016; Skals et al., 2017), where a set of discrete con-
tact points is defined on a biomechanical model (cor-
responding to the hypothesized contact points between
the subject and the environment). Then, the external
forces are calculated as the minimal forces for each
contact point while ensuring respect for the dynam-
ics equations. This approach was recently evaluated
on MMH tasks (Larsen and Svenningsen, 2018; Muller
et al., 2019a) and the results were promising. However,
these studies were limited to standardized tasks: loads
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were carried only using handles and tasks did not re-
quire moving the feet. The objective of this study was
to evaluate a motion-based prediction method based
on a contact model on more ecological MMH tasks.
The experimental procedures are detailed below. Based
only on motion data, the prediction method estimates
the GRF&M and the load contact forces and moments
(LCF&M). More specifically, the method evaluation
consists in first, comparing the predicted GRF&M to
force platform data and, second, comparing predicted
back loading with the L5/S1 joint moments to those
computed by using the force platform data.

2. Materials and methods

2.1. Experimental procedure

Several studies analyzing MMH tasks have been
carried out at the IRSST (Institut de recherche Robert-
Sauvé en santé et en sécurité du travail, Montréal, Canada)
biomechanical laboratory. They consisted in compar-
ing expert and novice workers (Plamondon et al., 2010),
analyzing the importance of expertise, lifting height
and weight lifted (Plamondon et al., 2012), comparing
healthy bodyweight and obese workers (Corbeil et al.,
2013, 2019) and comparing male and female workers
(Gagnon et al., 2018). The parameters studied were
kinematic variables such as the upper trunk flexion,
horizontal hand distance to L5/S1 or knee flexion and
kinetic variables such as the L5/S1 joint moments. The
experimental protocol was the same for each and is de-
tailed below.

The cohort was composed of 65 subjects (50 males,
15 females, age: 27±7 years old, height: 177±4 cm,
mass: 73±15 kg). The variability of the subjects (men /

women, healthy bodyweight / obese, experts / novices)
allows to take into account the variability of the han-
dlers in companies. The studies were approved by the
local institution’s research ethics committee. Each par-
ticipant signed an informed consent form prior to par-
ticipation. An Optotrak system (Northern Digital Inc.,
Waterloo, Ontario, Canada) recorded at 30 Hz the 3-D
coordinates of markers located on the subject. As pre-
viously done (Plamondon et al., 2010, 2012; Corbeil
et al., 2013, 2019; Gagnon et al., 2018), twelve clusters
of four markers were attached to each subject segment
(head, back at C7, T12 and S1, as well as both arms,
both forearms, both thighs and both feet). At the begin-
ning of each experiment, the locations of 48 anatomical
landmarks were identified in relation to their respective
cluster. The GRF were measured by an extended force
platform (1.90 × 1.40 m) mounted on six AMTI mini
platforms (model MC3A-6-1000; Advanced Mechani-
cal Technology Inc., Watertown, MA, USA). The force
platform collected data at 1024 Hz and had been previ-
ously validated (Desjardins and Gagnon, 2001).

The task consisted in transferring four boxes one by
one from a conveyor (height from the ground 12 cm)
to a two-wheel hand trolley (height from the ground
2 cm) and back again (Figure 1). The distance be-
tween the lifting and deposit locations was 1.5 m. In
the initial phase to the hand trolley, the conveyor was
slightly inclined so that the boxes moved towards the
handler. The four boxes were transferred one by one
to be stacked in a pile on the hand trolley. In the re-
turn phase to the conveyor, the conveyor was slightly
inclined outwards so that the boxes moved away from
the handler. No constraint on foot motion was imposed
on the subject. 16 repetitions of the initial and of the
return phase resulted in 128 boxes handled by each sub-
ject (8,320 boxes in total). To be as close as possible to
workplace conditions, no lifting technique or comment
about the technique used was given to the participant.

As in a workplace, boxes had various characteris-
tics: one 15-kg box, one 23-kg box, one weakened 15-
kg box and one off-center 15-kg box (center of gravity
27 cm laterally from one side and 8 cm from the other),
all of the same dimensions (26 cm deep × 35 cm wide
× 32 cm high). The weakened box contained 12 bot-
tles of sand and water and had no cover so as to be
deformable. To avoid constraining the grip, no instru-
mented handle was used. The evaluation of the method
on standardized tasks with an instrumented handle was
previously done (Muller et al., 2019a).

2.2. Estimation of biomechanical variables

The external forces prediction method is detailed
in supplementary materials (Appendix A). For clarity,
only the principal steps are summarized below.

All data from the prediction method were processed
with CusToM (Customizable Toolbox for Musculoskele-
tal simulation (Muller et al., 2019b)). CusToM is a
toolbox developed in Matlab R© enabling musculoskele-
tal analyses based on inverse dynamics approaches with
a high level of customization of the analysis.

A biomechanical model, composed of 16 rigid seg-
ments linked by 15 joints corresponding to 37 degrees
of freedom, was used. The geometrical parameters were
subject-specific calibrated using motion capture data
and an optimization-based method (Muller et al., 2016).
Body segment inertial parameters (BSIP) were extracted
from anthropometric tables (Dumas et al., 2007). From
the positions of the 48 anatomical landmarks (estimated
from the positions of the 12 rigid clusters), the joint
coordinates were computed in an inverse kinematics
step (Lu and OConnor, 1999) and then filtered with a
4th-order Butterworth low-pass filter with a cutoff fre-
quency of 5 Hz and no phase shift.

During the tasks, the external forces could be ap-
plied on the feet (GRF&M) and hands (LCF&M). Thus,
a set of discrete contact points was defined on the biome-
chanical model: N f points under each foot and Nh points
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1 2 3 4
initial contact between
the hands and the load

final contact between the
load and the grip support

pre-grip transfer

5 6 7 1
initial contact between the

load and the destination support
final contact between

the hands and the load
initial contact between
the hands and the load

post-deposit return

Figure 1: Different phases of the experimental task consisting in transferring four boxes one by one from a conveyor to a hand trolley and back
again.

on each hand. For this study N f = 14 and Nh = 11
were chosen. These points were located in order to
map the contact area as proposed in previous studies
(Fluit et al., 2014; Skals et al., 2017).

The handling task was composed of four different
phases (Figure 1): 1) the pre-grip, from the initial con-
tact between the hands and the load to the final contact
between the load and the grip support; 2) the transfer,
from the end of the pre-grip to the initial contact be-
tween the load and the destination support; 3) the post-
deposit, from the end of the transfer to the final contact
between the hands and the load; 4) the return, from the
end of the post-deposit to the beginning of the pre-grip
phase. During the pre-grip and post-deposit phases,
the load was in contact with the subject’s hands and
load support. As no information was available about
the contact between the load and its support, it was not
possible to predict the external forces in these phases;
consequently, they were not taken into account in this
study, as discussed in the last section of the paper. De-
tection of the phases was accomplished manually using
video recording.

During the return phase, as only external forces and
moments were applied on the feet, the proposed method
was a classical GRF&M prediction method. Only the
contact points defined under the feet were considered.
At each instant, prediction of the external forces and

moments was performed through an optimization pro-
cedure, which consisted in minimizing the sum of squ-
ared contact forces respecting the dynamics equations
applied on the subject and additional constraints in-
cluding Coulomb’s law of friction and a maximal force
for each contact point.

As the load grasp differed according the subject’s
technique or the experimental conditions, the orienta-
tion of the load in relation to the subject was not known.
Thus, the inertial parameters of the load were not taken
into account and only its mass was considered by es-
timating the location of the center of mass in the mid-
dle of the subject’s wrist. Then, an inverse dynamics
step was performed successively by using the predicted
forces and moments and the measured values to ob-
tain L5/S1 joint moments. The predicted and measured
GRF&M were used in a recursive Newton-Euler algo-
rithm (Featherstone, 2014) with a bottom-up approach.

2.3. Data analysis

The pre-grip and post-deposit phases were excluded
from the analysis and only the transfer and the return
phases were considered. Four transfers with the box
and three returns without the box were analyzed, to-
talling 2,080 tasks. For these phases, the method was
evaluated by directly comparing the predicted and mea-
sured GRF&M and also by comparing the L5/S1 joint
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moments computed with the predicted and measured
GRF&M.

Predicted and measured GRF&M were compared
with the Pearson correlation coefficient, computed for
each transfer and return of each subject. Root mean
squared error (RMSE) and relative RMSE (rRMSE)
(Ren et al., 2008) were computed between the predicted
and measured data. In the same manner, L5/S1 joint
moments were compared with the Pearson correlation
coefficient, RMSE and rRMSE. For the predicted (u1)
and the measured data (u2) (instant t varying from 0 to
T ), RMSE and rRMSE were computed with Eq. (1)
and Eq. (2), respectively.

RMS E =
1
T

T∑
t=0

√
(u1(t) − u2(t))2 (1)

rRMS E =
RMS E

1
2

2∑
i=1

(
max
t∈[0,T ]

(ui(t)) − min
t∈[0,T ]

(ui(t))
) (2)

For all the analyses, the antero-posterior axis was
considered as the axis between the grip and the des-
tination support. GRM were computed at the central
point of the force platform.

3. Results and discussion

3.1. GRF&M estimation

The Pearson correlation coefficient between predicted
and measured GRF&M are detailed in Table 1. A direct
comparison of the results with those reported in the lit-
erature was not possible since different tasks were per-
formed, only the orders of magnitude were compared.
The minimal correlations were found along the vertical
axis where the level of effort was higher. In compar-
ison to the methods based on a contact model, except
for the vertical GRF, correlations were higher. In com-
parison to the methods using machine learning, overall,
the proposed method yielded lower correlations for the
GRF (particularly on the vertical axis).

Table 2 and Table 3 show the RMSE and rRMSE
between the predicted and measured GRF&M. Also,
the mean RMSE was 39 N (±11), 17 N (±6.5) and 14 N
(±5.2) respectively for the vertical, antero-posterior and
medio-lateral GRF and 24 Nm (±10), 17 Nm (±6.7)
and 7.7 Nm (±2.4) respectively for the sagittal, frontal
and transverse GRM. Considering the vertical axis (con-
cerned with the highest force magnitudes), even if con-
tact models were added on each hand, a comparison
of results shows the same magnitude as in the litera-
ture with the same type of method. Higher errors are
only observed in Skals et al. (2017) where large dy-
namic motions were studied. Considering the other

directions, the correlations were higher than or com-
parable to those reported in the literature. However,
the variety of motions studied in the different papers
makes it difficult to directly compare results. Contrary
to other tasks, MMH tasks have no preferred direction
within a large movement area. For example in the case
of GRF, the correlation was higher, whereas the RMSE
was the same magnitude or higher than reported in the
literature. The mean RMSE for GRM was higher over-
all than the literature results; however, the correspond-
ing rRMSE was lower since the amplitude of the GRM
was more important in the current study. The large am-
plitude is explained by the large displacements made
during the MMH tasks.

3.2. L5/S1 joint moment estimation

The results of comparison of L5/S1 joint moments
with predicted and measured GRF&M is detailed in Ta-
ble 4. Higher correlation was observed on the sagittal
axis (corresponding to the flexion/extension) where the
moment values were the most important. By compar-
ing a bottom-up and a top-down approach during lifting
tasks, Larivière and Gagnon (1998) reported uncertain-
ties of 15 Nm, 8 Nm and 8 Nm for the L5/S1 joint mo-
ment estimation along the same respective axis. In a
similar study, Plamondon et al. (1996) observed uncer-
tainties of 4 Nm, 4 Nm and 5 Nm along the same axis.
Kingma et al. (1996) reported uncertainties in the range
of 3.9 Nm to 23.7 Nm on the sagittal axis, 5.4 Nm to
20.5 Nm on the frontal axis and 1.9 Nm to 15.2 Nm on
the transverse axis. Given the tasks studied and models
used, the uncertainties in the literature varied greatly.
However, the errors found were comparable to the esti-
mation uncertainties reported by Larivière and Gagnon
(1998) and were in the range of uncertainties reported
by Kingma et al. (1996).

Considering the transfer and return phases sepa-
rately, the RMSE were 14.0 Nm (±6.9) and 14.1 Nm
(±6.5) for the sagittal axis, 10.0 Nm (±4.0) and 9.0 Nm
(±4.0) for the frontal axis and 10.0 Nm (±4.0) and 8.0 Nm
(±3.5) for the transverse axis. Thus, compared to a
classical GRF&M prediction method with no box, tak-
ing into account a load does not add any error in the
estimation of L5/S1 joint moments.

Generally, phases where prediction had poorer re-
sults were observed when the proposed contact model
was the least representative of the performed move-
ment. Two recurrent observations were noted. First,
several subjects threw the load before contact with the
destination support, whereas the model assumes that
the load is always between the subject’s hands. Sec-
ond, in several cases, there was contact between the
load and a body part other than the hands (in most cases
the belly). For these situations, the model differs con-
siderably from the experimental conditions and the pre-
dicted data reveal more significant errors.

4



Table 1: Pearson correlation coefficient r (±SD) between predicted and measured GRF&M along each direction computed and averaged for
each transfer and return phases. Results of the proposed method are compared to those detailed in the literature: three methods based on a
contact model (Fluit et al., 2014; Skals et al., 2017; Larsen and Svenningsen, 2018), and two methods based on machine learning (Oh et al.,
2013; Johnson et al., 2018). For the studies of Fluit et al. (2014), Skals et al. (2017) and Larsen and Svenningsen (2018), the results for the
different types of motions were averaged. V: vertical; AP: antero-posterior; ML: medio-lateral; S: sagittal; F: frontal; T: transverse.

Motions GRF GRM
V AP ML S F T

Proposed method MMH 0.91 0.95 0.94 0.99 0.98 0.91
(0.08) (0.03) (0.08) (0.01) (0.05) (0.07)

Fluit et al. (2014) Gait 0.96 0.95 0.81 0.84 0.65 0.54

Fluit et al. (2014) Squat and
stairs 0.82 0.42 0.44 0.66 0.58 -0.02

Skals et al. (2017) Sports 0.98 0.85 0.64 0.85 0.67 0.28
Larsen and Svenningsen

(2018) MMH 0.94 0.53 0.71 0.64 0.76 0.24

Oh et al. (2013) Gait 0.99 0.98 0.92 0.99 0.84 0.87
Johnson et al. (2018) Sidestep 0.99 0.97 0.98 0.94 0.88 0.92

3.3. General discussion

On the basis of these results, the proposed method
is very encouraging. It allows MMH tasks to be studied
without the use of force platforms, which increases the
ecological aspect of the tasks. In this paper, the pre-
dicted external forces and moments were used to esti-
mate the L5/S1 joint moments. However, the method
can also be used to compute several biomechanical vari-
ables permitting assessment of handling tasks, for ex-
ample destabilizing and stabilizing forces to assess equi-
librium (Duclos et al., 2009) or glenohumeral joint mo-
ments to assess shoulder loading (which cannot be esti-
mated using only force platforms on asymmetrical tasks).
Compared to previous studies, the current method was
evaluated under experimental conditions representative
of the workplace: variability of the subjects (men /

women, healthy bodyweight / obese, experts / novices),
transporting boxes from a conveyor to a hand trolley,
no constraint on foot motion, and no particular instruc-
tions given. Even if machine learning methods have
overall better results, they require a learning phase us-
ing a data set corresponding to external forces and mo-
ments on the standardized motion, which is not the sit-
uation studied here. In the context of MMH tasks, ma-
chine learning seems difficult to adapt since the tasks
vary widely, i.e. variability of movement, handling
techniques and carried loads. The learning phase would
require a very large data set (Halilaj et al., 2018).

The results obtained appear satisfactory despite sev-
eral hypotheses where no specific parameters were cho-
sen for the different models. First, the load model was
simplified since its inertial parameters and the specific
location of the center of mass of the off-center box and
the weakened box were not taken into account. Us-
ing only the mass of the load therefore simplifies the
method development in an ecological context by us-

ing various loads. For example, for order picking in
a bonded warehouse, the mass of the load could eas-
ily be obtained from the order tracking data. Second,
the BSIP were based on a regression method (Dumas
et al., 2007) even though some of the cohort were obese
workers (greater than 50th percentile). Moreover, using
only regression methods allows a simplification of the
experimental protocol where only the subject mass is
used, which facilitates use of the method in an applied
ergonomics context.

3.4. Limits and perspectives

The current method has several limitations. First, it
was based on an optoelectronical motion capture sys-
tem which is usually only available in motion anal-
ysis labs. Where the aim is to improve the ecologi-
cal aspect of the experiments, wearable motion capture
systems could be used. For example, inertial motion
capture systems (Vignais et al., 2013; Robert-Lachaine
et al., 2017; Faber et al., 2018) or depth cameras (Plan-
tard et al., 2017a,b) have already been proposed for
workstation ergonomic posture assessments. More re-
cently, in the laboratory, the use of 2D images associ-
ated to deep learning methods were also developed to
estimate pose during lifting tasks (Mehrizi et al., 2019).
The extension of the proposed method to include this
type of technology is one important means to complete
an ergonomics assessment in the workplace. Second,
the phases of the MMH tasks were identified manu-
ally by using video recordings, which requires a time-
consuming post-treatment. The addition of sensors (for
example on the load or on the hands) or the use of
an automatic identification method could decrease the
post-treatment time. Third, acquisition frequency has
a direct impact on the computation of dynamic quanti-
ties and therefore on prediction forces. If very dynamic
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Table 2: Averaged RMSE (±SD) and rRMSE (±SD) between predicted and measured GRF along each direction. Results of the proposed
method are compared to those detailed in the literature: four methods based on a contact model (Fluit et al., 2014; Skals et al., 2017; Larsen
and Svenningsen, 2018; Muller et al., 2019a) and one method based on machine learning (Oh et al., 2013). For the studies of Fluit et al.
(2014), Skals et al. (2017) and Larsen and Svenningsen (2018), the results for the different types of motions were averaged. The results are
presented first normalized by body weight and second divided by the subject’s mass, which improves comparison to the literature where results
are available. - refers to unavailable data. V: vertical; AP: antero-posterior; ML: medio-lateral.

Motions
V AP ML

RMSE rRMSE RMSE rRMSE RMSE rRMSE
(N/kg) (%) (N/kg) (%) (N/kg) (%)

Proposed method MMH 0.51 7.1 0.22 4.7 0.19 5.3
(0.14) (2.2) (0.08) (1.3) (0.06) (1.9)

Fluit et al. (2014) Gait 0.68 - 0.30 - 0.19 -

Fluit et al. (2014) Squat and
stairs 0.70 - 0.24 - 0.29 -

Skals et al. (2017) Sport 1.05 - 0.61 - 0.39 -
Larsen and Svenningsen

(2018) MMH 0.60 10.4 0.46 58.2 0.13 21.4

Muller et al. (2019a) MMH 0.24 2.86 0.08 16.7 0.40 37.8

Oh et al. (2013) Gait 0.65 5.8 0.15 7.3 0.04 10.9
(0.18) (1.0) (0.06) (0.8) (0.02) (1.8)

phases (pre-grip, grip, deposit or post-deposit phases)
are of interest, an acquisition frequency higher than
30 Hz may be necessary. In addition, in these phases,
a more detailed modelling of the hypothesized contact
points would improve prediction. Fourth, a more de-
tailed modelling of the discrete contact points would
improve prediction method. In the current study, the
contacts points were chosen to map uniformly the hand
surface, with a similar density to the ones on the feet.
A sensitivity study to determine the optimal number of
points to use and their location on the hand would im-
prove the model. Finally, since the method is based on
a contact model, the pre-grip and post-deposit phases
were not taken into account. Given the tasks studied,
assessing these phases could be of interest. In this case,
the addition of sensors on the ground or on the load ap-
pears necessary.

4. Conclusion

The proposed method showed that external forces
and moments and back loading can be estimated during
manual material handling tasks from only motion data
on a wide variety of subjects (experts / novice, men
/ women, healthy bodyweight / obese). This method
improves the ecological aspect of the tasks by not con-
straining the movement area or the handling techniques.
Handler follow-up could thus be improved by assessing
the ergonomics of MMH tasks that are as representative
as possible of those performed in the workplace.
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Table 3: Averaged RMSE (±SD) and rRMSE (±SD) between predicted and measured GRM along each direction. The proposed method
results are compared to those detailed in the literature: three methods based on a contact model (Fluit et al., 2014; Larsen and Svenningsen,
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