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1 Introduction

1.1 Life science databases and the need to integrate them

In life science over the years, studies of all domains gathered lots of data in different places

and as fields of studies grows the number of databases also increases. Lots of research teams

have their own specific database and update it at different speed. Some initiative to integrate

databases have emerge through the year such as Intermine [3] and BioMart [9].

1.2 Semantic Web technologies

Semantic Web technologies are a broader initiative (i.e. not limited to life science) of the

W3C for addressing data integration 1. They provide a unified technical framework called

RDF, allowing to describe entities and relations between them across several datasets (called

endpoints). SPARQL is the associated query language. This will be further explained in the

Background section.

Over the last two decades, they have been increasingly adopted by the Lifes science com-

munity [1]. Currently, most major databases are available in RDF or via SPARQL endpoints.

Moreover, the databases now have explicit references to entities from other databases, which

reflects the need for integration that we had identified previously. They now constitute the

largest and most connected part of the LOD cloud 2.

1.3 Query federation

To accomodate the fact that the description of an entity in a dataset can reference other

entities in another dataset, SPARQL supports query federation. This allows to write a

single query in which a part concerns the first dataset, and another part concerns the second

dataset as if they were one single virtual dataset.

The SPARQL engine processes such federated queries automatically. This is an important

difference with relational databases, where the user would have to send the two subqueries

to the respective databases, retrieve the results and perform their integration.

A correct but naive approach for processing SPARQL queries consists in sending each

subquery to all endpoints. Of course, this leads to a combinatorial explosion and is not

1https://www.w3.org/standards/semanticweb/
2https://lod-cloud.net/
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practical in terms of performance. State of the art query engine all follow variations of a

more elaborate approach composed of three main steps:

• First, the Query parsing is the part where the query is divided in small parts, called

statement patterns.

• Then, the Source selection where the federation engine chooses where to send each

statement patterns.

• Finally, the Query planning regroups statements patterns that have the same sources

and reorganise the query to optimise the join operations.

However, their performances are still not good enough to handle typical life science

queries, that are complex and involve large datasets [6].

1.4 General objective

The main objective is to improve the steps of federated query processing. Section 2 provides

background information on RDF and SPARQL, analyses the difficulty of processing federated

queries and surveys the state of the art query engines and benchmarks. Section 3 defines the

internships objectives. Sections 4 and 5 describre the materials and methods and results:

we performed an in depth analysis of the query LS6 from LargeRDFbench, we proposed

an improved scoring for query planning, implemented it in the Corese query engine and

measured the gain of performance. Section 6 is a discussion and synthesis.
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2 Background

2.1 RDF

2.1.1 URI

In RDF, resources are identified with Uniform Resource Identifier (URI). URI have the syntax

of Uniform Resource Locator (URL) but are not necessarily the address of a document.

Therefore URLs are a subset of URIs.

2.1.2 Triple

An RDF triple is a list of a subject, a predicate and an object (Table 1b). The subject is

the URI of the resource being described. The predicate is the URI of a relation. The object

is one of the values of the predicate for the subject. It can be either an URI if the relation

designates another entity, or a string (Table 1a).

DrugID rdfs:label DB:molecularWeight

DB00738 Pentamidine 340.4195
DB00005 Etanercept 51234.9

(a) Example of data.

Subject Predicate Object
DB:DB00738 rdfs:label ”Pentamidine”
DB:DB00738 DB:molecularWeight ”340.4195”

(b) Example of triple.

Table 1: Data and a part of the corresponding triples.

2.1.3 Graph

A set of RDF triples constitutes a directed graph where the nodes are the resources and the

arcs are the triples (Figure 1).

2.2 SPARQL

SPARQL is the language to query RDF data, defined by the W3C consortium 3.

2.2.1 One DB at a time

Users can send a query to an endpoint and retrieve the results. A query is a set of triples

where the subject, the predicate or the object can also be variables (with their name starting

3https://www.w3.org/TR/rdf-sparql-query/
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Figure 1: Example of a graph.

by a question mark). The query engine computes all the combinations of the variables’ values

that satisfy the query. For example, if you want the molecular weight and name of all drugs,

your query will be as Figure 2 and the results will display in no particular order (Figure 3).

Figure 2: Example of a graph for a simple query.

Figure 3: Part of the results for a simple query.

2.2.2 Combining graphs

Because some databases have complementary information of the same resources, they can

posses the same URI. This common URI creates a connection (or an ”overlap”) between the

two databases, this is called entity matching (Figure 4 & 5). Most of the time, the queries

needed by the scientist are complexes and needs to be sent to multiple databases because of

that linking.
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Figure 4: Illustration of linked data between two databases

Figure 5: Graph of linked data between two databases

2.2.3 Federation

This shared information means that there is a chance the results will not be complete. As

the Figure 6 shows, the results will be endpoint dependent and the user will not have the

possible combinations between them. The first solution that comes in mind is to merge the

endpoints together but the new dataset size will be too large to be useful. It will also make

no sense since the concept of linked open data will not be preserved.

Naive method The naive way is to send each triple to each endpoint and join every results

(Figure 7).
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Classical method Decompose the query in subqueries and only send these subqueries to

the endpoints that could potentially return some results.

Figure 6: Federated queries: sending the
whole query to each endpoint and comput-
ing the union of their results misses all the
solutions obtained by combining some triples
from an endpoint with other triples of another
endpoint

Figure 7: A correct but naive approach for
processing a federated query consists in for
each triple of the query (1) send it to each
endpoint, (2) compute the union of the res-
ults, (3) iterate (1) and (2) over all the triples
of the query, (4) compute the join of the res-
ults of (3).

Splitting the query increases the number of queries sent, the number of join operations

and the evaluation time will increase but there will be no more incorrect results. The

objectives of the federation engine are to gather the query fragments to reduces joins, select

the relevant endpoints to send them and determine the order of processing these fragments.

2.3 Tools and benchmarks

2.3.1 Endpoints

To manage the data at each endpoint and store the triples, the most used software are

Virtuoso 4, Fuseki 5, Corese [2] 6, Sesame/RDF4J 7. Their role is to receive the queries,

evaluate it and return the results. Most of them have an interface where users can directly

send queries. Here we will use Virtuoso.

4https://virtuoso.openlinksw.com/
5https://jena.apache.org/documentation/fuseki2/
6https://project.inria.fr/corese/
7https://rdf4j.eclipse.org/
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2.3.2 FedX

Developed in 2011, FedX [8] is implemented in Java and extends the Sesame framework.

This modification adds a new source selection method that works with ASK queries sent at

each endpoints. This query’s result only tells if the endpoint can answer the main one, which

inquires fewer searching process. Because every ASK query can be send individually, FedX

introduces parallelization, a way that allows multiple tasks to be executed at the same time.

This is also used to improve the joining operation.

2.3.3 HiBISCus

HiBISCus [5] is a modification of FedX made by Fluidops. It creates indexes which retain

information from ASK queries. The difference with FedX is that the engine searches inside

this indexes instead of sending queries, it suppresses the response time induced by ASK

queries. The company does not exist anymore and their website is down resulting in the

precise documentation being unreachable and little to no support.

2.3.4 PPinSS

Designed and implemented by Guillaume Alviset in 2018, PPinSS is a modification of HiBIS-

Cus. This tools generates different indexes with more information. It manages to select fewer

sources while giving the same results and being faster as shown in Figure 8. His benchmarks

were made with the Life Science (LS) queries.

2.3.5 Grafeque

Vijay Ingalalli worked on Grafeque in 2018 for the Federated Query Scaler project of Dyliss’

team 8. It is a modification of HiBISCus’ query planning. The indexes changes again and a

second view on the hyper-graph that represents the triples changes the source selection.

2.3.6 Benchmarks

A lots of benchmarks exist but they do not explore the federation with linked data the

same ways [6]. Here we will focus on the queries from FedBench [7] and its newer version,

LargeRDFBench [4]. These queries have been created in a way that should cover every needs

8http://www.irisa.fr/dyliss/public/federatedQueryScaler/
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Figure 8: Comparisons of query execution time after source selection for each approach. LS6
has timed out for both HiBISCuS original and character index and also for FedX original.
Figure taken from Guillaume’s internship report.

researchers may have. After seeing most of them, I have made the observation that they

always forgot to check if the results are correct, they only check if they are present.

3 Internship objectives

Thanks to PPinSS the queries evaluation is faster. Its new indexes allows the source selection

method to be more strict and grants faster queries evaluation with fewer intermediate results

to join. But because of the error on LS6 for HiBISCus, the comparison is not complete. I

will continue the benchmarks with HiBISCus and PPinSS, as it needs to be fully functional

with each tools and each query and I will add Grafeque. Finally, because FedX is outdated,

a migration to the Corese federation engine is considered.
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4 Material and methods

4.1 Benchmarks

To compare the performances between HiBISCus, PPinSS and Grafeque, we used queries

from FedBench [7] and LargeRDFBench [4]. The focus of the analysis are the queries for the

life science domain from FedBench. A bash script has to launch every query with each version

of the tools we wanted and specified within the arguments how many times the test needs

to be run. The endpoints are created on virtual machine on the GenOuest cluster 9. They

run on Debian (v8.11) with Virtuoso (v7.2) to store the triples. All the virtual machines

specifications are summarise in Table 2.

Name Size(mb) Number of triple CPU RAM(Go)
KEGG 118 1,090,830 2 4

DrugBank 100 517,023 2 4
ChEBI 829 4,772,706 2 8

DBPedia-subset 6,200 42,849,609 2 8
GeoNames 12,000 107,950,085 2 8

Semantic Web Dog Food 0.68 103,595 2 4
New York Times 50 335,198 2 4

Affymetrix 8,800 44,207,146 2 8
Jamendo 141 1,049,647 2 4

Linked Movie Database 851 6,147,996 2 4
TCGA-A 4,100 35,329,868 2 8
TCGA-M 53,000 415,030,327 4 32
TCGA-E 39,000 344,576,146 4 32

Table 2: Endpoints specifications. TCGA-A was added for HiBISCus and PPinSS but
because the summaries for Grafeque did not included any TCGA, they were not used for
further benchmarks.

This setup allows us to access these endpoints without any conflict in case of external

connections.

9https://www.genouest.org/
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4.2 LS6

The conclusion of Guillaume’s work opens to the analysis of LS6, as we can see in the

Figure 8. LS6’s evaluation with FedX and HiBISCus returned a time-out error with no

apparent reason even though their performances with the other queries were acceptable.

First, we have searched for an optimisation of the joining operations by finding every

achievable joining order. Only the joining between statements that has common variables

are made, otherwise the number of results is increased and the federation engine already

optimises it. Given that the ASP is useful for solving search problems, an attempt was made.

Then most of the scripts used were written in Python 3, easier and faster to implement.

1 SELECT ?drug ?title WHERE {

2 ?drug DB:drugCategory DB:micronutrient .

3 ?drug DB:casRegistryNumber ?id .

4 ?keggDrug w3:22-rdf-syntax-ns\#type bio2rdf:kegg\#Drug .

5 ?keggDrug bio2rdf:bio2rdf\#xRef ?id .

6 ?keggDrug <http://purl.org/dc/elements/1.1/title> ?title .

7 }

Listing 1: LS6. Statements from line 2 to 6 were named B1-B5 for better identification when
researching with the joining operations. URI were shortened.

The particularity on this query is that HiBISCus selects 7 sources while PPinSS selects

only 5 sources, one per statement. In fact, the statement on lines 5 and 6 can be retrieved

from two different endpoints. We can see in the query (Listing 1) that the lines 3 and 5 have

in common the variable ”?id”, the fist objective was to bring them closer.

Then, the idea of switching every statement of the query leads to new scripts. To be

able to do benchmarks with it, I have made a script that finds and rewrites the query in

every possible order then launches the evaluation of every new query. This leads to 120 new

queries to launch.

10



4.3 Scoring change

The whole analysis of LS6 brought to us the idea that the query planning of HiBISCus could

be improved. No new scripts were written but the debug mode of Eclipse and lots of printing

in the terminal were useful.

To change the query planning on HiBISCus, I proposed a new scoring function for the

patterns and a new query planning algorithm based on this score.

4.4 Corese

Here Corese will replace FedX in PPinSS. Thanks to Guillaume, PPinSS also comes in a

separate package that can be added to any federated engine. It will be used to implement

PPinSS to Corese. After the complete migration, a benchmark has been planned, mainly

focusing on the Life Science domain queries.

11



5 Results

5.1 Benchmarks

Once the job on the GenOuest cluster is launched, a log file appears in the user’s home

directory containing any texts output. For our benchmarks, this log file’s format is as follow:

• Current query’s name.

• Name of the tool.

• Number of sources selected, Sources selection time (in milliseconds), Number of results,

Query evaluation time (in milliseconds).

Having every result in one line separated by a coma allows us to extract the results and to

facilitate analysis.

Figure 9: Queries results. #S is the number of sources selected. TS is the time for source
selection. #R is the number of results. TQ is the time of the query evaluation and source
selection for HiBISCus and PPinSS and only query evaluation for Grafeque.

We can see in Figure 9 that Grafeque does not get results for LS4 and LS5 even though

it got the right sources. The reason has not yet been found.

For PPinSS the lack of results for LS7 may be an error in the joining process because of

the keyword FILTER inside the query. Without it, the query sends the correct results.

5.2 LS6

This variation can be explained by the joining order of the query. HiBISCus joins every

statements pattern one after the other, but one joining operation asks for more than 25,000

results to be passed on the next part of the query. A simple swap of two triple patterns can

12



reduce it to 164 results because the first patterns return fewer results than the second. That

trick is not written on the scientific paper of HiBISCus and it is not how the query was first

designed. PPinSS does not have this particular problem thanks to its source selection. It

scans the variables used in the three triple patterns and gathers them in an exclusive group

statement assigned to a single endpoint.

Figure 10: Results of the Join searching. From left to right: The 4 steps of the joining, the
full joining time, the number of operations for each steps of the joining and the total number
of operations.

The tests with ASP were promising at first, but the limitation over arrays with the ASP

solver used and the complexity of the rules applied for our operations leads us to simply use

Python.

To represent a statement, I have created a class named Bloc which contains an array

with 0 and 1 that adds up when two statements are joined, a name and the number of result

that statement should return. The name is needed to keep tracks of the join order and the

number of results will shows us the worst number of operations which is linked to the query

evaluation time.

Figure 10 shows that there is one order for which the join operation will take a minimum

time. Even if the times displayed is not the real ones, it gives us an idea of the worst cases

and demonstrate the importance of the query planning.

To confirm the engine capability, tests were realised with the other queries and the other

available domains: Crossed domain and Linked data.

13



1 B1 = Bloc([1,0,0,0],"B1",48)

2 B2 = Bloc([1,1,0,0],"B2",2240)

3 B3 = Bloc([0,1,1,0],"B3",102343)

4 B4 = Bloc([0,0,1,0],"B4",8117)

5 B5 = Bloc([0,0,1,1],"B5",121158)

Listing 2: Initialisation of the statements for the python’s scripts.

5.3 Scoring changes

To stop HiBISCus from hitting 120 seconds for LS6, I have searched for a way where its

statements pattern have a better joining order. Initially, HiBISCus increase the score of the

statement when there are no common variables with any statements previously analysed. The

statement with the smaller score is then placed in the ordered list for joining. If a common

variable were found, no action was taken. Therefore I have added a clause to decrease the

score when has a common variable is encountered. This simple change managed to reorganise

the query joining order and improve the time on LS6.

5.4 Corese

The implementation of PPinSS may be delayed, researches about how to do it continues. As

it uses differents indexes, the source selection method will changes. We will use of the .jar

files to launch the life science queries for the benchmarks without PPinSS.
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6 Conclusion

Most of the internship was trial and error, trying to find the option that can make a differ-

ence when launching benchmarks. The lack of documentation made the development much

slower but with the migration to Corese, it will be easier for future works. The benchmarks

shows that PPinSS is slightly better that HiBISCus at evaluating queries for the Life Science

domain. It also allows the discovery of an improvement to HiBISCus with its score modi-

fication. Unfortunately, in its actual state, Grafeque is not an improvement but its time for

sources selection is a good sign. Finally, all the debugging, all the time spent on searching

in the code and the documentations being not always relevant indicates that a migration to

Corese, an engine with a live working team, will be helpful.
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ABEL Antoine

Résumé du stage
Depuis plusieurs années nous observons l’augmentation des données dans domaine de la vie

et la multiplication des bases de données. Le chevauchement des données entre ces bases pousse

les scientifiques à développer de nouvelles manières d’évaluer les requêtes pour gagner du temps

et recouvrir toutes les bases de données. Pouvoir envoyer une requête sur plusieurs bases de

données est la base de la fédération des requêtes. De nombreux moteurs de fédération ont été

développé, nous allons travailler avec: FedX, HiBISCus (une modification de FedX), PPinSS (une

modification de HiBISCus), Grafeque (une modification de HiBISCus). L’objectif du stage était de

reprendre les tests avec HiBISCus et PPinSS et ajouter Grafeque aux outils utilisés. Les benchmarks

déjà effectués ont montré qu’HiBISCus n’évaluait pas correctement LS6, nous avons donc étudié

cette requêtes et son traitement par les différents outils. L’exploration du code source étant assez

fastidieux, des scripts en python ont servis à simuler les jointures en changeant l’ordre des triplets.

Cela nous a permis de trouver une modification du calcul du score pour l’étape de planification

de la requête. En outre, le développement de FedX n’étant plus maintenu en raison du rachat de

l’entreprise qui le développait, une migration vers le moteur Corese est donc préparée.

Mots clés: Web sémantique, SPARQL, RDF, requêtes fédérés.

Internship abstract
For several years we have observed the increase of data in the life science domain and the mul-

tiplication of databases. Overlapping data between these databases is forcing scientists to develop

new ways to evaluate queries to save time and cover all databases. Being able to send a query on

several databases is the basis of query federation but many methods exists. Many federation engines

have been developed, we will work on a few of them: FedX, HiBISCus (a modification of FedX),

PPinSS (a modification of HiBISCus), Grafeque (a modification of HiBISCus). The objective of

the internship was to continue the tests with HiBISCus and PPinSS and add Grafeque to the tools

used. The benchmarks already carried out showed that HiBISCus did not evaluate LS6 correctly,

so we studied this query and its evaluation by the different tools. Reading through the entire source

code was quite tedious, python scripts were used to simulate the joints by changing the order of

triples. This allowed us to find a modification of the scoring method for the query planning. In

addition, FedX is no longer maintained in development due to the company that developed it being

bought, a migration to the Corese engine is prepared.

Key words: Semantic Web, SPARQL, RDF, federated queries.


