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LORIA, UMR 7503, Université de Lorraine, CNRS, Inria

Nancy, France

{mariaandrea.cruzblandon, gosseminnema}@gmail.com
aria.nourbakhsh@outlook.com

{maria.boritchev, maxime.amblard}@univ-lorraine.fr

Abstract

The present study proposes an annotation

scheme for classifying the content and dis-

course contribution of question-answer pairs.

We propose detailed guidelines for using the

scheme and apply them to dialogues in En-

glish, Spanish, and Dutch. Finally, we report

on initial machine learning experiments for au-

tomatic annotation.

1 Introduction

Question-answer pair (QAP) labeling is the prob-

lem of characterizing the content and discourse

contribution of questions and answers using a

small but maximally informative tagset that can

be consistently applied by both human annotators

and NLP systems. QAP labeling has many po-

tential use cases, for example as a preprocessing

step for dialogue modeling systems or for chat-

bots. The problem is not new: in the NLP lit-

erature, different aspects of QAP tagging have

been addressed in the context of question answer-

ing systems (Li and Roth, 2002), question gener-

ation systems (e.g. Graesser et al., 2008), and dia-

logue act classification (e.g. Allen and Core, 1997;

Stolcke et al., 2000).

However, we see several gaps in the literature:

existing approaches to QAP classification often do

not cover the full range of questions and answers

found in human dialogues and are limited in the

types of semantic information that they cover. To

address these issues, we propose a new annota-

tion scheme that was developed based on corpora

of natural conversations in several languages (En-

glish, Spanish, and Dutch) and provides several

layers of annotations for QAPs. Notably, where

applicable, we annotate the semantic role of the

questioned constituent in questions and their cor-

responding answer (e.g. ‘Does she live in Paris

or London?’ ⇒ LOCATION), which we believe is

an informative, yet easy definable way of globally

characterizing the content of a QAP.

Our paper has two main contributions: the an-

notation scheme itself (section 3) and two ways

of applying it to real data. We developed detailed

and explicit guidelines for human annotators, and

tested these on corpus data (section 4.1). Addi-

tionally, we started experimenting with machine

learning approaches for automating part of the an-

notation process (section 4.2).

2 Related Work

Our annotation scheme is related to two exist-

ing schemes in particular. The first of these is

Freed (1994), which categorizes questions along

an information continuum that ranges from ques-

tions purely asking for factual information to ques-

tions that convey, rather than request, (social) in-

formation. Within this continuum, questions are

divided into classes that are defined based on a

combination of formal (syntactic) and functional

criteria. Both of these ideas are also used in

our scheme: our question types are also distin-

guished by whether they ask or convey informa-

tion (‘phatic questions’ and ‘completion sugges-

tions’ fall into the latter category) and are defined

as combinations of specific forms and functions.

Another related scheme is Stolcke et al. (2000),

an adapted version of DAMSL (‘Dialog Act

Markup in Several Layers’, Allen and Core 1997),

an annotation scheme for dialogue acts (including

QAPs). The scheme includes a set of eight dif-

ferent question types (e.g. yes/no questions, wh-

questions, rhetorical questions) that has consider-

able overlap with our set of question types.

3 Annotation scheme

Annotated information is split between two main

‘layers’: question/answer type and feature (se-



mantic role). Every question or answer is assigned

at least a type tag, and depending on the type, a

feature tag.

3.1 Questions

The question tagset was designed in a corpus-

driven way, starting with two basic types and ex-

panding the tagset based on corpus data. Our

starting assumption is that the corpora would con-

tain at least two well-known and well-defined cat-

egories of questions: yes/no questions and wh-

questions (Freed, 1994). In our opinion, both of

these types are useful a priori, because they are

each associated with a clear set of syntactic, se-

mantic, and pragmatic characteristics (at least for

the languages that are included in this study). Pro-

totypical English yes/no questions are character-

ized by subject-auxiliary inversion and do-support

(syntax), express a proposition that could be true

or false (semantics), and their answers are ex-

pected to either confirm or deny this proposition

(pragmatics). On the other hand, a prototypical

English wh-question contains a fronted constituent

that starts with a wh-word (syntax), expresses a

proposition with missing information (semantics),

and expects the answerer to supply this missing

information (pragmatics) (Freed, 1994).

Next, we looked for questions in our corpora

that did not correspond to either of the two pro-

totypes and extended the scheme to fit them (see

table 1 for the final scheme and examples). First,

there are questions that are similar to wh-questions

or yes/no questions but have a deviant form (e.g.

wh-in-situ questions like ‘You saw what?’, or

yes/no questions without inversion such as ‘You

saw him?’). We decided not to introduce new cat-

egories for these on the basis of their semantics

and pragmatics.

A second group of questions has the syntac-

tic characteristics of a yes/no question or a wh-

question, but a different pragmatics and/or seman-

tics. For example, the asker of the question sug-

gests a way to complete the utterance of the previ-

ous speaker, and the expected answer would con-

firm or deny this suggestion. This is subtly dif-

ferent from a prototypical yes/no question because

the asker of the question does not necessarily ask

their interlocutor to confirm the truth value of the

suggestion (e.g. A: it includes heat and uhm, I

think B: Water?, SCoSE/Amy, line 746-7471). We

1See section 4.1.2 for information about our corpora.

call these types of questions completion sugges-

tions.

Tag Name Tag Name

YN Yes/No question WH Wh-question

CS Completion suggestion PQ Phatic question

DQ Disjunctive question

Table 1: Question types

The third group of questions appear to be a

yes/no question or a wh-question, respectively, but

their context and intonation make clear that the

asker is not actually interested in the confirmation

or denial of the proposition. Instead, such ques-

tions can have various so-called phatic functions,

i.e. their semantic content is less important than

their social and rhetorical functions (Freed, 1994;

Senft, 2009). We call this type of questions phatic

questions (e.g. right? / oh yeah? / you know?).2

Finally, some questions containing a disjunc-

tion (e.g. ‘Do you go on Monday or on Tues-

day?’) are semantically and pragmatically sim-

ilar to wh-questions, but are syntactically closer

to yes/no questions. This kind of questions, like

yes/no questions, exhibits subject-auxiliary inver-

sion (at least in English), but does not ask for the

confirmation or denial of the proposition that it ex-

presses. Instead, it expects the answerer to provide

some missing information with the set of options

to choose from. We call this type of questions dis-

junctive questions (sometimes also called alterna-

tive questions in the literature).

3.2 Features

Wh- and disjunctive questions are always ‘about’

a particular constituent (e.g. ‘Which man is run-

ning?’, ‘Do you want coffee or tea?’). The fea-

ture, or semantic role of this constituent provides

information about the content of the question and

the expected answer (e.g. if the questioned con-

stituent is an AGENT then it is likely that the an-

swer will refer to a person). Detecting seman-

tic roles requires semantically analyzing the sen-

tence, but for wh-questions, wh-words often pro-

vide cues (e.g. ‘where’ for LOCATION). Our fea-

ture annotations follow the feature set (see table 2)

2Note that our use of the term phatic question is some-
what broader than the phatic information question described
in Freed (1994); for example, our definition also includes
rethorical questions, while in Freed’s scheme, these are not
included.



and the mapping from (English) wh-words to fea-

tures proposed in Boritchev (2017) (adapted from

Jurafsky and Martin 2000).

Tag Name Tag Name

TMP Temporality OW Owner

LOC Location RE Reason

AG Agent TH Theme

CH Characteristic

Table 2: Features

3.3 Answers

The main intuition underlying our answer annota-

tion scheme is that question types restrict their an-

swers: for example, yes/no questions are prototyp-

ically answered by ‘yes’ or ‘no’, and wh-questions

ask for a constituent with a particular feature. Ta-

ble 3 summarizes our answer types and their cor-

responding question types. Among these types of

answers, there may be overlaps. For example, a

‘deny the assumption’ answer can be thought of as

a negative answer because it is possible that they

share the same grammatical and semantic struc-

ture. Different factors including the context and

prosody are relevant to decide between overlap-

ping tags.

Some questions are not followed by answer. We

distinguish between two situations. First, there are

questions that receive a reply that, while not pro-

viding the information asked for in the question,

clearly do respond to it. For example, in the QAP

A: ‘When will you guys get off?’ / B: ‘My last exam

is like . . . I don’t know’ (SCoSe/Amy, line 243-

244), B’s response does not answer A’s question

directly but does engage with it as there is a log-

ical connection between finishing the exams and

going on vacation. In such cases, the response is

tagged as unrelated topic (UT) because it is about

a different topic but still responds to the question.

By contrast, when there is no response at all, no

answer should be annotated.

4 Annotation Experiments

In this section, we discuss our experiments with

applying the scheme manually (section 4.1) and

using machine learning techniques (section 4.2).

Tags Name Question Type

PA Positive Answer YN, CS

NA Negative Answer YN, CS

FA Feature Answer DQ, WH

PHA Phatic Answer YN, CS, DQ, WH, PQ

UA Uncertainty Answers YN, CS, DQ, WH, PQ

UT Unrelated Topic YN, CS, DQ, WH, PQ

DA Deny the Assumption YN, CS, DQ, WH, PQ

Table 3: Answers

4.1 Manual annotation

We have experimented with applying the scheme

on real-world data. Our experiment consists of

two parts: writing annotation guidelines to explic-

itly define the annotation process and annotating

701 questions across three languages, namely, En-

glish, Spanish, and Dutch.3

4.1.1 Annotation guide

In order to help annotators apply the scheme con-

sistently, we wrote annotation guidelines for En-

glish, which include examples and instructions

for how to use the annotation software (ELAN

2017, Sloetjes and Wittenburg 2008). The annota-

tion procedure guides the annotator in identifying

questions, dealing with transcription errors, deter-

mining question types, and adding tags for addi-

tional information such as features, complexity,

and indirectness.

Some question types have a very specific pro-

totypical syntactic form (e.g. wh-questions),

whereas other questions can have several differ-

ent forms (e.g. phatic questions). We exploit this

by defining a precedence order for question types,

which serves as a filter for identifying questions.

The precedence order lists question types from the

most specific to the most general ones, i.e. from

questions with easily identifiable characteristics to

those that can have different forms as it is the case

for the phatic questions. The precedence order

is as follows: (1) Wh-questions, (2) Disjunctive

questions, (3) Yes/No questions, (4) Completion

suggestions (5) Phatic questions.

4.1.2 Corpora

We annotated several dialogues from three

different corpora in three languages: the

Saarbrücken Corpus of Spoken English (SCoSE)

3Our guidelines and annotations
are available in our repository at
https://github.com/andrea08/question_answer_annotation

https://github.com/andrea08/question_answer_annotation


Annotators Ao κ

Questions 0.73 0.63

Features 0.90 0.67

Answers 0.59 0.49

Table 4: Cohen’s Kappa score (κ) and observed agree-

ment (Ao) for gold standard dialogue

(Norrick, 2017), a corpus of face-to-face con-

versations; the CallFriend corpus (Spanish)

(Canavan and Zipperlen, 1996), a corpus of

phone conversations; and the Spoken Dutch

Corpus (CGN) Oostdijk 2001, a corpus of phone

conversations. The purpose of annotating these

dialogues was to test the annotation scheme on

different languages and produce annotated data.

We annotated all questions in a subset of 4,939

utterances from the SCoSE corpus. Of these,

3,578 utterances were used to build the ‘gold

standard’ corpus (used for calculating agreement

scores and training machine learning algorithms).

The remainder of the corpus was used as a test

set in the machine learning algorithms. Further-

more, we annotated questions and answers from

2,618 and 935 utterances of CallFriend and CGN

corpora, respectively. We relied primarily on the

transcriptions of the corpora; in case of doubt, we

made use of the audio recordings as well.

4.1.3 Results

We annotated 701 questions (Q) and 483 answers

(A), distributed as follows: 422 (Q) / 289 (A) in

the ScoSE corpus; 87 (Q) / 72 (A) in the CGN

corpus; and 192 (Q) / 122 (A) in the CallFriend

corpus. A descriptive analysis of our annotations

shows that yes/no questions are the most common

type in the three corpora, 40% (Spanish), 42%

(English) and 64% (Dutch).

To evaluate the annotations, inter-annotator

agreement was calculated based on a subset of

the gold standard corpus.4 Table 4 illustrates the

values of observed agreement (Ao) and Cohen’s

κ (Cohen, 1960) obtained for question, feature

and answer annotation. The agreement values ob-

tained for question types were over 0.6 (for all

annotators combined). This would generally be

considered to be a ‘moderate’ level of agreement

(Landis and Koch, 1977). A large share of our

4This subset consists of the 690 utterances jointly anno-
tated by all three annotators.

disagreements came from phatic questions; dis-

tinguishing these from other question types some-

times relies on subtle pragmatic and semantic con-

textual judgements. Agreement for answer types

is lower than for question types because ques-

tion types restrict answer types and hence ques-

tion type disagreements can cause answer type dis-

agreements.

In order to improve the annotation guidelines,

we systematically examined all of the disagree-

ments, most of which fell into one of four cat-

egories: (1) Simple mistakes, such as missing a

question or choosing an (obviously) wrong tag.

(2) Disagreements as a consequence of a previous

disagreement; e.g., wh-questions need feature an-

notations, but phatic questions do not. In this case,

a disagreement about the question type can cause

further disagreement about feature type. (3) Miss-

ing instructions in the annotation guidelines for

handling particular situations, e.g. annotating ut-

terances containing interruptions. (4) Utterances

whose interpretation was ambiguous and depends

on subtle intonational or contextual cues for which

it is hard to formulate a general rule.

4.2 Machine learning

We also conducted preliminary machine learning

experiments for automating the annotation pro-

cess. For the moment, we focus only on question

type classification for English dialogues. So far,

the approach that shows the most promising re-

sults is a decision tree algorithm (Quinlan, 1986)

that takes as input a set of hand-designed features

representing formal characteristics of a question,

such as its length, the presence of a wh-word, and

the presence of words such as really? or you

know? Our full feature set is given in Table 5.

Note that these features are quite superficial and

do not take into account the discourse context of

a question. Still, the algorithm achieves an accu-

racy score of 0.73 and an F1-score of 0.58, outper-

forming our majority-class baseline algorithm by

a wide margin (acc. = 0.47, F1 = 0.31).5

Analysing the effect of the features in the pre-

dictions of the decision tree, we found that the

majority of the mistakes were associated with the

length of the questions. From the questions that

were misclassified and had a length less than 6 (26

questions), 50% were wrongly predicted as phatic

5A global F1 score was calculated by macro-averaging
the scores for individual classes.



questions. Particularly, as with manual annota-

tions, phatic questions that contain wh-words were

source of disagreement and misclassified. Table

6 shows the confusion matrix for all the question

types.

Feature Description Value

has wh Contains a wh-constituent True, False

has or Contains the word “or” True, False

has

inversion

Verb before NP (based on shal-

low parse)

True, False

has tag Contains a tag (‘isn’t it’, ‘right’) True, False

last utt

similar

Question shares ≥ 50% of its

words with the previous utter-

ance

True, False

last utt

incomplete

Previous utterance is interrupted

(marked with special transcrip-

tion symbol)

True, False

has cliche Contains a phatic marker (‘you

know?’, ‘really?’)

True, False

length Number of words Numerical

Table 5: Extracted features for the classification task

YN DQ PQ CS WH Support

YN 74 1 8 3 2 88

DQ 0 3 0 0 0 3

PQ 7 0 15 0 8 30

CS 1 0 0 0 0 1

WH 10 0 9 0 43 62

Table 6: Confusion matrix of decision tree prediction

(test set, 184 questions)

Furthermore, we experimented with two neu-

ral architectures, a bag-of-words (BOW) classi-

fier and a recurrent neural network (RNN), to test

what input representations are most informative.

However, so far these models suffer from over-

fitting and perform worse than the decision tree

model (BOW: acc. = 0.76, F1 = 0.44; RNN:

acc. = 0.54, F1 = 0.24). We expect these mod-

els to perform better when more training data is

available.

5 Conclusion

This paper introduced a new annotation scheme

for question-answer pairs in natural conversation.

The scheme defines five question types and seven

answer types based on a mix of formal and func-

tional criteria. An annotation guide was developed

and multi-lingual corpora were annotated. Inter-

annotator agreement scores were moderately high;

a qualitative analysis of disagreements led to im-

provements to the annotation guidelines. Initial

machine learning experiments show that a simple

decision tree algorithm achieves above-baseline

performance, but much work remains to be done

for making automatic annotation practically fea-

sible. For future work, we would also like to

expand the multilingual component of our work

by adding language-specific guidelines, annotat-

ing more corpora, and adapting our machine learn-

ing algorithms to different languages.
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