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Abstract—Screen resolution along with network conditions
are main objective factors impacting the user experience, in
particular for video streaming applications. Terminals on their
side feature more and more advanced characteristics resulting
in different network requirements for good visual experience [1].
Previous studies tried to link MOS (Mean Opinion Score) to video
bit rate for different screen types (e.g., CIF, QCIF, and HD) [2].
We leverage such studies and formulate a QoE-driven resource
allocation problem to pinpoint the optimal bandwidth allocation
that maximizes the QoE (Quality of Experience) over all users
of a provider located behind the same bottleneck link, while
accounting for the characteristics of the screens they use for video
playout. For our optimization problem, QoE functions are built
using curve fitting on data sets capturing the relationship between
MOS, screen characteristics, and bandwidth requirements. We
propose a simple heuristic based on Lagrangian relaxation and
KKT (Karush Kuhn Tucker) conditions for a subset of con-
straints. Numerical simulations show that the proposed heuristic
is able to increase overall QoE up to 20% compared to an
allocation with TCP look-alike strategies implementing max-min
fairness. Later, we use a MPEG/DASH implementation in the
context of ns-3 and show that coupling our approach with a rate
adaptation algorithm (e.g., [3]) can help increasing QoE while
reducing both resolution switches and number of interruptions.

I. INTRODUCTION

Today, end devices such as mobile phones, tablets, and
monitors, are doted with more and more advanced features. In
particular, they support different but still limited video formats
and resolutions. Apple with more than 20% share of the mobile
market presents plenty of products with several characteristics
[4]. For example, an iPhone 4S supports up to 640x480
pixels, while an iPhone 8 supports up to 1334x750 pixels.
On the other side, mobile operators and network providers
give high importance to Quality of Experience (QoE) as a
metric to assess users satisfaction and avoid any economic
loss. Even though 5G networks promise high connectivity and
huge transmission capacity aiming to take users experience to
the next level [5], [6], bandwidth sharing is still an important
issue for network operators and content providers, especially
in view of the exponential rise of video traffic volume. It
turns out that the objective aspect of Quality of Experience
is tightly correlated to terminal playout characteristics (e.g,
size, resolution) but also to network conditions [1], [7], [8].
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In light of the previous facts, studies have linked QoE metric
MOS (Mean Opinion Score) to bit rate for different screen
resolutions in the context of video streaming. By assembling
video quality data for screens of different resolutions, Cermak
et al. [2] managed to show that small screens (e.g, CIF, QCIF)
scale toward high MOS levels at small bit rates. Moreover,
they provide a curve for H.246 bit rate required for a desired
MOS level for different screen resolutions (Fig. 5 in [2]). On
the other side, content providers, such as YouTube, propose
content in different resolutions without a careful customization
to the screen or the viewport. It follows that an end device
can download video at more than its display capacity before
transcoding it down to match its display, which consists in a
waste of network resources without bringing additional gain
to the user in terms of her QoE. In practice, the choice
between the different resolutions is managed either statically
by the user, or automatically by the player thanks to an HTTP
Adaptive Streaming protocol (HAS) in a way to cope with
the network conditions [9]. A well known HAS protocol used
by major content providers is MPEG DASH. In this context,
changing the viewport does not necessarily mean a resolution
change as the DASH still downloads the best available video
resolution that fits within the available network bandwidth.
Less is done to explore how one can leverage the terminal
characteristics (e.g., screen resolution) in the allocation of
network resources (e.g., bandwidth). The allocation is left to
DASH and TCP, which in case of multiple flows sharing a
bottleneck link, converge to a fair split of the available band-
width. For different screen resolutions, or different viewports
in general, this latter allocation does not lead to a fair QoE
allocation, nor to an optimal overall QoE.

In this paper, we study the problem of resource allocation
for several video flows sharing the same bottleneck, and de-
velop an optimization framework to maximize the overall QoE
taking into consideration terminal display capabilities. We use
two data sets to fit QoE functions that link throughput [10]
or video bit rate [2] to a QoE level. We formulate a non-
linear optimization problem and propose heuristics to solve
it, then we conduct numerical and network simulations under
different system settings to validate the interest of a QoE-
driven bandwidth allocation approach. Our results show that
we can indeed ensure a higher overall QoE if screen resolu-



tions are to be taken into consideration. Our contributions can
be summarized as follows:

• We formulate a resource allocation optimization problem
based on QoE, where QoE functions are built using data
sets linking (throughput or bit rate) to MOS.

• We present a relaxation to a non-linear problem by
considering continuous video bit rates. Under this relax-
ation, we develop a simple and greedy heuristic based on
Lagrangian multipliers and KKT (Karush Kuhn Tucker)
conditions, and prove that our heuristic converges to a
state where all gradients are either equal or constraints
on the bit rate are reached.

• We use the network simulator ns-3 [11] and an open
source implementation of DASH to validate our approach
and to propose an implementation of the optimal solution
by limiting the subset of visible video representations of
a player based on the resolution of its viewport.

The rest of this paper is organized as follows. Sec. II reviews
some of the related works on QoE modeling and resource shar-
ing. In Sec. III and IV we present our framework and formulate
our optimization problem. Sec. V shows numerical results and
evaluates the gain of the proposed solution compared to other
allocation strategies. In Sec. VI we illustrate our experimental
results using the network simulator ns-3 [3], [12], and evaluate
the gain in terms of overall QoE for both the optimal solution
and a practical implementation that limits the video bit rate as
a function of the client’s viewport. Finally, we conclude and
provide traces for our future work.

II. RELATED WORKS

The topic QoE-driven resource sharing has been already
investigated in several occasions. For example, in terms of
routing, neural networks have been used in both wired and
wireless networks to optimize QoE. Previous work tried to
select the best path using network-level QoS features as QoE
replacement (e.g., loss rate, delay) [13], [14]. Quang et al. il-
lustrate QoE-driven routing as a MILP problem by considering
Pseudo-Subjective Quality Assessment (PSQA) as QoE model
and propose a heuristic solution [15]. Moreover, Calvigioni et
al. take into consideration the HAS flow requirements and
study them in conjunction with TCP. They use a linear QoE
function in order to express a joint routing and resource
allocation problem and propose a dual sub-gradient approach
based on Lagrangian relaxation sub-problems to select a single
best path upon each request [16].

In [17], the authors express a rate allocation problem to
maximize a Two-term Power Series Model over three re-
quested resolutions and under link capacity constraint. The
optimal solution is implemented in switches by means of a
weighted fair queuing and by using OpenFlow. However, the
Utility function used depends on the characteristics of a test
video that is too specific and less generic since it requires a
mapping per video at each resolution. Moreover, the use of
the Structural Similarity Index (SSIM) as a metric to asses
quality requires very specific state sharing with the controller,

Fig. 1: Framework overview

which can be tricky giving the prevalence of encryption-based
delivery.

However, to the best of our knowledge, studying the re-
source sharing problem from an end device perspective and
with trace-driven models for video QoE is very promising.
Therefore, we focus on video streaming and leverage QoE
functions able to capture the link between video bit rates
or throughput and QoE for different screen resolutions. We
express a resource sharing problem to maximize the sum of
the non-linear QoE functions under linear constraints on the
screen resolution and the bottleneck link utilization. We also
validate our model and compare the different solutions with a
realistic DASH implementation in ns-3.

III. FRAMEWORK AND SYSTEM MODEL

A. Framework

Consider a set of users with different screen resolutions
streaming videos from a server as illustrated in Fig. 1. Videos
on the server are encoded into M different representations (i.e.,
bit rates or resolutions). We assume users are not limited by
their access links and are thus able to download any video
representation. We assume the bottleneck of the system to
be the backhaul link located between the gateway and the
video server. In this work, we focus on the problem of QoE-
driven bandwidth sharing on the backhaul link, and do not
consider the presence of any caching functionality at the
gateway. Caching would add another interesting dimension
to our problem, and would certainly interact with bandwidth
sharing on the backhaul, so we differ its study to a future
work dedicated to the topic. For now, one can see our work
as specific to those videos that are not cached.

B. System model

We now describe in more detail the model that we consider
in this work and introduce our notation. Let F denote the set
of video files in our catalog (server) offered to the users. Any
video file f ∈ F is encoded into a set of M representations
with fm being the m-th representation of video f , having an
encoding bit rate equal to Bfm. For the sake of simplicity,
and without loss of generality, we suppose all videos to have
the same duration T . Further, we suppose that ∀f ∈ F and
∀m ∈M , the Bfm’s are the same (i.e., which can be seen as



Notation Representation
F Set of videos
M Set of video representations
S Set of screen resolutions
R Set of video resolutions
λf Request rate per Video f
λf,s Request rate per video f and screen resolution s
α Parameter of the popularity Zipf distribution
Cl Backhaul link capacity
BM,s Upper bound on bit rate for s ∈ S
X Bandwidth allocation vector

TABLE I: Notations of our framework

Fig. 2: Traffic generation according to our model

the average over all videos of the catalogue for representation
m). Let S be the vector of distinct screen resolutions.

For every f ∈ F we assign a request rate λf (i.e., popu-
larity) according to a Zipf distribution of parameter α. This
request rate is total over all screen resolutions. Each request
to a video f is assigned a screen resolution according to a
given probability distribution over S. In practice, a network
operator can obtain the information using the IMEI (Inter-
national mobile equipment identity) of the end-user devices
or by collaborating with the video content providers such as
YouTube. Multiplied by λf , this gives the request rate per
video f and per screen resolution s that we denote λf,s.
We have λf =

∑
s∈S λf,s. Table I summarizes the notation

used in our framework, while Fig. 2 illustrates the process
of generating requests for the case |S| = 5 screens (most
common screen resolutions in mobile market).

C. From QoS to QoE

As per prior subjective studies, the QoE of video streaming
is a function of application layer QoS features that are either
dependent on the video content (e.g., video bit rate) or the
playout metrics (e.g., the intial startup delay) [8], [18]; the
playout metrics further depend on the underlying network
conditions such as the network throughput or delay.

In this work, we consider building QoE functions that take
as input the network throughput or the video bit rate. The
throughput is a function of the available bandwidth, but also
of other network performance issues such as the delay and
the packet loss rate. To build these QoE functions, we rely on
two publicly available datasets that map the QoS to the QoE.
The first dataset is built by controlled experiments and links

the network throughput to the QoE modeled according to ITU
P.1203 recommendation [10], while the second dataset is based
on the work of the Video Quality Experts Group (VQEG) [2]
and maps the video bit rate to the MOS. On these datasets,
we apply curve fitting methods (e.g., non-linear least squares)
with the canonical function given in Equation (1) to build
our target QoE function taking each time as input the network
throughput and the video bit rate respectively. In this Equation
(1), x stands for the network throughput or the video bit rate,
while index s stands for the screen resolution. Constant β
determines the shape of the QoE function.

QoEs =
exp

QoEmax(1− e−βsx). (1)

1) Network throughput to QoE: The dataset for this model
is built by controlled experiments in the lab [10]. It consists
of 100k unique YouTube video playouts under different trace-
driven emulated network conditions. This dataset maps the
network QoS features such as throughput, delay, and packet
loss to application level measurements such as join time, stalls
and video resolutions. The application QoS data allows to
calculate the ITU-T P.1203 subjective MOS 1 for different
screen resolutions. We use curve fitting based on Equation (1)
to plot the computed MOS according to ITU standard with
respect to the sole network throughput for the different screen
resolutions as shown in Fig. 3. The screen resolutions given
in the figure correspond to the available video resolutions in
the traces of the experiments in [10].
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Fig. 3: Fitting QoE function (1) using controlled experiments
data from [10]

2) Video bitrate to QoE: Cermak et al. [2] studied the rela-
tionship between the video quality, the screen resolution, and
the video bit rate using the VQEG datasets. The authors show
that for screen resolutions such as CIF, QCIF and HD, different
video bit rates are needed to achieve a certain MOS level (see
Fig. 5 in [2]). For the main mobile screen resolutions, typically
from 426x240 up to 1920x1080, we extrapolate a vector Z
where each entry has two values (zBR,zMOS) then we use
mean square error method to fit curves using Eq. (1).

Note that according to [2], the video bit rates take discrete
values, thus making the resource allocation problem an INLP

1The ITU-T P.1203 model is a standardised model that takes as input the
application QoS to estimate the subjective MOS.



(Integer Non-Linear). However, for this work, we relax the
problem to make the bit rate take any real value between its
minimum and maximum values given by [2], which has the
advantage to transform the resource allocation problem into
an NLP (Non-Linear), hence easing the solution. We believe
in a real scenario, video content varies considerably making
the bit rate take more diverse values than the ones in [2].

IV. QOE-DRIVEN BANDWIDTH SHARING

A. Problem description

Our problem can be described as follows. Given the dif-
ferent representations of videos, the distribution of screen
resolutions and the backhaul link capacity (denoted Cl), we
seek how to share the bandwidth of the backhaul link between
the multiple video sessions so that the total system utility
(defined as the sum of QoE functions as in Section III-C1)
is maximized. We want this maximization to account for the
screen resolutions and for the constraint on the capacity of the
backhaul link. Note here that the best we can hope from TCP
and DASH is a fair split of the available Cl over all flows.
However, the optimal allocation is nontrivial as fairness at the
resource level does not necessarily imply fairness at the QoE
level. The fact that small screens require lower bit rate than
large screens for same level of QoE is a good illustration.

B. Problem formulation

Let’s introduce the vector X = (xs), s ∈ S, where the s-
th element denotes the bandwidth allocated to each of the
users with screen resolution s. The QoE-driven bandwidth
allocation for video quality improvement can be formulated
as an nonlinear program (NLP) as follows:

max
X

U(X) =
∑
s∈S

λsQoEs(xs) (2a)

s.t.∑
s∈S

λsxs ≤ Cl (2b)

xs ≤ BM,s, s ∈ S (2c)
xs ≥ 0, s ∈ S (2d)

The global utility function of the system is defined as the
sum of weighted QoE functions built in Section III-C1. To
do so, we aggregate users with same screen resolution as they
are supposed to obtain the same allocation (λs =

∑
f∈F λf,s).

Constraint (2b) accounts for the backhaul capacity limitation,
whereas constraint (2c) upper bounds the allocation for every
screen resolution based on the bit rate or throughput needed
for excellent video quality according to the data sets we are
using. Note here that this upper bound can be removed as it is
accounted for indirectly by the QoE functions, but we decided
to keep it for clarity of the presentation.

Algorithm 1 Compute allocation vector
Output: Optimal value of X = (xs), s ∈ S
Input: λs, QoEs, BM,s, Cl

Initialize X from (W )


∂QoEi

∂xi
=

∂QoEj

∂xj
∀(i, j) ∈ S

(
∑
s∈S

(λsxs)− Cl)) = 0

while either (2c) or (2d) false do
if ∃ xi ∈ X, such that xi < 0 then

Set Min(xi ∈ X| xi < 0) = 0 for (X,W );
Solve (W );
Continue;

end
if ∃ xi ∈ X, such that xi > BM,i then

Set Max(xi ∈ X| xi > BM,i) = BM,i for (X,W );
Solve (W );
Continue;

end
end

C. Gradient solution based on Lagrangian relaxation

For the QoE function we consider in this paper (Eq. (1)),
our problem is convex and thus possesses a unique solution.
One can use well known heuristics such Sequential Least
Squares [19] to get an approximation of the optimal. However,
given the particular shape of our QoE functions (i.e., mono-
variate) and constraints, and to get insights on the optimal
solution, we propose a simple greedy heuristic that helps
approximating the non-linear objective function and efficiently
maximizing it. The proposed greedy heuristic considers KKT
(Karush Kuhn Tucker) conditions to check if a feasible so-
lution is optimal. We start by writing the partial Lagrangian
function obtained by relaxing constraint (2b) :

L(X, γ) = U(X)− γ(
∑
s∈S

(λsxs)− Cl). (3)

Constant γ is the Lagrangian multiplier associated to constraint
(2b). By supposing constraint (2b) to be set to equality at the
optimal solution (otherwise the system is under-utilized), and
by differentiating the Lagrangian with respect to allocation
vector X , we can prove that a first possible solution could be
the one that equalizes all gradients of the QoE functions.

∂QoEi(xi)

∂xi
=
∂QoEj(xj)

∂xj
,∀(i, j) ∈ S. (4)

This, together with (
∑
s∈S

(λsxs) − Cl) = 0, gives a system

of equations (W ) that we can solve to find our first bid on
the optimal allocation vector. This first bid is the optimal
allocation if the two other constraints (2c) and (2d) are not
violated, otherwise our vector is not the optimal vector and
has to be updated. We use the information on the violated
constraints to reshape the search space, i.e., we take those
violated constraints one by one and at each step, we set the
corresponding allocation either to zero or to the upper bound,
then we replace them in the Lagrangian (3) and repeat the
previous process until converging to an allocation that satisfies



all constraints while nullifying the gradient of the Lagrangian.
The above algorithm provides further details on our approach.

V. NUMERICAL SIMULATIONS

A. Simulation setup

We consider a network where a set of users have different
screen resolutions distributed uniformly over S. We consider
S to include the five major mobile screen resolutions depicted
in Fig. 2. Videos are of equal duration, the allocation vector
X stands in this case for the number of bytes each video
would require from the network. As reference allocations, we
consider two max-min allocations, which model the existing
solutions based on TCP and DASH. The first allocation is
called max-min fair which consists in video flows sharing
equally the available bandwidth independently of the char-
acteristics of their screens (i.e., a flow can get more than it
can play out). The second allocation is called max-min screen
based where bandwidth is fairly shared but in the limit of
maximum supported bit rate per screen (denoted BM,s in our
notation). This consists of a video flow of screen size s fighting
for the bandwidth and sharing it fairly with the others as long
as the maximum bit rate BM,s is not reached. Once reached,
the flow (i.e., DASH) does not ask for higher bit rates even if
bandwidth is available. This control can be either implemented
at the client, or at the server if information on the screen (or
viewport) is made available to it.

In addition to these reference allocations, we use our
heuristic to derive the best bandwidth share maximizing the
sum of QoE functions over all flows. We show results for the
exponential QoE function in Equation (1), but we also discuss
an extreme case where QoE grows linearly with the throughput
or the bit rate. Note that the optimization with a linear QoE
function cannot be solved with our heuristic as it corresponds
to a linear program. We solve it instead with CPLEX [20] and
provide an intuitive interpretation of the results. Note here
that we focus on a snapshot problem where we perform the
optimization only once before assigning the resources. As for
adapting to dynamic changes, we need the distribution of users
and screens which can be computed and tracked in an online
fashion.

B. Bandwidth allocation and QoE

We compare the previous allocation strategies in terms of
the overall QoE while varying the backhaul capacity. We start
by considering the dataset available in [2] (see Section III-C2)
to calibrate our QoE function. We express the backhaul
capacity as a percentage of the worst case scenario where the
operator over-dimensions its network to deliver the maximum
bit rate to all users independently of their screen sizes. Fig. 4
shows both the overall QoE with respect to Cl and the relative
gain of the two strategies optimal and max-min screen based
with respect to the baseline strategy max-min fair. We notice
how leveraging the QoE function with very limited backhaul
capacity can achieve a QoE gain of 16% over the baseline
strategy. Furthermore, the optimal and the max-min screen
based strategies manage to reach the maximum possible QoE

0 20 40 60 80 100
Backhaul capacity (%)

0

1

2

3

4

Q
oE

Optimal solution
Max-min screen based
Max-min fair

(a) QoE per allocation strategy

0 20 40 60 80 100
Backhaul capacity (%)

0
2
4
6
8

10
12
14
16

G
ai

n 
(%

)

Optimal solution
Max-min screen based

(b) Relative gain, uniform screen probabilities

Fig. 4: Comparison of allocation strategies with uniform
screen probabilities, QoE from III-C2

earlier than the max-min fair one while increasing the backhaul
capacity. For small backhaul capacity, max-min fair and max-
min screen based lead to same result (i.e., zero gain) as the
maximum bit rate per screen is not reached, which is not the
case of the optimal which still delivers a better result. We recall
that this result is obtained for screen sizes of equal popularity.

To check for the impact of screen popularity, we apply
other distributions of screen sizes over S and find that our
approach works well for other scenarios. Moreover, we point
to cases where the gain can actually be up to 20% compared
to a simple fair split of the available capacity. Indeed, we
compare in Fig. 5 the different allocation strategies for a
scenario of only two screen resolutions, 426x240 (small) and
1920x1080 (large). In Fig. 5(b), we notice how the gain
improves and can go above 20%. In this case, we end up
with two subsets of users, greedy users (big screens) and users
easy to satisfy (small screens). In such scenario, the baseline
strategy divides the available bandwidth fairly among all users,
which is insufficient especially when Cl is small, as large
screens cannot get to an acceptable QoE level with the given
allocation while small screens get more than needed.

We redo the same numerical simulation using QoE func-
tions fitted on the controlled experiments data in [10] (see
Section III-C1). Fig. 6 includes comparison of the different
strategies for two distributions of screen sizes, uniform and
small/large only. We can notice how the gain for these QoE
functions drawn according to ITU-T P.1203 standard spans
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Fig. 5: Comparison of allocation strategies with two screen
sizes (426x240 and 1920x1080), Qoe from III-C2

smaller ranges while maintaining the same shape as with QoE
functions from III-C2. In particular, for Fig. 6(a), our heuristic
results in a gain in overall QoE up to 7% compared to the
baseline TCP fair split (max-min fair). On the other hand, max-
min screen based is only 1% better compared to the baseline.
Moreover, when 50% of requests come from 426x240 devices
and the rest from 1920x1080 devices, the optimal allocation
(Fig. 6(b)) results in a gain of 11% compared to baseline
allocation. Again we notice that for small Cl, the max-min
screen based strategy and the max-min fair result in the same
allocation leading to the same QoE.

C. Linear QoE

Instead of exponential QoE function, one can imagine an
extreme case where QoE grows linearly with the network
throughput or the video bit rate, within the range [0, BM,s]
for screen resolution s. Even though not realistic, this type of
QoE functions is interesting because of its implication on the
optimal allocation and the way it is to be implemented. Indeed,
the sum of linear QoE functions transforms the NLP to an LP
that can no longer be solved with our heuristic. Instead, one
can use CPLEX to solve it [20]. In such case, we found that
more important gains can be reached. More interestingly, and
because slopes of QoE functions are constant but no longer
the same for all screens (fast slopes for small screens, slow
slops for big screens), the optimal allocation would simply
consist in giving full bandwidth priority to small screens on
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Fig. 6: Comparison of allocation strategies with different
screen size distributions, QoE from III-C1

large screens. So small screens are served first in the limit of
their BM,S , then larger screens, and so on, until all screens
are served. Such allocation, as it requires full priority, cannot
be simply implemented on an end-to-end basis, but requires
the intervention of the network operator as well.

VI. NETWORK SIMULATION

For the validation of our numerical results, we use the simu-
lation software ns-3 [11]. We work with an implementation of
MPEG/DASH proposed by [12], [21] that supports the Smooth
Video Adaptation Algorithm (SVAA) designed in [3]. DASH
being a standard issued by MPEG in 2012 for HAS, different
rate adaptation algorithms are proposed in the literature to
figure out the resolution of the next segment to download so
as to minimize the number of switches and stalls. The SVAA
algorithm we consider has shown its efficiency in preventing
resolution switches and interruptions [12], [21].

Our simulation setup consists of multiple terminals (fifteen
in total) acting as DASH clients and downloading videos from
a DASH server. Clients are connected to a router via access
links of 5Mbps and 2ms delay simulating ADSL access links.
Their traffic is routed toward the central server by the mean
of a wired link of fixed capacity 30Mbps and of fixed delay
6ms. In terms of video content, we use an animated YouTube
video called the Elephants Dream. The video is divided in 2s
segments, each of which is available in several representations
produced using traces from [22].



(a) The legacy DASH

(b) The QoE based DASH

Fig. 7: Average download bit rate per screen resolution over
the shared link Cl = 30Mbps

In addition to the standard implementation of DASH/SVAA,
we propose two other implementations illustrating the different
aspects of our approach. To simulate the optimal solution
(see Section IV-C), we find the optimal allocation of a
video flow using our heuristic then limit the view of the
client to video representations not exceeding this allocation.
Moreover, we implement screen based max-min by changing
the DASH/SVAA client so that the maximum downloadable
representation is the ceil of the maximum bit rate for which
the given screen resolution attains the maximum QoE (with
respect to dataset presented in Section III-C2).

A. Simulating QoE-driven DASH

We assign to our devices screen resolutions from a subset
of five major mobile screen resolutions (e.g., from 426x240 to
1920x1080) using uniform probability distribution. We simu-
late the users’ behavior with each described implementation,
then we plot the average attainable download bit rate over
the shared link per screen resolution and calculate the total
corresponding QoE using the functions fitted in Section III-C2.
We repeat every simulation several times and average outputs
to reduce the bias effect and smooth results.

Fig. 7(b) illustrates the effect of QoE based DASH, where
we can see the attainable download bit rate proportional to
the screen resolution as needed for good video quality. This is
contrary to Fig. 7(a) where all users grab approximately the
same share of the available capacity as expected.

(a) The legacy DASH

(b) The screen based DASH

(c) The QoE based DASH

Fig. 8: QoE per screen resolution as function of average
download bit rate, multiple DASH implementations

In Fig. 8 we compute the average QoE per screen resolution
for the three implementations: (a) legacy DASH, (b) screen
based DASH, and (c) QoE based DASH. We notice through
the three figures how the QoE is rearranged in between the
different screen resolutions. Thanks to screen size considera-
tion, we manage to enhance the average QoE for greedy users
(big screen resolution) while maintaining a good QoE level
for the others, all this without exceeding the backhaul budget.

We also compare the different implementations in terms
of main application-level QoS factors (e.g., stalls, resolution
switches and interruptions) that could impact the subjective
QoE [8], [18]. We focus on the quality switches as they
occur only in adaptive video streaming sessions making their
evaluation important. We can see in Fig. 9(b) how QoE based
DASH manages to reduce the number of switches per screen



(a) The legacy DASH

(b) The QoE based DASH

Fig. 9: Average resolution switches per screen resolution

resolution during a watching session compared to legacy
DASH (Fig. 9(a)). We made the same observation regarding
the other application-level QoS metrics of number and duration
of interruptions.

B. Changing the backhaul capacity

From the above results, screen based max-min allocation
seems to be an efficient allocation easy to implement and
providing close gain to the optimal allocation. However, we
expect such allocation to deviate from the optimal when the
stress on the backhaul link increases (either more traffic or
less bandwidth). Indeed, for more congested scenarios, the fair
share of bandwidth of a flow of some resolution s becomes
likely less than the maximum bit rate for that resolution BM,s,
which makes the limit on the bit rate driven by the screen
resolution less effective. We expect therefore max-min screen
based to be closer to max-min fair and farther from optimal. To
illustrate this observation, we redo the above ns-3 simulations
this time using a shared capacity of Cl = 10Mbps while
maintaining the delay to 6ms. Fig. 10 shows the total QoE for
the two cases: (a) Cl = 30Mbps and (b) Cl = 10Mbps, and
this is for the different allocations. In addition, we show 90%
confidence intervals for the observed results. In both cases,
QoE based DASH outperforms the other implementations
achieving higher overall QoE. However, for limited backhaul
capacity (Fig 10(b)) and as expected, screen based DASH
gives approximately same results as legacy DASH. This results
confirms our intuition that allocating based on QoE always

(a) Average overall QoE for Cl = 30Mbps

(b) Average overall QoE for Cl = 10Mbps

Fig. 10: Average overall QoE vs. backhaul capacity

helps shaping boundaries of bandwidth space and improving
overall QoE regardless of the available capacity, which is not
the case of the other two allocations.

VII. CONCLUSIONS

In this paper, we study the problem of bandwidth allocation
for multiple video streaming sessions over a shared link. The
goal is to maximize the average QoE by leveraging screen
resolution. In a first place, we revisit previous studies, able to
link either video bit rate [2] or throughput [10] to QoE level for
a given screen resolution. We then formulate an optimization
problem trying to maximize the overall QoE under linear
constraints. To that aim, we propose a Lagrangian based
solution to approximate the optimal allocation. Later, we show
through numerical and network simulations how leveraging
screen characteristics leads to overall QoE improvement in
the context of a QoE-driven bandwidth allocation framework.
In addition, accounting for screen resolution reduces both
switches and interruptions over a watching session.

As future work, we plan on studying other aspects of content
management in the Internet such as caching. The caching
part can give another dimension to our framework. In addi-
tion, the work will continue towards building a collaborative
framework, a new labeling system, where content provider can
tag packets by quality levels using the more advanced QoE
models. The given feedback can be of high interest to network
provider as it can help them well dimension the network and
maximize the user experience.
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