N

HAL

open science

Authoring AR Interaction by AR
Flavien Lécuyer, Valérie Gouranton, Adrien Reuzeau, Ronan Gaugne, Bruno
Arnaldi

» To cite this version:

Flavien Lécuyer, Valérie Gouranton, Adrien Reuzeau, Ronan Gaugne, Bruno Arnaldi. Authoring AR
Interaction by AR. ICAT-EGVE 2019 - International Conference on Artificial Reality and Telexistence
- Eurographics Symposium on Virtual Environments, Sep 2019, Tokyo, Japan. pp.1-8. hal-02272930

HAL Id: hal-02272930
https://inria.hal.science/hal-02272930
Submitted on 28 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/hal-02272930
https://hal.archives-ouvertes.fr

Authoring AR Interaction by AR

Flavien Lécuyer1 , Valérie Gouranton'

, Adrien Reuzeaul, Ronan Gaugne2

and Bruno Arnaldi'

1Univ Rennes, INSA Rennes, Inria, CNRS, IRISA
2Univ Rennes, Inria, CNRS, IRISA

Figure 1: From left to right, the user (a) adds an interactive behaviour on a bottle of glue, (b) imports the interactions in the environment,
and (c) uses the interaction to pour the virtual glue from the real bottle into a virtual pot

Abstract

The demand for augmented reality applications is rapidly growing. In many domains, we observe a new interest for this technol-
0gy, stressing the need for more efficient ways of producing augmented content. Similarly to virtual reality, interactive objects
in augmented reality are a powerful means to improve the experience. While it is now well democratized for virtual reality,
interactivity is still finding its way into augmented reality.

To open the way to this interactive augmented reality, we designed a new methodology for the management of the interactions in
augmented reality, supported by an authoring tool for the use by designers and domain experts. This tool makes the production
of interactive augmented content faster, while being scalable to the needs of each application. Usually in the creation of appli-
cations, a large amount of time is spent through discussions between the designer (or the domain expert), carrying the needs of
the application, and the developer, holding the knowledge to create it. Thanks to our tool, we reduce this time by allowing the

designer to create an interactive application, without having to write a single line of code.

CCS Concepts

e Human-centered computing — Mixed / augmented reality; Activity centered design; Interface design prototyping; Interac-

tion design theory, concepts and paradigms;

1. Introduction

Augmented reality usage is rapidly growing in multiple domains
[BCL15]. As the general demand for augmented reality experiences
grows fast, the question of making the applications more interactive
becomes more important too. While the design of interactive ob-
jects in virtual reality is now quite democratized, it is still difficult
to provide such interaction in augmented reality. In the creation of
applications, one of the main time-consuming tasks is to take into
account the needs of the application. This requires many discus-
sions between the client — who is often an expert in the concerned
domain (e.g. an educational expert for training systems), and is not
familiar with computer science — and the developer. The developer

will then write the code for the application, which also consumes a
great amount of time. Often, even more time is necessary, because
there is not only one developer, but a person in charge of writing
the client’s needs, and a team of developers to produce the content.
There is also a designer, between the client and the developer, who
manages the conception of the application.

We propose to let the user create his own interactive augmented
reality application, with an authoring tool. In the remainder of this
paper, we will use the term designer for the one creating the ap-
plication with the tool, regardless of their actual role (domain ex-
pert, designer, client, ...) Since there is a wide panel of applica-
tive domains for augmented reality [Azu97], our tool is designed

https://orcid.org/0000-0002-4659-3820
https://orcid.org/0000-0002-9351-2747
https://orcid.org/0000-0002-4762-4342

Flavien Lécuyer Valérie Gouranton Adrien Reuzeau Ronan Gaugne & Bruno Arnaldi / Authoring AR Interaction by AR

to adapt easily to different contexts. To make the designer capable
of designing interactive augmented reality applications, the tool is
based on the use of extensible libraries. The interactions are created
with a novel paradigm, based on existing work from virtual reality,
which we adapted to take into account the difference between real
and virtual objects, which is crucial for augmented reality. Those li-
braries allow a developer to create new interactions with an ensured
reusability thanks to the object-relation paradigm [LCO7]. Since the
tracking is another difficulty for a novice, our tool integrates the
management for the tracking through off-the-shelf solutions, mak-
ing the overlay of virtual 3D objects easy to edit for the author of
an application. The architecture of the tool allows the integration
of other tracking solutions, so that a developer can enrich it and
customize the tool to adapt it to the user’s needs.

In this paper, after the analysis of related works in Section 2, we
describe the problematic of authoring interaction for augmented
reality in Section 3. We then give a brief overview of our solu-
tion in Section 4, to give more details in Section 5. We also il-
lustrate the use of this solution with an example in Section 6. A
video of this example os also available at https://vimeo.
com/349891514.

2. Related works

In this section, we give an overview of works related to the au-
thoring of interactive reality applications. For the creation of aug-
mented reality applications, the designers need easy to use author-
ing tools, that allow to manage the placement of virtual objects
according to the real world. For this, there are authoring tools de-
signed to let a designer create an application with no code, albeit
with little to no interaction. We start this section by presenting those
works. To make interactive augmented reality applications, it is im-
portant to have interactions that are easy to implement, instead of
having to code them anew for each application. To improve the
creation of augmented reality applications, some works focused on
easing the design of interaction for augmented reality. We describe
them in the second part of this section. Another way of easing the
creation of interactive applications is to improve the reusability of
the code. This has been done for virtual reality, with the object-
relation concept, which we focus on in the last part of this section.

As augmented reality is a strong tool for the presentation of aug-
mented information, some tools aim at providing the means for an
author to create augmented presentations. The first of them, Pow-
erSpace, is based on the use of the slideshow editor PowerPoint,
which is well-known by the general user, and allows them to be
more efficient during the authoring [HR02]. However, the content
authored with PowerSpace is limited to the capacity of a slideshow.
This slideshow format can also be authored directly in-situ, as done
with ASMIM [NMTS18], where the author can create steps based
on the environment, augmented with some layers of information.
A similar effort can be found with AMIRE-ES [HSZ05], where the
author can create an augmented reality guide that can be used with
different devices. In ACARS, the authors also propose a limited
customization for some of the properties of the objects according
to the user’s preferences [ZON13]. The combination of on-site and
off-site use allows a more refined authoring. This in-situ authoring
can also be adapted for the augmentation of outdoor environments,

as with Sketching up the world [LMZ*12]. A more immersive pre-
sentation of the content can be found by using outdoor AR, where
the augmentation is provided at given points in space. To this ex-
tent, Guven et al propose to augment a 3D space by selecting spe-
cific points, and associating content to it [GF03]. Similarly, AR
Game Builder associates content to GPS positions [KS10]. This
content takes the form of text and images to narrate a story. Finally,
AREDA proposes to record directly the user to generate an appli-
cation [BW19]. The application generated is similar to a slideshow,
with each step displayed when the object placement from the pre-
vious step is done by the user.

Augmented reality can be used with more complex interactions.
In Virtual Museums, the authors propose to associate 3D mod-
els with fiducial markers [LSB*04]. The augmentation is interac-
tive and reacts to the state of the markers, and can be customized
through a desktop interface to modify the visualisation of the ob-
ject (e.g. color, position, ...). The authoring can also be done in
immersion in the environment. By providing a tangible interface
for the authoring, Lee et al. allow the user to act directly on the
environment with simple metaphors [LNBKO04], with some sim-
ple interactions for the augmented objects. For more customiz-
able interactions, Broll et al. propose to add behaviours on the
objects [BHBOS]. The behaviours come from scripts and are at-
tached automatically on certain objects, making it difficultly usable
for a domain expert. The same observation can be made for AR-
Room, where the behaviours must be created with scripts by a com-
puter scientist [Par11]. This system of behaviours is also present
in APRIL to make the objects interact, although the interactions
are still strongly oriented towards augmented presentations [LS05].
Those behaviours can be triggered by certain conditions, such as
the contexts presented in k-MART [CKL*10], in which the user
can select when a given behaviour is to be used. It is to note, how-
ever, that the behaviours proposed are quite limited. In DART, the
behaviours function as a combination between cues and actions,
which make an object react to certain conditions (e.g. occlusion
of a marker) with a given action (e.g. an animation) [MGDBO04].
The user can combine both as they want to generate more com-
plex behaviours, but the available cues are limited to what a marker
can do. A similar proposition is made with BEAR, where a given
set of states can be associated with actions on the objects [LC10].
However, the creation of the behaviours require some knowledge
in computer science, making the tool less adapted to a designer.

In virtual reality, more attention have been put on the efficient de-
sign of interactions. Particularly, the object-relation paradigm aims
at improving the reusability of the interactions that have been de-
fined, through the separation of the action (represented by the re-
lation) and the objects involved. Although any number of object
can be involved in a relation, this is particularly interesting for ac-
tions that require more than two objects, as the complexity remains
low on the developer’s end. It has first been proposed with the
model Cause & Effects [LCO7]. It has also been used by the mod-
els Storm [MGAO7], and Mascaret [CTB*12], which integrated a
graphic model to simplify the use of their models. Lanquepin et
al. also proposed Domain-DL, integrated in the platform HUMANS
[LCL*13], to benefit from the other models in the platform, such
as a scenario model. The most recent model is #FIVE [BGB*15],

https://vimeo.com/349891514
https://vimeo.com/349891514

Flavien Lécuyer Valérie Gouranton Adrien Reuzeau Ronan Gaugne & Bruno Arnaldi / Authoring AR Interaction by AR

which proposes a framework independent from any platform, to
make it more versatile.

To conclude this discussion about the existing authoring tools for
AR, an important observation can be made: for now, the authoring
tools have mostly followed the tendency of using AR mainly as a
presentation means. Although some other tools tried to bring more
interaction into AR, their lack of affordability prevented them from
truly attaining this goal. In parallel, some models have emerged
for virtual reality to manage this kind of interaction, but they only
manage virtual objects, and cannot be used as is for AR.

3. Needs

Few augmented reality applications have put a focus on the inter-
action. In order to democratize interaction for augmented reality
applications, we need to provide efficient ways to create it. In most
works, the position and occlusion state of the real objects are ob-
served, and used to trigger some behaviours - usually, some ani-
mation - once certain conditions on those properties are verified.
Because of this, the interactions between the real and virtual ob-
jects are often limited (mostly occlusion and collisions). However,
a higher level of interaction could be proposed in augmented real-
ity, similar to the one provided in virtual reality, where the objects
can have complex behaviours and evolve according to the state of
the world and the user’s actions.

Indeed, the manipulation of real objects is a powerful means to
make the user get a feeling akin to the reality, while the overlay of
virtual elements gives more information and improves the experi-
ence. Thanks to this, and although augmented reality is more con-
strained than virtual reality, it has a great potential in terms of fully
interactive experiences. Thanks to many works on it, the tracking
solutions for augmented reality can now be considered sufficient for
the average needs, at least for indoor applications [MUS16]. How-
ever, interactions for augmented reality have been far less studied.
Because of this, it is still usually the role of the developer to create
such interactions, according to the needs of a designer.

4. Solution overview

To support the creation of such interactive augmented experiences,
we propose an authoring tool, using a novel methodology for the
implementation of the interactions, based on the object-relation
paradigm already used in virtual reality. To palliate the lack of
interactivity in augmented reality applications, we propose a new
framework for the creation of interactions in augmented reality.
This framework is divided in two parts: on the side of the developer,
we provide a new methodology to design and implement the inter-
actions. For the designer — whom can be a domain expert, an artist,
or a graphist for instance — we provide an authoring tool based on
this novel methodology, to make an easy use of the Both parts are
designed in a scalable way, in order to make it easy to adapt to any
domain of application.

Usually, the work of the developer consists in fulfilling the de-
mands of the designer, with the difficulty induced by the difference
in their vocabularies. With our framework, the role of the developer
is deported upstream. Indeed, the developer becomes in charge of

Before I Authoring tool
1
3D models Creation of)
libraries virtual object Virtual object }
v ~
. 8

™

Integration of Tracking Creation of] \

tracking API libraries real object Real object |
T

e
! —
Interaction Addition of Typed objects
libraries T types (virtual/real)

1 Addition of Active
relations relations

Automatically integrated
Object-relation Authoring M Device J

Design of
3D models

Coding of
types/relations.

1

Work by the 1
developer 1
|

1

engine interface interface

Work by the
designer

Figure 2: The main concepts of the framework

Editor
Add Brush

Inspector < ID :Screwdriver (1) >

Add Hittable
\ Add Hitter
Add Aaln
Add Palette
Add Pickable
Add P

Logo | nail

Figure 3: The inspector for the types in the authoring tool

the creation and the completion of the libraries used by the author-
ing tool, which can then be used by the designer. The use of those
libraries also facilitates the use of the tool for a new domain of ap-
plication. To ensure an easy reuse of the interactions, as well as a
good efficiency during the design of those interactions, we designed
a new methodology for the design and implementation of the inter-
actions, based on the object-relation paradigm. More details about
this are given in Section 5.1. In the same way, the tracking is man-
aged as the integration of third party software. The integration is
managed in a modular way, so that any third party software can be
used, according to what is needed for the application.

On the other side, the designer is given an authoring tool, which
is enriched by those libraries, to create interactive augmented real-
ity applications. The main interface of this tool is illustrated in the
Figure 3. As illustrated in Figure 2, those libraries are then used to
enrich the authoring tool, which can in turn be used by the designer
to create an interactive augmented reality application.

To help create interactive applications with this novel paradigm
for augmented reality, we provide an authoring tool based on it,
to easily create interactive augmented reality applications. In the
rest of this paper, we present more details in Section 5, which we
illustrate with an example in Section 6.

5. Authoring AR by AR

In this section, we give more details on the methodology and au-
thoring tool to create interactive augmented reality applications.

Flavien Lécuyer Valérie Gouranton Adrien Reuzeau Ronan Gaugne & Bruno Arnaldi / Authoring AR Interaction by AR

Typed object Relation
‘ Object ‘ ‘ Types Patterns Condition
Types
Real object Virtual object . Action
Virtual
representation
| Type Real | I Type Virtual

I I

| Tracking m I Models m

Figure 4: To extend the object-relation to AR, we make the distinc-
tion between real and virtual objects, with links to the tracking and
3D models libraries respectively

[s
Relation Editor =
Create new UFRelation Class Edit an existing UFRelation Class)|
Class name RelationPick
Class description | Relation to pick an object
Class namespace DIV oIv :
Parent Type (+
UFRelation Class parameters
Name Type Description
Nca—
- [Pickable Pickable
() Show full type name ?
UFRelation object patterns
Pattern Name Description
- [OBJECTPATTERN_Picker
Type Name Parameter Description
- [Picker ke :
(Add Type]
- [OBJECTPATTERN_Pickable
Type Name Parameter Description
- [Pickable Pickable :
[Add Type)
add pattern
New UFRelation folder path
Folder path : Assets/Scripts\Relations\
(Create Relation]

Figure 5: An editor is provided to ease the creation of new relations

First, we describe how the interactions are designed in Section 5.1,
and how they are used in the authoring in Section 5.2. We then
present how the tracking and virtual objects are managed in the au-
thoring, in Sections 5.3 and 5.4 respectively. Finally, we discuss
how the authoring data is managed in the tool in Section 5.5.

5.1. Creation of the interactions

The interactions are created by the developer, with the help of
the object-relation paradigm. The object-relation paradigm is a
paradigm created to manage interactions for virtual reality. Its goal
is to design the interactions in such a way that encourages the reuse,
instead of the reimplementation.

Usually, the object-relation models are based on two main con-
cepts: the types objects and the relations (see Figure 4). The objects
in the environment are made interactive by receiving types (e.g.
Screwer), which gives them behaviours (e.g. to turn when used),
and bear properties that can be used by the relations to interact with
the objects (e.g. a screw type). The types can also be defined para-
metric types, using values to modify their behaviour. For instance,
with a single type Screwable and a value screw_type, mul-
tiple screw types can be easily defined. The types can also be en-
riched with variables representing the current status of the object.

Those variables can be manipulated by the relations to modify the
behaviour and status of the objects. In complement, the relations
define the needed types for the objects, a condition for the execu-
tion (e.g. compatible screw types), and an action to execute (e.g.
screw and/or display some text). The object-relation paradigm also
allows to create relations involving more than two objects, such as
soldering. For this, a relation with four objects (a soldering iron,
two pieces to connect, and a metal source) could be created. This
separation between the types, representing the capacities of the ob-
jects, and the relations representing the actions, makes the defini-
tion of the interactions more flexible.

For the developer, the interest of this approach is twofold. First,
the use of the object-relation paradigm allows to gain time during
the coding of interactions, whether they are reused or implemented
using the interface. Secondly, the work of the developer is pushed
upstream in the development process. This is particularly useful,
as the work of the developer can be retargeted on the creation of
code libraries, instead of being constantly going and coming with
the designer to adapt the code to their needs.

For the use with augmented reality, we add a particular type on
the objects, depending on whether it is virtual or physically real.
This allows to define different behaviours for a same interaction,
depending on the nature of the objects interacting. For instance,
assembling a virtual tip on a real screwdriver will not be managed
the same way as if the tip was real and the screwdriver virtual.

To make the creation of new interactions easier and faster, an C#
interface is provided to create new relations. A graphical editor is
also integrated in Unity, for both the types and relations, and can be
used to ensure that the relation is properly built. An example, for
the relation RelationPick, is given in Figure 5.

5.2. Integration of the interactions in the authoring tool

In the authoring tool, the types and relations defined in the libraries
by the developer can be used as add-ons by the designer.

As can be seen in Figure 3, when an object is detected by the
tracking system, a panel with its current types will be automatically
displayed on the left of the screen, and a second panel with the
available types is displayed on the right. This allows the designer
to add and customize as many types as needed for a single object.
For the screwdriver on Figure 3, we can see the type Alias thatis
already attached on the object, as well as the InteractionArea
one, that can be modified to customize the bounding box that will
be taken into account for the interactions. The MainComponent
one is used to let the screwdriver interact with the tips.

The types that are mandatory for the object, such as the Alias
or Virtual one (depending on the physical/virtual nature of the
object), are placed on the object from the start and cannot be re-
moved by the designer. As such, they are not proposed on the avail-
able types, and are locked on the inspection of current types. Sim-
ilarly to the list of available types, a list of available relations can
be accessed from the authoring tool. On the example in Figure 6,
no relation are used in the application. However, some relations on
the DIY theme are proposed and can be selected by the designer.
For the screwing action, for instance, the designer would need the

Flavien Lécuyer Valérie Gouranton Adrien Reuzeau Ronan Gaugne & Bruno Arnaldi / Authoring AR Interaction by AR

< PLES

Settings
Relations :
RelationCut (Cutter, Cuttable)

RelaticnDrop (Picker, Surface)
RelationPick (Picker, Pickable)
RelLatienDip (Brush, Container)

RelationSpread (Brush, S

Figure 6: The list of relations in the tool

Figure 7: A real screwdriver, with its interactive area in red. The
virtual representation is voluntarily modified to change the inter-
actible zone

relations RelationAssemble and RelationScrew that are
proposed (respectively to assemble the tip on the base, and to screw
with the screwdriver tip).

This integration of the types and relations is especially appre-
ciable for the designer, as it allows them to experiment with the
available interactions by themselves, without having to request the
help of a developer to do so. Since the integration of the types and
relations in the authoring tool is automatic, the work of the devel-
oper is also eased here.

5.3. Integration of the tracking libraries

To prevent any constraint from the choice of a single tracking API
that becomes integrated in the authoring tool, we decided to inte-
grate the tracking third parties as modules that can be added to the
application. Thanks to this, the choice in the tracking API can be
made according to the needs of the designer. We defined a min-
imal common API to communicate with any tracking system, in
order to ensure its genericity. To make the rest of the application
independent from the tracking software, each real object is repre-
sented virtually in the environment. This virtual representation has
the Alias type affixed to it. The Alias type is in charge of up-
dating the virtual representation’s pose according to the tracking
information, and can be used by the relations to get information on
the object, or for occlusion for instance. Although any kind of ob-
ject can be tracked, given that the tracking software in use is able
to detect it correctly, the use of a complex model makes it rapidly
quite heavy to compute, and difficult to manipulate for the
designer.

< Ip: Plank (2) >
>

Figure 8: List of virtual objects as it appears in the application

To prevent this, the virtual representation and interactive areas are
automatically simplified to rectangular bounding boxes, as shown
in Figure 7. As an example, we already integrated Vuforia using
this architecture. For the case of Vuforia, the virtual representations
are set as Vuforia targets, which are then automatically updated by
the tracking API. Those representations also bear the Alias type,
which will be used by the relations to get the necessary informa-
tion about the real object. For the developer, this just means that the
third party API needs to be integrated normally, with the addition
of the Alias type on the virtual representation used to translate
the tracking information in the virtual environment. The real ob-
jects are then registered in a library, which is used by the authoring
tool to automatically recognize them.

5.4. Integrate the 3D models

Since both the developer and the designer can bring their own 3D
models, it is important to let them both have a way to integrate
them in the application. The 3D models provided for the creation
of virtual objects in the authoring tool are retrieved from a specific
folder on the device on which the authoring tool is installed. To
provide the designer some basic virtual objects to use in the author-
ing tool, some simple 3D models are provided by default. Others
3D models can be added by placing the files in the specific folder.
However, to ease the process, the designer can import new 3d mod-
els directly from the authoring tool. This lets the designer modify
by themselves the contents of the library, with their own 3D mod-
els if needed. Thanks to this, a developer is no longer required to
integrate the 3D models in the application. As the authoring tool is
implemented using the Unity game engine, the format for the 3D
models are the ones supported by Unity (OBJ, FBX, etc.). Once
those objects are added to the authoring tool, they will then appear
in a list, as displayed in Figure 8. This list can then be used by the
designer to add objects in the scene.

5.5. Export of the content

To use the application after the authoring is done, the designer
needs a way to export the created content. Inside of the authoring
tool, the data is structured in three parts, as shown in Figure 9: the
scene, the interactions, and the tracking information. Those three
parts are integrated in a Unity project that is used in real time by

Flavien Lécuyer Valérie Gouranton Adrien Reuzeau Ronan Gaugne & Bruno Arnaldi / Authoring AR Interaction by AR

Authoring data

Scene graph Interactions Tracking

Screwdriver Interaction engine Tracking API
Type MainComponent
Type Real Relations Screwdriver

Screwdriver_Tip Relation Assemble Feature points
Type SecondaryComponent Relation Screw
Type Screwer
Type Virtual

Screw Interactions Tracking
Type Screw libraries libraries

Type Virtual

Figure 9: The export from the authoring tool generates the code
from the application

the authoring tool, and that can also be exported for further use,
such as refining the animations for a better experience. The choice
of those three parts is motivated by the wish to keep the libraries as
well separated as possible from the content that has been authored,
which in turn makes it simpler for a developer to reuse the gen-
erated code. To do so, the content is integrated in the scene, and
references the different libraries. As illustrated in Figure 9, the au-
thoring generates the scene, in which the objects are enhanced with
types. Some specific Unity objects are also added for the manage-
ment of the tracking and the relations. First, the scene created from
the authoring tool is exported. Since the virtual objects are man-
aged by a scene graph, in which each object is placed relatively
to another one that already exists, the scene in the Unity project is
constructed with this same scene graph.

The code for the interactions is distributed between the two main
entities of the object-relation paradigm: the relations, and the types.
The types are added as Unity components on the objects, that can
easily be removed or added from the Unity editor after the author-
ing. The relations are added in the Unity project as separate ob-
jects, with a behaviour coming from the relation itself. The types
and relations are created using the framework #FIVE [BGB*15],
which we extended to manage augmented reality. This choice is
motivated by the strong independance of #FIVE regarding the tar-
get device, which makes it easier to adapt for augmented reality.
The engine that manages the test and launch of the relations is also
using #FIVE, and is automatically included in the project. Since the
relations and types are taken from libraries, there are not supposed
to be modified by a developer. However, this is still possible.

Thirdly, the tracking information is integrated in the Unity
project, using the format preferred by the tracking API in use. Usu-
ally, the tracking information is put on each virtual representation,
so that it can be tracked when the project is launched.

The use of multiple third parties, such as #FIVE to manage the
relations, and the use of third party tracking, is motivated by the
need for the tool to be as scalable as possible. To this end, the tool
is also designed to be simple to adapt to other third parties.

6. Example of use

In this section, we detail how the authoring tool can be used,
through an example. First, we present a use case in Section 6.1.
We chose the domain of DIY for this use case as the actions for this

Figure 10: Setting of the application, with the tablet and the real
objects

PlLank (10) >

Figure 11: Example of an interaction from the use case. The user
is using the screwdriver to drive the top left screw

domain are quite well-known, but the approach could be, of course,
scaled to other domains. Then, we illustrate how a designer would
add a real object for such a use case.

6.1. Use case

In order to demonstrate the use of our authoring tool, we designed
a short use case for illustration sake. The goal of this use case is
to build an application in which a user will build a piece of fur-
niture with different tools. The application, designed specifically
to demonstrate the authoring, uses several real props, as well as a
tablet to augment the environment, as shown in Figure 10. The real-
ization of the piece of furniture is divided in two tasks: an assembly
and a screwing task. The user can do those two tasks in any order.

The first task consists in placing a virtual logo on the real plank.
To do it, the user must first take some virtual glue with a real brush
and spread it on the plank. Then, the user must prepare the logo
by cutting it out from a virtual piece of paper, and place it on the
plank, where the glue is.Finally, the task is completed by using a
real pallet to flatten the logo on the plank.

The screwing task consists in screwing some virtual screws and
bolts on a real plank. In this task, there are three virtual screws:
two cross-head ones and a slot-head one, as well as a virtual bolt to
tighten. To help in the task, the user can use an electric screwdriver
— areal one — with different virtual tips, and a real wrench. The use
of the screwdriver is illustrated in Figure 11.

Flavien Lécuyer Valérie Gouranton Adrien Reuzeau Ronan Gaugne & Bruno Arnaldi / Authoring AR Interaction by AR

With these objects and interactions, a complete interactive appli-
cation can be generated without the need for the author to know
anything about coding. For someone who is not yet familiar with
the tool, the creation of this application can be done in around an
hour an a half, considering that the developer has already config-
ured the tracking system. In this time, five minutes are used to man-
age the relations, and approximately five minutes are spent for each
object, to select the types and configure them. The work by the de-
veloper prior to the authoring is difficult to estimate, as it depends
highly on the tracking system to integrate.

In order to illustrate how the designer would use the tool for
the creation of an application, let us study a short example. In this
example, and unless specified, the designer is the one doing the
authoring. In many cases during the use of an augmented reality
application, a real object is used to affect the virtual environment.
To create an interactive environment, the designer can add virtual
objects, real objects and interactions, in any order.

6.2. Setting of a real object

For the addition of a real object, the designer needs to initialize the
tracking and configure the real object in the environment. It is to
note that the setting of a virtual object is mostly the same, except
that the first three steps are replaced by the selection of a 3D model
in the tool. This is done through the following steps:

Tracking initialization First, the designer must get tracking in-
formation about the object. For this, the designer can scan the ob-
ject beforehand, to get the tracking features that will serve for the
recognition afterwards. With the tracking system we used for this
example, Vuforia, the designer can place the object on a reference
pattern, use the provided application (Scanner) to get the tracking
data and use it in the authoring tool. This is done easily, by adding
a Vuforia object recognition manager for the real object, directly in
the game engine by using a prefab and selecting the file containing
the features for the intended object. This prefab is integrated in the
authoring tool, and uses the scripts from the tracking API to make
them easier to use. Although this can be done by a designer, this
is still easier for a developer. Of course, this tracking initialization
process is dependent of the tracking system in use, so this step can
differ with another system.

Creation of the virtual representation Once the object is rec-
ognized in the environment, a virtual representation of it is auto-
matically created and co-localized with the real object. Once the
virtual representation is added, it is automatically used to generate
occlusion with the virtual objects. To make it simpler for the author,
the virtual representation is not displayed. This lets the designer act
on the real object in a more transparent manner.

Addition of the Alias type Once the object is recognized and
its appearance is set; the Alias type is automatically added on it to
state that the object with this type is in fact the virtual representation
of an object tracked in the real world. This type modifies the activity
of the object according to this fact.

Addition of the types for the object When the object is inte-
grated in the environment, it is time for the designer to define what
types it should bear. This can be done using the object inspector. As

in Figure 12, the types that can be added are displayed on the right
panel. The ones already present on an object are displayed on the
left panel, from which the designer can customize their properties.
In this inspector panel, the designer can get the information about
the object and its types. If the type bears some properties — as, in
this case, a list of possible contents — the value can be modified
from the inspector too.

For the objects to interact with each other, the designer chooses
the relations to use as being possible relations for the environment.
To do this, a list of available relations is proposed to the author, as
shown in Figure 6. In this list, the designer can select the relation
they want and add it to the scene. Once the relation is added in the
scene, it can be use by the object-relation engine, which will try to
match objects to launch the relations.

7. Conclusion

In this paper, we presented a new methodology for the creation of
interactions in augmented reality, supported by an authoring tool.
Our goal with this methodology and tool is to give to the design-
ers of all domains the opportunity to create interactive experiences
with augmented reality, without feeling limited by the technology
barrier. Giving the designers this opportunity is particularly impor-
tant, as the democratisation of augmented reality can difficultly be
reached without an important contribution from the designers.

To make the interactions easily accessible for those designers,
we designed a specific paradigm for the coding of said interactions.
This paradigm is based on the object-relation paradigm, which is
quite useful for the creation of interactions in virtual reality. We
adapted this paradigm for augmented reality, by letting it take into
account whether an object is real and virtual. With this paradigm,
the interactions created by a developer are by nature easy to reuse,
and will enrich libraries for the authoring tool.

Thanks to this novel paradigm for the design of interactions, and
to the authoring tool supporting it, the creation of interactive aug-
mented reality experiences is made easier for people without par-
ticular knowledge in computer science. This paradigm and this tool

Editor

Inspector < ID : Glue

(2) >

A Component Temt

Add Container

Figure 12: Inspector for an object. The left panel indicates the cur-
rent types for the object, and the right one proposes the available
types to add on the object.

Flavien Lécuyer Valérie Gouranton Adrien Reuzeau Ronan Gaugne & Bruno Arnaldi / Authoring AR Interaction by AR

can also be used directly by computer scientists, to help them de-
sign their applications faster. The sources of the authored applica-
tion can also be retrieved, to be modified externally by a developer
who would want it.

To be able to evaluate further our solution, we would like to use it
on other domains. This would allow to create new libraries for other
domains, to enrich the list of libraries to include in the authoring
tool. For instance, we think about using this authoring methodol-
ogy for the medical domain, which presents many different objects,
each with a precise use. Because of this, it would allow us to work
on a consequent set of new relations, types, and 3D models.

In the same kind of idea, it would be interesting to integrate new
tracking libraries. For instance, since many applications use fidu-
cial markers as their tracking targets, ARToolkit would be a good
addition to the authoring tool [BPKMOO].

Acknowledgements

This work is part of the ANR-16-FRQC-0004 INTROSPECT
project, and the SUNSET project funded by the ANR-10-LABX-
07-01 “Investing for the Future” program.

References

[Azu97] AzUMA R. T.: A Survey of Augmented Reality. Presence:
Teleoperators and Virtual Environments 6, 4 (8 1997), 355-385. 1

[BCL15] BILLINGHURST M., CLARK A., LEE G.: A Survey of Aug-
mented Reality. Foundations and Trends in Human-Computer Interac-
tion 8, 2-3 (3 2015), 73-272. 1

[BGB*15] BOUVILLE R., GOURANTON V., BOGGINI T., NOUVIALE
F., ARNALDI B.: #FIVE : High-Level Components for Developing
Collaborative and Interactive Virtual Environments. In Proceedings of
Eighth Workshop on Software Engineering and Architectures for Real-
time Interactive Systems (SEARIS 2015), conjunction with IEEE Virtual
Reality (VR) (Arles, France, Mar. 2015). 2, 6

[BHB0O8] BROLL W., HERLING J., BLUM L.: Interactive Bits: Prototyp-
ing of Mixed Reality Applications and Interaction Techniques through
Visual Programming. In 2008 IEEE Symposium on 3D User Interfaces
(Mar. 2008), pp. 109-115. 2

[BPKMO00O] BILLINGHURST M., POUPYREV 1., KATO H., MAY R.:
Mixing realities in Shared Space: an augmented reality interface for col-
laborative computing. In 2000 IEEE International Conference on Mul-
timedia and Expo. ICME2000. Proceedings. Latest Advances in the Fast
Changing World of Multimedia (Cat. No.OOTH8532) (7 2000), vol. 3,
pp. 1641-1644 vol.3. 8

[BW19] BHATTACHARYA B., WINER E. H.: Augmented reality via ex-
pert demonstration authoring (AREDA). Computers in Industry 105
(Feb. 2019), 61-79. 2

[CKL*10] CHoIrJ., KiM Y., LEE M., KiM G. J., NAM Y., KWON Y.:
k-MART: Authoring tool for mixed reality contents. In 2010 IEEE In-
ternational Symposium on Mixed and Augmented Reality (Oct 2010),
pp. 219-220. 2

[CTB*12] CHEVAILLIER P., TRINH T.-H., BARANGE M., DE LOOR
P., DEVILLERS F., SOLER J., QUERREC R.: Semantic modeling of
Virtual Environments using MASCARET. In 2012 5th Workshop on
Software Engineering and Architectures for Realtime Interactive Systems
(SEARIS) (3 2012), pp. 1-8. 2

[GF03] GUVEN S., FEINER S.: Authoring 3D hypermedia for wearable
augmented and virtual reality. In Seventh IEEE International Symposium
on Wearable Computers, 2003. Proceedings. (Oct 2003), pp. 118-126. 2

[HRO2] HARINGER M., REGENBRECHT H. T.: A pragmatic approach to
augmented reality authoring. In Proceedings. International Symposium
on Mixed and Augmented Reality (Oct 2002), pp. 237-245. 2

[HSZ05] HALLER M., STAUDER E., ZAUNER J.: AMIRE-ES: Author-
ing Mixed Reality once, run it anywhere. In Proceedings of the 11th In-
ternational Conference on Human-Computer Interaction (HCII) (2005),
vol. 2005. 2

[KS10] KLOPFER E., SHELDON J.: Augmenting your own reality: Stu-
dent authoring of science-based augmented reality games. New Direc-
tions for Youth Development 2010, 128 (2010), 85-94. 2

[LCO7] LUGRIN J.-L., CAVAZZA M.: Making sense of virtual environ-
ments: action representation, grounding and common sense. In Proceed-
ings of the 12th international conference on Intelligent user interfaces
(2007), ACM, pp. 225-234. 2

[LC10] LUGRIN J.-L., CAVAZZA M.: Towards AR game engines. In
3rd workshop on software engineering and architecture of realtime in-
teractive systems SEARIS (2010), Latoschik M. E., Reiners D., Blach R.,
Figueroa P., Dachselt R., (Eds.), Shaker Verlag. 2

[LCL*13] LANQUEPIN V., CARPENTIER K., LOURDEAUX D., LHOM-
MET M., BAROT C., AMOKRANE K.: HUMANS: a HUman Models
based Artificial eNvironments software platform. In VRIC’13 (Laval,
France, 3 2013), pp. 59-68. 2

[LMZ*12] LANGLOTZ T., MOOSLECHNER S., ZOLLMANN S., DE-
GENDORFER C., REITMAYR G., SCHMALSTIEG D.: Sketching Up the
World: In Situ Authoring for Mobile Augmented Reality. Personal Ubig-
uitous Comput. 16, 6 (Aug. 2012), 623-630. 2

[LNBKO4] LEEG. A., NELLES C., BILLINGHURST M., KIM G. J.: Im-
mersive Authoring of Tangible Augmented Reality Applications. In Pro-
ceedings of the 3rd IEEE/ACM International Symposium on Mixed and
Augmented Reality (Washington, DC, USA, 2004), ISMAR ’04, IEEE
Computer Society, pp. 172-181. 2

[LSO5] LEDERMANN F., SCHMALSTIEG D.: APRIL: a high-level frame-
work for creating augmented reality presentations. In IEEE Proceedings.
VR 2005. Virtual Reality, 2005. (March 2005), pp. 187-194. 2

[LSB*04] LIAROKAPIS F., SYLAIOU S., BASU A., MOURKOUSSIS N.,
WHITE M., LISTER P. F.: An Interactive Visualisation Interface for
Virtual Museums. In VAST 2004: The 5th International Symposium on
Virtual Reality, Archaeology and Cultural Heritage (2004), Chrysanthou
Y., Cain K., Silberman N., Niccolucci ., (Eds.), The Eurographics As-
sociation. 2

[MGAO7] MOLLET N., GERBAUD S., ARNALDI B.: Storm: a generic
interaction and behavioral model for 3D objects and humanoids in a vir-
tual environment. In /PT-EGVE the 13th Eurographics Symposium on
Virtual Environments (2007), pp. 95-100. 2

[MGDB04] MACINTYRE B., GANDY M., Dow S., BOLTER J. D.:
DART: A Toolkit for Rapid Design Exploration of Augmented Reality
Experiences. In Proceedings of the 17th Annual ACM Symposium on
User Interface Software and Technology (New York, NY, USA, 2004),
UIST *04, ACM, pp. 197-206. 2

[MUS16] MARCHAND E., UCHIYAMA H., SPINDLER F.: Pose Estima-
tion for Augmented Reality: A Hands-On Survey. IEEE Transactions on
Visualization and Computer Graphics 22, 12 (12 2016), 2633-2651. 3

[NMTS18] NGUYEN T. V., MIRZA B., TAN D., SEPULVEDA J.: AS-
MIM: Augmented Reality Authoring System for Mobile Interactive
Manuals. In Proceedings of the 12th International Conference on Ubig-
uitous Information Management and Communication (New York, NY,
USA, Jan. 2018), IMCOM ’18, ACM, pp. 3:1-3:6. 2

[Par11] PARK J.-S.: AR-Room: a rapid prototyping framework for aug-
mented reality applications. Multimedia Tools and Applications 55, 3
(Dec 2011), 725-746. 2

[ZON13] ZHU J., ONG S. K., NEE A. Y. C.: An authorable context-
aware augmented reality system to assist the maintenance technicians.
The International Journal of Advanced Manufacturing Technology 66, 9
(Jun 2013), 1699-1714. 2

