
HAL Id: hal-02276257
https://inria.hal.science/hal-02276257

Submitted on 2 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Ghost Code in Action: Automated Verification of a
Symbolic Interpreter

Benedikt Becker, Claude Marché

To cite this version:
Benedikt Becker, Claude Marché. Ghost Code in Action: Automated Verification of a Symbolic
Interpreter. VSTTE 2019 - 11th Working Conference on Verified Software: Tools, Techniques and
Experiments, Jul 2019, New York, United States. �10.1007/978-3-030-41600-3_8�. �hal-02276257�

https://inria.hal.science/hal-02276257
https://hal.archives-ouvertes.fr

Ghost Code in Action: Automated Verification
of a Symbolic Interpreter?

Benedikt Becker1 and Claude Marché1

Inria & LRI (CNRS, Univ. Paris-Sud), Université Paris-Saclay, Orsay, France
{benedikt.becker,claude.marche}@inria.fr

Abstract. Symbolic execution is a basic concept for the static analysis
of programs. It amounts to representing sets of concrete program states
as a logical formula relating the program variables, and interpreting sets
of executions as a transformation of that formula. We are interested in
formalising the correctness of a symbolic interpreter engine, expressed
by an over-approximation property stating that symbolic execution cov-
ers all concrete executions, and an under-approximation property stating
that no useless symbolic states are generated. Our formalisation is tai-
lored for automated verification, that is the automated discharge of ver-
ification conditions to SMT solvers. To achieve this level of automation,
we appropriately annotate the code of the symbolic interpreter with an
original use of both ghost data and ghost statements.

Keywords: Deductive Program Verification · Symbolic Execution · Au-
tomated Theorem Proving · Ghost code

1 Introduction

Symbolic execution is one of the basic approaches for analysing program code.
It amounts to representing a set of program states as a symbolic formula on
the program variables, and interpreting each concrete execution in one of these
states as one unique transformation of that formula. This technique allows one
to detect if an undesired program state is reachable from a given set of initial
inputs. In such a basic form, symbolic execution is a common idea behind more
elaborated approaches to the static analysis of programs, such as model checking
and abstract interpretation, and also for test generation. Formalisations of such
approaches exist, for example the Verasco abstract interpreter [10] is formally
specified and verified using the Coq proof assistant [3], but we are not aware of
simpler, more basic formalisation of a symbolic execution engine. In the light
of advanced verification efforts such as Verasco, the verification of a symbolic
execution engine may seem an easy task. However, instead of using a proof
assistant like Coq, we aim in this work at the use of automated verifiers, where
proofs are not constructed interactively but carried out by automated theorem
provers. In this work we use the Why3 environment [4] to achieve this task.
? This work has been partially supported by the ANR project CoLiS, contract number
ANR-15-CE25-0001.

2 Benedikt Becker and Claude Marché

Informal Presentation of Symbolic Execution. Let us consider the toy program
below from a mini-language in the style of IMP [11].

y := x - y - 1;
if y < 10 then x := y - 1 else y := 4 - x

Symbolically executing such a program means considering at once a set of pos-
sible inputs, a symbolic state, defined by a mapping from program variables to
logical variables and a logical constraint. For example, let’s consider

(x 7→ u, y 7→ v | 0 ≤ u ≤ 7 ∧ 1 ≤ v ≤ 11)

as an initial symbolic state for our toy program. The symbolic execution of the
first assignment produces the new symbolic state

(x 7→ u, y 7→ w | ∃ v . 0 ≤ u ≤ 7 ∧ 1 ≤ v ≤ 11 ∧ w = u − v − 1)

which represents the collection of concrete states that can be reached from any
concrete state satisfying the initial constraint. The symbolic execution of the if
statement results in a pair of symbolic states corresponding to the two branches:

(x 7→ t , y 7→ w | ∃ u, v . 0 ≤ u ≤ 7 ∧ 1 ≤ v ≤ 11 ∧
w = u − v − 1 ∧ w < 10 ∧ t = w − 1)

∪ (x 7→ u, y 7→ t | ∃ v ,w . 0 ≤ u ≤ 7 ∧ 1 ≤ v ≤ 11 ∧
w = u − v − 1 ∧ w ≥ 10 ∧ t = 4− u)

Using a constraint solver that is able to detect if a constraint is unsatisfiable, it
is possible to discard some of these symbolic execution branches.

Handling Loops. Loops can be handled similarly to conditionals by executing all
possible paths of concrete execution. In most cases, however, an infinite set of
symbolic states will be produced, and symbolic execution will be non-terminating
even on terminating programs. A simple solution is to restrict the number of loop
iterations by a limit N given as a parameter of the symbolic execution, resulting
in a N -bounded symbolic execution, also called loop-k [1].

When using a loop limit, we would like to distinguish between the executions
that terminate normally and executions that reach the loop limit. For example,
the symbolic execution of the program

y := 1;
while x > 1 do y := y * x; x := x - 1 done

with loop limit N = 3 and initial state (x 7→ v1 | true), results in two sets of
symbolic states, where intermediate logical variables are existentially quantified
in the constraint. One set of symbolic states represent normal behaviour :

(x 7→ v1, y 7→ v2 | v1 ≤ 1 ∧ v2 = 1)
∪ (x 7→ v3, y 7→ v4 | ∃ v1, v2. v1 = 2 ∧ v2 = 1 ∧ v3 = 1 ∧ v4 = 2)
∪ (x 7→ v5, y 7→ v6 | ∃ v1, v2, v3, v4. v1 = 3 ∧ v2 = 1 ∧

v3 = 2 ∧ v4 = 2 ∧ v5 = 1 ∧ v6 = 6)

Ghost Code in Action: Automated Verification of a Symbolic Interpreter 3

and one represents the abnormal behaviour obtained from reaching the loop
limit:

(x 7→ v5, y 7→ v6 | ∃ v1, v2, v3, v4. v1 > 3 ∧ v2 = 1 ∧
v3 > 2 ∧ v4 = 2 ∧ v5 > 1 ∧ v6 = 6)

In the remainder of this article we consider an additional abnormal behaviour
obtained when trying to evaluate a variable that is not bound in the context.
Symbolic execution thus produces a triple of finite sets of symbolic states, re-
spectively for each of the Normal, LoopLimit and UnboundVar behaviours.

Introduction to Ghost Annotations. Adding ghost annotations to a program is
a powerful versatile approach to proving advanced program properties [7]. A
ghost annotation can be used at the level of data structures, e.g. as a ghost
field in a record, or at the level of the code, e.g. as an assignment to a ghost
variable. Ghost annotations may even be required to simply express a property,
and they can greatly improve the degree of automation when using automated
verifiers [5]. An essential property of ghost code is that it must never interfere
with the execution of regular code [7], a property that is ensured statically in
the verifier Why3 [4] we use in this work.

A specific use case of ghost code is the handling of existential quantifiers, for
example in the post-condition of a program. Assume one has a program with a
post-condition of the following form:

function f (x) returns y
ensures { ∀ z . P(x , z)→ ∃ t . Q(x , y , z , t) }

Proving a quantified post-condition of this form is generally out of reach of
automated provers. A workaround is to turn the quantified variables into ghost
parameters and results of the function:

function f (x , ghost z) returns (y , ghost t)
requires { P(x , z) }
ensures { Q(x , y , z , t) }

This reformulation is logically equivalent to the former one because the VC
generation will universally quantify over parameters and existentially quantify
over results. An important advantage of the ghost reformulation is that ghost
code can be added to the body of f to compute an appropriate value of t .
Moreover, when f is defined recursively, appropriate values of z can be passed
to the recursive calls.

Structure of this paper. In Section 2, we present the toy mini-IMP language for
which we formalise our symbolic execution engine. We present its syntax and
the formal semantics of its concrete execution. As a first exercise, we develop
a concrete interpreter and prove its correctness. In Section 3, we introduce our
symbolic interpreter engine and a formalisation of the expected properties, and

4 Benedikt Becker and Claude Marché

Literals: n̄ ∈ N̄
Variables: x ∈ PVar
Expressions: e ::= n̄ | x | e − e
Instructions: i ::= skip | x := e | i;i | if e then i else i | while e do e

Fig. 1. Syntax of the IMP language

present a technique based on ghost annotations to prove the properties using
automated theorem provers. We conclude by a discussion of related and future
work in Section 4.

Our Why3 development of the concrete and symbolic interpreters, and the
material required to replay the proofs and compile and execute the interpreters,
is available at http://toccata.lri.fr/gallery/symbolic_imp.en.html.

2 Presentation of the IMP Language

We consider a simple, imperative language with close resemblance to the imp
language [11]. The abstract syntax of this language, called IMP, is shown in
Fig. 1, and features two syntactic categories: expressions and instructions. An
expression has type integer and is either an integer literal, a program variable
from an infinite set PVar , or a subtraction operation. An instruction is either a
variable assignment, or it combines other instructions into a sequence, a condi-
tional, or a while loop. Expressions are used as tests in conditionals and loops,
where non-zero values represent the Boolean value true.

2.1 Formal Semantics

We formalise the natural semantics of the IMP language using inductive rules,
encoded by inductive predicates in Why3.

The natural semantics of expressions is defined by a judgement e/Γ ⇓ α
with the inductive rules shown in Fig. 2. Expressions are evaluated in the con-
text of a concrete variable environment Γ : PVar 7→ Z, a partial function from
program variables to integers with domain dom(Γ). The behaviour of an ex-
pression is either normal and carries an integer, or it indicates the use of an
unbound variable. A literal evaluates with normal behaviour to its integer value.
A variable evaluates with normal behaviour to its value in the variable envi-
ronment, if the variable is defined. The binary operation has normal behaviour
and evaluates to the subtraction of the values of its operands, if both operands
have normal behaviour. The evaluation of an unbound variable triggers the be-
haviour UnboundVar, which is propagated across binary operations.

The natural semantics of instructions is defined by a judgement i/Γ ⇓N β/Γ ′ .
The inductive rules are shown in Fig. 3. A concrete variable environment Γ con-

http://toccata.lri.fr/gallery/symbolic_imp.en.html

Ghost Code in Action: Automated Verification of a Symbolic Interpreter 5

Expression behaviour: α ::= Normal Z | UnboundVar

Literal

n̄/Γ ⇓ Normal n

Var
x ∈ dom(Γ) Γ [x] = n

x/Γ ⇓ Normal n

Var-err
x 6∈ dom(Γ)

x/Γ ⇓ UnboundVar

Sub
e1/Γ ⇓ Normal n1 e2/Γ ⇓ Normal n2

e1 − e2/Γ ⇓ Normal (n1 − n2)

Sub-err-1
e1/Γ ⇓ UnboundVar

e1 − e2/Γ ⇓ UnboundVar

Sub-err-2
e1/Γ ⇓ Normal n1 e2/Γ ⇓ UnboundVar

e1 − e2/Γ ⇓ UnboundVar

Fig. 2. Semantics of expressions, which is formalized an inductive predicate in Why3

Instruction behaviour: β ::= Normal | UnboundVar | LoopLimit

Skip

skip/Γ ⇓N Normal/Γ

Assign
e/Γ ⇓ Normal n

x := e/Γ ⇓N Normal/Γ [x←n]

Assign-err
e/Γ ⇓ UnboundVar

x := e/Γ ⇓N UnboundVar/Γ

Seq
i1/Γ ⇓N Normal/Γ1

i2/Γ1
⇓N β/Γ2

i1;i2/Γ ⇓N β/Γ2

Seq-err
i1/Γ ⇓N β/Γ1 β 6= Normal

i1;i2/Γ ⇓N β/Γ1

Cond-true
e/Γ ⇓ Normal n n 6= 0 i1/Γ ⇓N β/Γ ′

if e then i1 else i2/Γ ⇓N β/Γ ′

Cond-false
e/Γ ⇓ Normal 0 i2/Γ ⇓N β/Γ ′

if e then i1 else i2/Γ ⇓N β/Γ ′

Cond-err
e/Γ ⇓ UnboundVar

if e then i1 else i2/Γ ⇓N UnboundVar/Γ

While
e, i/Γ ⇓0/N β/Γ ′

while e do i/Γ ⇓N β/Γ ′

Fig. 3. Semantics rules for instructions

6 Benedikt Becker and Claude Marché

While-limit
n = N

e, i/Γ ⇓n/N LoopLimit/Γ

While-false
n < N e/Γ ⇓ Normal 0

e, i/Γ ⇓n/N Normal/Γ

While-loop
n < N e/Γ1

⇓ Normal m m 6= 0

i/Γ1
⇓N Normal/Γ2

e, i/Γ2
⇓(n+1)/N β/Γ3

e, i/Γ1
⇓n/N β/Γ3

While-test-err
n < N e/Γ ⇓ UnboundVar

e, i/Γ ⇓n/N UnboundVar/Γ

While-body-err
n < N e/Γ1

⇓ Normal m m 6= 0 i/Γ1
⇓N β/Γ2

β 6= Normal

e, i/Γ1
⇓n/N β/Γ2

Fig. 4. Semantics rules for an optionally bounded while loop

stitutes the program state, which can be modified by the evaluation of an instruc-
tion to Γ ′. The value N ∈ N∪{∞} specifies an optional iteration limit for while
loops, where N =∞ disables the iteration limit. N is a parameter and kept con-
stant across the evaluation of instructions. The instruction behaviour β is either
normal, indicates an unbound variable in a sub-expression, or the reaching of the
loop limit. An assignment changes the value of the variable in the environment
to the value of an expression, if the expression evaluates with normal behaviour.
Expressions are used as tests in conditionals and while loops, and the integer 0
is interpreted as the Boolean value false, and any non-zero value is interpreted
as true. Abnormal behaviour (UnboundVar, LoopLimit) of sub-expressions and
sub-instructions is propagated to the behaviour of the instruction.

The semantics of loops is defined by a judgement e, i/Γ ⇓n/N β/Γ ′ for a test
expression e and a loop body i . The inductive rules are shown in Fig. 4. When
the loop counter n ∈ N reaches the loop limit N , the evaluation of the loop termi-
nates with behaviour LoopLimit. All other rules require the number of previous
iterations smaller than the loop limit. The evaluation of a loop terminates with
normal behaviour when the test expression evaluates to zero. Otherwise, and
if the evaluation of the loop body has normal behaviour, the evaluation of the
loop continues with an increased loop counter, and the result of the continuation
determines the result of the loop. Abnormal behaviour in the test expression or
loop body is propagated to the behaviour of the loop.

2.2 Concrete Execution

A concrete interpreter of the IMP language is implemented in the programming
language of Why3. A global, imperative variable environment from module Env

Ghost Code in Action: Automated Verification of a Symbolic Interpreter 7

module Env
type env = abstract { mutable Γ: PVar 7→ Z }

val empty (_:unit) : env ensures { ∀ x . x 6∈ dom(result.Γ) }

val set (e:env) (x:PVar) (n:Z) : unit
writes { e }
ensures { e.Γ = (old e.Γ)[x← n] }

exception Unbound_var

val find (e:env) (x:PVar) : Z
ensures { x ∈ dom(e.Γ) ∧ result = (e.Γ x) }
raises { Unbound_var → x 6∈ dom(e.Γ) }

end

Listing 1. The imperative variable environment Env

(Listing 1) constitutes the program state. The type of the variable environment is
left abstract in the Why3 program, and can be used only through the functions
of module Env. These are specified via post-conditions in terms of the partial
function Γ that represents the environment in the logical specifications. The
interpretation of expressions and instructions is implemented by two functions
that map the language constructs of the IMP language to the corresponding lan-
guage constructs of Why3 (see Listing 2). The functions of the interpreter return
normally in case of a normal evaluation, and exceptions are raised for unbound
variables. The interpretation of loops is unbound in the concrete interpreter.

The soundness of the concrete interpreter with respect to the formal seman-
tics without loop limit (N = ∞) is expressed by post-conditions for normal
behaviour (keyword ensures) and exceptional behaviour (keyword raises) (see
Listing 2). Each post-condition contains a semantic judgement that describes
the transformation of the global variable environment before running the inter-
preter (old env) to the variable environment after running the interpreter (env).
A loop invariant is required to verify the soundness of the while loop in Why3
that executes the loops of IMP. A ghost variable Γ0 retains the initial variable
environment and a mutable ghost variable n acts as an iteration counter. The
loop invariant then states that the result of the loop when starting in the cur-
rent program state (env.Γ) is the result of the loop when starting in the initial
variable environment Γ0.

Why3 splits the proof into 8 verification goals for interp_exp (covering also
the termination) and 16 goals for interp_ins, corresponding to the execution
paths of the interpreter functions. All verification conditions were automatically
proven by either CVC4 or Alt-Ergo in fractions of a second after applying basic
interactive proof steps in Why3 [6].

8 Benedikt Becker and Claude Marché

let env = Env.empty () (* A global, imperative variable environment *)

let rec interp_exp (e : expression) : int
variant { e }
ensures { e/env.Γ ⇓ Normal result }
raises { Env.Unbound_var → e/env.Γ ⇓ UnboundVar }

= match e with
| Lit n → n
| Var x → Env.find env x
| Sub e1 e2 → interp_exp e1 - interp_exp e2

end

let rec interp_ins (i : instruction) : unit
writes { env.Γ }
ensures { i/(old env.Γ) ⇓∞ Normal/env.Γ }
raises { Env.Unbound_var → i/(old env.Γ) ⇓∞ UnboundVar/env.Γ }

= match i with
| Skip → ()
| Assign x e → Env.set env x (interp_exp e)
| Seq i1 i2 → interp_ins i1; interp_ins i2
| If e i1 i2 → if interp_exp e 6= 0 then interp_ins i1 else interp_ins i2
| While e i →

let ghost Γ0 = env.Γ in let ghost ref n = 0 in
while interp_exp e 6= 0 do

invariant { ∀β/Γ ′. e, i/env.Γ ⇓n/∞ β/Γ ′ → e, i/Γ0 ⇓0/∞ β/Γ ′ }
interp_ins i; n ← n + 1

done
end

Listing 2. A concrete interpreter for the IMP language

3 Symbolic Execution

Following the informal presentation of symbolic execution in Section 1, we re-
call that a symbolic state (σ | C) has two components: a symbolic environment
σ : PVar 7→ SVar , which is a partial function from program variables to symbolic
variables with domain dom(σ), and a constraint C on symbolic variables. Finite
sets of symbolic states are designated by symbol Σ. A symbolic interpreter is
a function sym_interp_insN (σ | C)(i) that is parameterised by a loop limit
N ∈ N, and takes an initial symbolic state and an instruction as arguments. The
symbolic interpreter returns a set Σ∗ of symbolic result states (σ | C)β , i.e., sym-
bolic states annotated with a behaviour β ∈ {Normal,UnboundVar, LoopLimit}.
For any behaviour β, Σβ designates the symbolic states in Σ∗ with behaviour β.

The constraint language for IMP is shown in Fig. 5. A constraint is either
trivially true, the equality or disequality between two symbolic expressions, the
conjunction of two constraints, or an existential quantification of a variable over
a constraint. A symbolic expression corresponds to a program expression with

Ghost Code in Action: Automated Verification of a Symbolic Interpreter 9

Symbolic variables: v ∈ SVar
Symbolic expressions: se ::= n | v | se− se

∈ Sym-expr
Constraints: C ::= > | se = se | se 6= se | C ∧ C | ∃ v .C

∈ Constraint

Fig. 5. Constraint language for the symbolic interpretation of IMP

symbolic variables in place of program variables. The application of a symbolic
environment to a program expression, σ(e), is defined by the natural extension
of the symbolic environment to program expressions. The application results in
a symbolic expression, if the symbolic environment is defined on all variables
occurring in the expression, and is undefined otherwise.

An interpretation, ρ : SVar 7→ Z, is a partial function from symbolic vari-
ables to integers with domain dom(ρ). The application of an interpretation to a
symbolic expression, ρ(se), is defined as the natural extension of ρ to symbolic
expressions, if all variables in se are in dom(ρ), and undefined otherwise. An
interpretation ρ is a solution of a constraint C , denoted ρ |= C , if the domain
of ρ contains all symbolic variables in C and the formula obtained from C by
substituting all symbolic variables by their values in ρ, is true. A solution ρ |= C
to the constraint of a symbolic state (σ | C) defines a concrete variable environ-
ment by composition with the symbolic environment, Γ = ρ ◦ σ. These concrete
environments are the instances of the symbolic state.

3.1 Correctness Properties of a Symbolic Interpreter

The correctness of a concrete interpreter is defined by two properties: that every
evaluation result derivable by the semantic rules is produced by the interpreter
(completeness), and that every result of the interpreter is derivable by the se-
mantic rules (soundness). Symbolic interpretation, however, describes program
execution non-deterministically: the initial symbolic state represents a poten-
tially infinite set of initial concrete environments, and the result states represent
all concrete environments resulting from all initial environments. The correctness
of a symbolic interpreter is defined by two properties that relate the instances of
the symbolic states with semantic judgements of the concrete semantics: over-
approximation and under-approximation. Simplified, a symbolic execution is an
over-approximation of the concrete execution, if executing an instruction in an
instance of the initial symbolic state results in an instance of one of the sym-
bolic result states. Over-approximation is also called coverage [2]. A symbolic
interpretation is an under-approximation, if every instance of the symbolic result
states is the evaluation result of an instance of the initial symbolic state. Under-
approximation is also called precision [2].

10 Benedikt Becker and Claude Marché

Given the symbolic result states Σ∗ resulting from the symbolic execution
interp_insN (σ | C)(i), the correctness properties can be formalised as follows.

Property 1 (Over-approximation) The symbolic execution is an over-ap-
proximation of the concrete semantics, if for any solution ρ of the initial con-
straint, ρ |= C, and concrete evaluation result β/Γ ′ with i/ρ◦σ ⇓N β/Γ ′ , there
exists a symbolic result state (σ′ | C ′)β ∈ Σ∗ and a solution ρ′ |= C ′ such that
Γ ′ = ρ′ ◦ σ′.

Property 2 (Under-approximation) The symbolic execution is an under-
approximation of the concrete semantics, if for any symbolic result state (σ′ |
C ′)β ∈ Σ∗ and solution ρ′ |= C ′, there exists a solution ρ of the initial con-
straint, ρ |= C, such that i/ρ◦σ ⇓N β/ρ′◦σ′ .

Reformulation using Ghost Annotations. The correctness properties contain ex-
istential quantifications over solutions for the initial and result symbolic states.
As explained in Section 1, existential quantifications can be challenging for auto-
matic theorem provers, but are a typical use case of ghost annotations. We thus
associate each symbolic state with a ghost interpretation. A ghost-extended sym-
bolic state, (σ | C ; ρ) thus consists of a symbolic environment, a constraint, and
a ghost interpretation. From now on, we will only refer to ghost-extended sym-
bolic states. When used in a symbolic interpreter the ghost interpretations do
not influence the symbolic execution, but only support proving the properties.
They allow for substituting universally or existentially quantified solutions in
the properties by the ghost interpretations associated with the initial symbolic
state or a resulting symbolic state.

Given the set of extended symbolic result states Σ∗ resulting from a symbolic
execution interp_insN (σ | C ; ρ)(i), the above correctness properties can be
reformulated equivalently as follows:

Property 3 (Ghost-reformulated Over-approximation) The symbolic ex-
ecution is an over-approximation of the concrete semantics, if, assuming that the
interpretation ρ of the initial state is a solution of the initial constraint, ρ |= C,
and given a concrete evaluation result β/Γ ′ with i/ρ◦σ ⇓N β/Γ ′ , there exists a
symbolic result state (σ′ | C ′; ρ′)β ∈ Σ∗ such that ρ′ |= C ′ and Γ ′ = ρ′ ◦ σ′.

Property 4 (Ghost-reformulated Under-approximation) The symbolic ex-
ecution is an under-approximation of the concrete semantics, if for symbolic re-
sult state (σ′ | C ′; ρ′)β ∈ Σ∗ such that ρ′ |= C ′, it holds that ρ |= C and
i/ρ◦σ ⇓N β/ρ′◦σ′ .

3.2 Implementation of the Symbolic Interpreter

We implemented a symbolic interpreter for IMP in the Why3 programming
language with main function sym_interp_ins (see Listing 3), which is recursively
defined over the structure of the instruction. The reformulated correctness prop-
erties are formalised as post-conditions of the function.

Ghost Code in Action: Automated Verification of a Symbolic Interpreter 11

val sym_interp_insN (σ | C ; ρ)(i) : Σ∗
ensures { (* Over-approximation *) ρ |= C → ∀β/Γ ′ . (i/ρ◦σ ⇓N β/Γ ′)→
∃(σ′ | C ′; ρ′)β ∈ result. ρ′ |= C ′ ∧ Γ ′ = ρ′ ◦ σ′ }

ensures { (* Under-approximation *)
∀(σ′ | C ′; ρ′)β ∈ result. ρ′ |= C ′ → ρ |= C ∧ (i/ρ◦σ ⇓N β/ρ′◦σ′) }

Listing 3. Signature of the basic symbolic interpreter function with correctness prop-
erties encoded as post-conditions

1 val fresh (ghost ρ) : SVar
2 ensures { result 6∈ dom(ρ) }
3

4 val existentially_quantify (v) (C) : Constraint
5 ensures { vars(result) ⊆ vars(∃ v . C) }
6 ensures { ∀ ρ. ρ |= result ↔ ρ |= ∃ v . C }
7

8 predicate ρ v ρ′ =
9 dom(ρ) ⊆ dom(ρ′) ∧ ∀ v ∈ dom(ρ). ρ(v) = ρ′(v)

10

11 type sym_state = (σ | C ; ghost ρ)
12 invariant { codom(σ) ∪ vars(C) ⊆ dom(ρ) }
13

14 let rec sym_interp_insN (σ | C ; ρ)(i) : Σ∗
15 ensures { . . . (* Over-approximation and under-approximation *) }
16 ensures { (* Result interpretations extend the initial interpretation *)
17 ∀(σ′ | C ′; ρ′)β ∈ result→ ρ v ρ′ }
18 = match i with . . .
19 | Assign x e →
20 try
21 let se = σ(e) in
22 let v = fresh ρ in
23 let σ′ = σ[x ← v] in
24 let C ′ =
25 if x ∈ dom(σ) then existentially_quantify (σ(x)) (C ∧ (v = se))
26 else C ∧ (v = se) in
27 let ghost ρ′ = ρ[v ← ρ(se)] in
28 {(σ′ | C ′; ρ′)Normal}
29 with UnboundVar (* from σ(e) *) → {(σ | C ; ρ)UnboundVar} end

Listing 4. Symbolic execution of the assignment, with additional post-condition and
state invariant to ensure the correct use of the interpretation as an environment of
witnesses to existentially quantified variables

Assignment and Quantification over a Variable. To execute an assignment x := e,
the variable x is assigned in the symbolic environment to a fresh symbolic vari-
able v , and an equality constraint between v and the symbolic expression corre-
sponding to e is added, if the symbolic environment is defined on all variables in

12 Benedikt Becker and Claude Marché

e (see Listing 4, Line 21 et seq.). The interpretation ρ is updated by assigning
the fresh variable to the value of the symbolic expression in the interpretation. If
the program variable was already bound to a variable v ′ in σ, then the variable
v ′ becomes inaccessible from the symbolic environment and the remaining pro-
gram. The constraint is replaced by an existential quantification over v ′. More
precisely, we apply the function existentially_quantify (Line 25) to dele-
gate the construction of the quantification to a constraint solver, which allows
for simplifying the constraint by quantifier elimination. The requirements for
function existentially_quantify are expressed by its post-conditions: it does
not introduce any new variables and it produces a constraint equivalent to an
explicit existential quantification.

If the symbolic environment is undefined on any variable in e, the initial
symbolic state annotated with behaviour UnboundVar comprises the singleton
result set (Line 29).

Updating the ghost interpretation when executing an assignment implies that
the interpretation retains values of symbolic variables that satisfy the constraint,
and that the interpretation serves as an environment of witnesses to existentially
quantified variables. This original aspect must be reflected by the following def-
inition of the predicate ρ |= C , in which the last case, the one of existential
quantifiers, is to be particularly emphasised:

ρ |= C iff. vars(C) ⊆ dom(ρ) ∧



> when C = >
ρ(se1) = ρ(se2) when C = (se1 = se2)

ρ(se1) 6= ρ(se2) when C = (se1 6= se2)

ρ |= C1 ∧ ρ |= C2 when C = C1 ∧ C2

ρ |= C1 when C = ∃ v .C1

The case of the existential quantifier is non-standard: instead of pretending that
“there exists a value for the quantified variable v such that . . . ”, we go even
further in the use of ghost annotations by requiring that the ghost interpreta-
tion ρ already holds the adequate value for v . This choice is crucial to facilitate
the application of automatic theorem provers. A drawback, however, is that we
lose invariance with respect to α-renaming, because the witnesses in the inter-
pretation are identified by their exact variable names. This requires extra care
with the concept of “fresh” variables: these have to be fresh even with respect to
existentially quantified variables. We ensure this property in the implementation
by three means:

1. The function fresh has an interpretation as a ghost argument and ensures
that the resulting variable is not in the domain of the interpretation (List-
ing 4, Line 2).

2. An invariant of the symbolic state ensures that the domain of the inter-
pretation covers all variables in the codomain of the symbolic environment
and all variables in the constraint, including existentially quantified variables
(Line 12).

Ghost Code in Action: Automated Verification of a Symbolic Interpreter 13

let rec sym_interp_insN (s)(i) =
match i with . . .
| Seq i1 i2 →

let Σ∗ = sym_interp_insN (s)(i1) in
let Σ′∗ = sym_interp_ins’N (ΣNormal)(i2) in
ΣUnboundVar ∪ ΣLoopLimit ∪ Σ′∗

Listing 5. Symbolic execution of sequences

3. The symbolic execution function always extends the interpretation, i.e., the
domain of the initial interpretation is a subset of the domains of the resulting
interpretation, and all values of the initial interpretation are retained in the
resulting interpretations (defined by predicate v, Line 9). This property is
ensured by a post-condition (Line 17).

Sequences and Sets of Initial States. The concrete semantics of the sequence
of two instructions specifies that the first instruction is evaluated first, and the
second instruction is evaluated only if the behaviour of the first instruction
was normal. Similarly, the symbolic execution of a sequence starts by executing
the first instruction (see Listing 5). The second instruction is executed in the
context of the resulting symbolic states annotated with behaviour Normal, using
an auxiliary function sym_interp_ins’N (Σ)(i) : Σ∗ that operates on a set of initial
states Σ, applies sym_interp_ins on each element of Σ, and joins the resulting
symbolic state sets. The result of the execution of the sequence is the union of the
symbolic result states representing abnormal behaviour in the first instruction,
and the symbolic result state set from the second instruction.

Conditionals and State Pruning. Listing 6 shows the symbolic execution of the
conditional instruction. The test expression e is converted into a symbolic ex-
pression se by applying the symbolic environment. The exception UnboundVar,
raised when a variable in e is undefined in σ, results in a singleton set of the
initial state annotated with behaviour UnboundVar. The instructions i1 and i2
are interpreted in symbolic states that extend the initial symbolic state by con-
straints stating that se is different from 0, or equal to 0, respectively. If the
constraint corresponding to one of the branches is unsatisfiable, the branch is
pruned by assuming an empty set. Our symbolic interpreter uses a potentially
incomplete procedure maybe_sat for testing unsatisfiability of a constraint. If
maybe_sat C returns False then constraint C does not have a solution. It may
or may not have a solution if the procedure returns True.

Loops. The function sym_interp_loopn/N (σ | C ; ρ)(e, i) : (Σβ)β executes a loop
with test expression e and body i (see Listing 7). When the loop counter n
reaches the loop limit N , the initial symbolic state is returned as a singleton

14 Benedikt Becker and Claude Marché

val maybe_sat (C : Constraint) : B
ensures { result = False → @ρ. ρ |= C }

let rec sym_interp_insN (σ | C ; ρ)(i) =
match i with . . .
| If e i1 i2 →

try
let se = σ(e) in
let Σ∗ = (* then-branch *)

if maybe_sat (C ∧ (se 6= 0))
then sym_interp_insN (σ | C ∧ (se 6= 0); ρ)(i1)
else ∅ in (* prune then-branch *)

let Σ′∗ = (* else-branch *)
if maybe_sat (C ∧ (se = 0))
then sym_interp_insN (σ | C ∧ (se = 0); ρ)(i2)
else ∅ in (* prune else-branch *)

Σ∗ ∪Σ′∗
with UnboundVar (* from σ(e) *) → {(σ | C ; ρ)UnboundVar} end

Listing 6. Symbolic execution of conditions with state pruning

state set annotated with behaviour LoopLimit. Otherwise, the loop is executed.
The normal termination of the loop is represented by the singleton set of the
initial symbolic state with the additional constraint that the symbolic test ex-
pression is false and annotated with behaviour Normal. The loop body is executed
in the symbolic state with the additional constraint that the symbolic test ex-
pression is true. The continuation of the loop is executed by a call to function
sym_interp_loop’ that executes the loop in the context of a set of symbolic states
with an increased loop counter. If the constraint representing the termination
(or continuation) of the loop is unsatisfiable according to function maybe_sat,
the termination (or further execution) of the loop is pruned.

3.3 Proofs of the Symbolic Properties

Post-conditions ensure the under-approximation, over-approximation, and ex-
tension of interpretations of the functions implementing the symbolic interpreter,
namely sym_interp_ins and sym_interp_loop, and their variants operating on sets
of initial symbolic states. The post-conditions, required lemmas, and termination
criteria of the symbolic interpreter functions amount to 31 verification goals, to
which we applied 86 lightweight interactive transformations [6]. Most transforma-
tions were required to separate the post-conditions of function sym_interp_loop
by its execution paths into verification conditions that are within reach of au-
tomatic theorem provers. The resulting proof tree has 186 leaf verification con-
ditions, which were discharged to the automatic theorem provers CVC4 1.6,
Alt-Ergo 2.2.0, and Eprover 2.2. Each goal was verified by one prover, trying the

Ghost Code in Action: Automated Verification of a Symbolic Interpreter 15

with sym_interp_loopn/N (σ | C ; ρ)(e, i) : Σ∗ =
if n = N (* loop limit reached *)
then {(σ | C ; ρ)LoopLimit}
else

try
let se = σ(e) in
let Σ loop

∗ = (* continue loop *)
if maybe_sat (C ∧ (se 6= 0)) then

let Σ∗ = sym_interp_cmdN (σ | C ∧ (se 6= 0); ρ)(i) in
let Σ′∗ = sym_interp_loop’(n+1)/N (ΣNormal)(e, i) in
ΣUnboundVar ∪ ΣLoopLimit ∪ Σ′∗

else ∅ in (* prune loop continuation *)
let Σterm

∗ = (* loop termination *)
if maybe_sat (C ∧ (se = 0))
then {(σ | C ∧ (se = 0); ρ)Normal}
else ∅ in (* prune loop termination *)

Σ loop
∗ ∪Σterm

∗
with UnboundVar (* from σ(e) *) → {(σ | C ; ρ)UnboundVar} end

Listing 7. Symbolic execution of loops

Table 1. The use of different automatic theorem provers in the verification conditions
of the symbolic interpreter functions with processing time in seconds.

Prover Verification conditions Fastest Slowest Average

CVC4 1.6 162 0.03 2.57 0.26
Alt-Ergo 2.2.0 20 0.03 3.59 0.42
Eprover 2.2 4 0.09 0.31 0.20

three provers in the given order. The use and processing times of the provers is
given in table Table 1 (on a machine with four cores Intel i7-8650U@1.90GHz,
16GB RAM, and running Debian 9.9).

3.4 Execution and Test of the Symbolic Interpreter

The Why3 environment offers an extraction feature that allows one to auto-
matically generate OCaml code from a Why3 program. An OCaml program
was extracted from our symbolic interpreter, and compiled together with hand-
written OCaml code to experiment with that interpreter. All ghost annotations
are removed during extraction.

To perform the extraction, some information must be given to Why3, under
the form of an extraction driver, a simple file that explain how the abstract sym-
bols of the Why3 code must be mapped to OCaml. In particular, the constraint
solver required to execute the code must be provided by an external OCaml
library: we use the one from the Alt-Ergo prover. The abstract type of symbolic

16 Benedikt Becker and Claude Marché

variables is substituted by an OCaml type that is private to a module. The sub-
stitution of the function fresh creates universally fresh variables to comply with
the post-condition given in the Why3 program. The resulting code was tested
against simple examples. The performance of the generated code is satisfactory
in the sense that the Why3 extraction procedure, which erases the ghost code,
produces an OCaml code that is as efficient as a code that would have been
written by hand.

For reproducibility, the source code of the formal semantics, the concrete in-
terpreter, the symbolic interpreter, the proof session to replay the proofs, and the
extraction driver are available at http://toccata.lri.fr/gallery/symbolic_
imp.en.html. See the file README.md for the required dependencies.

4 Conclusions, Related Work and Future Work

We presented in this article a formalisation of two correctness properties of
symbolic interpreter engines, over-approximation and under-approximation. We
employed advanced ghost annotations of data and code of the symbolic inter-
preter to discharge the generated verification conditions to automated theorem
provers.

A natural question is whether our approach can scale to a symbolic exe-
cution tool on a more complex language. First, we believe that our technique
using ghost code for automating proofs is already well demonstrated on the es-
sential constructions of assignment, conditionals and loops, so that it should
apply similarly on languages with similar control structures. Indeed, we believe
the complexity of symbolic execution tools for complex languages relies more on
the complexity of data, which must be handled by the constraints and not the
symbolic engine itself. Second, as a matter of fact, we recently finish to transfer
the correctness properties and proof techniques developed in this article to the
CoLiS language [8]. The CoLiS language is an intermediate language for a sub-
set of the POSIX shell language with formally defined and easily understandable
semantics. It has been developed to statically analyse Debian maintainer scripts,
and we aim at identifying errors in maintainer scripts by symbolically executing
the corresponding CoLiS scripts. Indeed we have already been able to identify
issues in some of those scripts. We represent the file system symbolically using
feature tree constraints [9]. Program variables, however, are statically known in
Debian maintainer scripts, and represented concretely. This results in simpli-
fied correctness properties, where the only variable of the symbolic environment
represents successive values of the file system’s root node.

Acknowledgements. We would like to thank Nicolas Jeannerod, Ralf Treinen,
Mihaela Sighireanu and Yann Regis-Gianas, partners of the CoLiS project, for
their input and remarks on the design of the symbolic interpreter and the for-
mulation of expected properties. We also thank Burkhart Wolff for his feedback
about related work on symbolic execution.

http://toccata.lri.fr/gallery/symbolic_imp.en.html
http://toccata.lri.fr/gallery/symbolic_imp.en.html

Ghost Code in Action: Automated Verification of a Symbolic Interpreter 17

References

1. Albert, E., Arenas, P., Gómez-Zamalloa, M., Rojas, J.M.: Formal Methods for Ex-
ecutable Software Models: 14th International School on Formal Methods for the
Design of Computer, Communication, and Software Systems, SFM 2014, Berti-
noro, Italy, June 16-20, 2014, Advanced Lectures, chap. Test Case Generation
by Symbolic Execution: Basic Concepts, a CLP-Based Instance, and Actor-Based
Concurrency, pp. 263–309. Springer Verlag (2014). https://doi.org/10.1007/978-3-
319-07317-0_7

2. Arusoaie, A., Lucanu, D., Rusu, V.: A Generic Framework for Symbolic Execution:
Theory and Applications. Research Report RR-8189, Inria (Sep 2015), https:
//hal.inria.fr/hal-00766220

3. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program De-
velopment. Texts in Theoretical Computer Science, Springer-Verlag (2004).
https://doi.org/10.1007/978-3-662-07964-5

4. Bobot, F., Filliâtre, J.C., Marché, C., Paskevich, A.: Let’s verify this with Why3.
International Journal on Software Tools for Technology Transfer (STTT) 17(6),
709–727 (2015). https://doi.org/10.1007/s10009-014-0314-5, http://hal.inria.
fr/hal-00967132/en, see also http://toccata.lri.fr/gallery/fm2012comp.en.
html

5. Clochard, M., Marché, C., Paskevich, A.: Deductive verification with ghost moni-
tors (Nov 2018), https://hal.inria.fr/hal-01926659, working paper

6. Dailler, S., Marché, C., Moy, Y.: Lightweight interactive proving inside an auto-
matic program verifier. In: Proceedings of the Fourth Workshop on Formal In-
tegrated Development Environment, F-IDE, Oxford, UK, July 14, 2018 (2018),
https://hal.inria.fr/hal-01936302

7. Filliâtre, J.C., Gondelman, L., Paskevich, A.: The spirit of ghost code. Formal
Methods in System Design 48(3), 152–174 (2016). https://doi.org/10.1007/s10703-
016-0243-x, https://hal.archives-ouvertes.fr/hal-01396864v1

8. Jeannerod, N., Marché, C., Treinen, R.: A Formally Verified Interpreter for a Shell-
like Programming Language. In: VSTTE 2017 - 9th Working Conference on Verified
Software: Theories, Tools, and Experiments. Lecture Notes in Computer Science,
vol. 10712. Heidelberg, Germany (Jul 2017), https://hal.archives-ouvertes.
fr/hal-01534747

9. Jeannerod, N., Treinen, R.: Deciding the first-order theory of an algebra of
feature trees with updates. In: International Joint Conference on Automated
Reasoning. pp. 439–454. Springer (2018), https://hal.archives-ouvertes.fr/
hal-01760575

10. Jourdan, J.H., Laporte, V., Blazy, S., Leroy, X., Pichardie, D.: A formally-verified
C static analyzer. In: 42nd ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages. pp. 247–259. ACM, Mumbai, India (Jan 2015).
https://doi.org/10.1145/2676726.2676966, https://hal.inria.fr/hal-01078386

11. Winskel, G.: The formal semantics of programming languages: an introduction.
MIT press (1993)

https://doi.org/10.1007/978-3-319-07317-0_7
https://doi.org/10.1007/978-3-319-07317-0_7
https://hal.inria.fr/hal-00766220
https://hal.inria.fr/hal-00766220
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/s10009-014-0314-5
http://hal.inria.fr/hal-00967132/en
http://hal.inria.fr/hal-00967132/en
http://toccata.lri.fr/gallery/fm2012comp.en.html
http://toccata.lri.fr/gallery/fm2012comp.en.html
https://hal.inria.fr/hal-01926659
https://hal.inria.fr/hal-01936302
https://doi.org/10.1007/s10703-016-0243-x
https://doi.org/10.1007/s10703-016-0243-x
https://hal.archives-ouvertes.fr/hal-01396864v1
https://hal.archives-ouvertes.fr/hal-01534747
https://hal.archives-ouvertes.fr/hal-01534747
https://hal.archives-ouvertes.fr/hal-01760575
https://hal.archives-ouvertes.fr/hal-01760575
https://doi.org/10.1145/2676726.2676966
https://hal.inria.fr/hal-01078386

	 Ghost Code in Action: Automated Verification of a Symbolic Interpreter

