W. J. Crumb, J. Vicente, L. Johannesen, and D. G. Strauss, An evaluation of 30 clinical drugs against the comprehensive in vitro proarrhythmia assay (CiPA) proposed ion channel panel, Journal of pharmacological and toxicological methods, vol.81, pp.251-262, 2016.

D. Millard, Q. Dang, H. Shi, X. Zhang, C. Strock et al., Cross-site reliability of human induced pluripotent stem-cell derived cardiomyocyte based safety assays using microelectrode arrays: Results from a blinded CiPA pilot study, Toxicological Sciences, p.110, 2018.

D. Yamazaki, T. Kitaguchi, M. Ishimura, T. Taniguchi, A. Yamanishi et al., Proarrhythmia risk prediction using human induced pluripotent stem cell-derived cardiomyocytes, Journal of pharmacological sciences, vol.136, issue.4, pp.249-256, 2018.

S. Dutta, K. C. Chang, K. A. Beattie, J. Sheng, P. N. Tran et al., Optimization of an in silico cardiac cell model for proarrhythmia risk assessment, Frontiers in Physiology, vol.8, p.616, 2017.

M. K. Pugsley, M. L. Harter, T. De-korte, C. Connaughton, S. Authier et al., Safety pharmacology methods and regulatory considerations evolve together, 2018.

C. Lancaster, M. Sobie, and E. , Improved Prediction of Drug-Induced Torsades de Pointes Through Simulations of Dynamics and Machine Learning Algorithms, Clinical Pharmacology & Therapeutics, vol.100, issue.4, pp.371-379, 2016.

E. Passini, O. J. Britton, H. R. Lu, J. Rohrbacher, A. N. Hermans et al., Human in silico drug trials demonstrate higher accuracy than animal models in predicting clinical pro-arrhythmic cardiotoxicity, Frontiers in physiology, vol.8, p.668, 2017.

G. Bortolan and J. Willems, Diagnostic ECG classification based on neural networks, Journal of Electrocardiology, vol.26, pp.75-79, 1993.

B. M. Asl, S. K. Setarehdan, and M. Mohebbi, Support vector machine-based arrhythmia classification using reduced features of heart rate variability signal. Artificial intelligence in medicine, vol.44, pp.51-64, 2008.

L. Tung, A bi-domain model for describing ischemic myocardial D-C potentials. MIT, 1978.

T. O'hara, L. Virág, A. Varró, and Y. Rudy, Simulation of the undiseased human cardiac ventricular action potential: model formulation and experimental validation, PLoS computational biology, vol.7, issue.5, p.1002061, 2011.

G. Mirams, Y. Cui, A. Sher, M. Fink, J. Cooper et al., Simulation of multiple ion channel block provides improved early prediction of compounds clinical torsadogenic risk, Cardiovascular research, vol.91, issue.1, pp.53-61, 2011.

N. Zemzemi, M. Bernabeu, J. Saiz, J. Cooper, P. Pathmanathan et al., Computational assessment of drug-induced effects on the electrocardiogram: from ion channel to body surface potentials, British journal of pharmacology, vol.168, issue.3, pp.718-733, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00764102

D. Bottino, R. C. Penland, A. Stamps, M. Traebert, B. Dumotier et al., Preclinical cardiac safety assessment of pharmaceutical compounds using an integrated systems-based computer model of the heart. Progress in biophysics and molecular biology, vol.90, pp.414-443, 2006.

F. Raphel, M. Boulakia, N. Zemzemi, Y. Coudière, J. M. Guillon et al., Identification of ion currents components generating field potential recorded in MEA from hiPSC-CM, IEEE Transactions on Biomedical Engineering, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01570341

A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Serban et al., SUNDIALS: Suite of nonlinear and differential/algebraic equation solvers, ACM Transactions on Mathematical Software (TOMS), vol.31, issue.3, pp.363-396, 2005.

E. Tixier, F. Raphel, D. Lombardi, and J. F. Gerbeau, Composite biomarkers derived from Micro-Electrode Array measurements and computer simulations improve the classification of drug-induced channel block, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01570819

E. Abbate, M. Boulakia, Y. Coudière, J. F. Gerbeau, P. Zitoun et al., In silico assessment of the effects of various compounds in MEA/hiPSC-CM assays: Modelling and numerical simulations
URL : https://hal.archives-ouvertes.fr/hal-01562673

Y. Nakamura, J. Matsuo, N. Miyamoto, A. Ojima, K. Ando et al., Assessment of testing methods for drug-induced repolarization delay and arrhythmias in an iPS cell-derived cardiomyocyte sheet: Multi-site validation study, Journal of pharmacological sciences, vol.124, issue.4, pp.494-501, 2014.

P. C. Chang, H. T. Wo, H. L. Lee, S. F. Lin, M. S. Wen et al., Role of sarcoplasmic reticulum calcium in development of secondary calcium rise and early afterdepolarizations in long QT syndrome rabbit model, PloS one, vol.10, issue.4, p.123868, 2015.

R. E. Bellman, Adaptive control processes: a guided tour, vol.2045, 2015.

Y. Saeys, I. Inza, and P. Larrañaga, A review of feature selection techniques in bioinformatics, bioinformatics, vol.23, pp.2507-2517, 2007.

N. Hansen, The CMA evolution strategy: a comparing review, Towards a new evolutionary computation, pp.75-102, 2006.

L. M. Belue and K. W. Bauer, Determining input features for multilayer perceptrons, Neurocomputing, vol.7, issue.2, pp.111-121, 1995.

B. Widrow and M. A. Lehr, 30 years of adaptive neural networks: perceptron, madaline, and backpropagation, Proceedings of the IEEE, vol.78, issue.9, pp.1415-1442, 1990.

S. Balakrishnama and A. Ganapathiraju, Linear discriminant analysis-a brief tutorial. Institute for Signal and information Processing, vol.18, pp.1-8, 1998.

L. Tertoolen, S. Braam, B. Van-meer, R. Passier, and C. Mummery, Interpretation of field potentials measured on a multi electrode array in pharmacological toxicity screening on primary and human pluripotent stem cell-derived cardiomyocytes. Biochemical and biophysical research communications, vol.497, pp.1135-1141, 2018.

J. Kramer, C. A. Obejero-paz, G. Myatt, Y. A. Kuryshev, A. Bruening-wright et al., MICE models: superior to the HERG model in predicting Torsade de, Pointes. Scientific reports, vol.3, 2013.

A. Biosystems, Microelectrode Array (MEA) Axion Biosystems

W. J. Crumb, Loratadine blockade of K+ channels in human heart: comparison with terfenadine under physiological conditions, Journal of Pharmacology and Experimental Therapeutics, vol.292, issue.1, pp.261-264, 2000.

Y. Nozaki, Y. Honda, H. Watanabe, S. Saiki, K. Koyabu et al., CSAHi study-2: validation of multi-electrode array systems (MEA60/2100) for prediction of drug-induced proarrhythmia using human iPS cell-derived cardiomyocytes: assessment of reference compounds and comparison with non-clinical studies and clinical information, Regulatory Toxicology and Pharmacology, vol.88, pp.238-251, 2017.

J. C. Hancox, M. J. Mcpate, E. Harchi, A. Hong-zhang, and Y. , The hERG potassium channel and hERG screening for drug-induced torsades de pointes, Pharmacology & therapeutics, vol.119, issue.2, pp.118-132, 2008.

D. Ma, H. Wei, Y. Zhao, J. Lu, G. Li et al., Modeling type 3 long QT syndrome with cardiomyocytes derived from patient-specific induced pluripotent stem cells, International journal of cardiology, vol.168, issue.6, pp.5277-5286, 2013.

R. Gualdani, F. Tadini-buoninsegni, M. Roselli, I. Defrenza, M. Contino et al., Inhibition of hERG potassium channel by the antiarrhythmic agent mexiletine and its metabolite m-hydroxymexiletine, Pharmacology research & perspectives, vol.3, issue.5, 2015.

K. Lee and R. Tsien, Mechanism of calcium channel blockade by verapamil, D600, diltiazem and nitrendipine in single dialysed heart cells, Nature, vol.302, issue.5911, p.790, 1983.

B. K. Chamberlain, P. Volpe, and S. Fleischer, Inhibition of calcium-induced calcium release from purified cardiac sarcoplasmic reticulum vesicles, Journal of Biological Chemistry, vol.259, issue.12, pp.7547-7553, 1984.

N. Ogata, M. Nishimura, and T. Narahashi, Kinetics of chlorpromazine block of sodium channels in single guinea pig cardiac myocytes, Journal of Pharmacology and Experimental Therapeutics, vol.248, issue.2, pp.605-613, 1989.

S. Y. Lee, Y. J. Kim, K. T. Kim, H. Choe, and S. H. Jo, Blockade of HERG human K+ channels and IKr of guinea-pig cardiomyocytes by the antipsychotic drug clozapine, British journal of pharmacology, vol.148, issue.4, pp.499-509, 2006.

A. Yatani, A. Brown, and A. Schwartz, Bepridil block of cardiac calcium and sodium channels, Journal of Pharmacology and Experimental Therapeutics, vol.237, issue.1, pp.9-17, 1986.

A. Busch, B. Eigenberger, N. Jurkiewicz, J. Salata, A. Pica et al., Blockade of HERG channels by the class III antiarrhythmic azimilide: mode of action, British journal of pharmacology, vol.123, issue.1, pp.23-30, 1998.

J. A. Yao and T. Gn, Azimilide (NE-10064) Can Prolong or Shorten the Action Potential Duration in Canine Ventricular Myocytes: Dependence on Blockade of K, Ca, and Na Channels, Journal of cardiovascular electrophysiology, vol.8, issue.2, pp.184-198, 1997.

H. Ando, T. Yoshinaga, W. Yamamoto, K. Asakura, T. Uda et al., A new paradigm for drug-induced torsadogenic risk assessment using human iPS cell-derived cardiomyocytes, Journal of pharmacological and toxicological methods, vol.84, pp.111-127, 2017.

J. Vicente, R. Zusterzeel, L. Johannesen, J. Mason, P. Sager et al., Mechanistic Model-Informed Proarrhythmic Risk Assessment of Drugs: Review of the CiPA Initiative and Design of a Prospective Clinical Validation Study, Clinical Pharmacology & Therapeutics, vol.103, issue.1, pp.54-66, 2018.

M. Paci, R. P. Pölönen, C. D. Penttinen, K. Aalto-setälä, K. Severi et al., Automatic optimization of an in silico model of human iPSC derived cardiomyocytes recapitulating calcium handling abnormalities, Frontiers in physiology, vol.9, 2018.

T. Colatsky, B. Fermini, G. Gintant, J. B. Pierson, P. Sager et al., The comprehensive in vitro proarrhythmia assay (CiPA) initiative-Update on progress, Journal of pharmacological and toxicological methods, vol.81, pp.15-20, 2016.

R. A. Helms and D. J. Quan, Textbook of therapeutics: drug and disease management

H. M. Himmel, Drug-induced functional cardiotoxicity screening in stem cell-derived human and mouse cardiomyocytes: effects of reference compounds, pp.97-111

K. Blinova, Q. Dang, D. Millard, G. Smith, P. et al., Haoyu and others International multisite study of human-induced pluripotent stem cell-derived cardiomyocytes for drug proarrhythmic potential assessment, Cell reports, pp.3582-3592

J. Yao, G. Tseng, and . Azimilide, NE-10064) Can Prolong or Shorten the Action Potential Duration in Canine Ventricular Myocytes: Dependence on Blockade of K, Ca, and Na Channels, Journal of cardiovascular electrophysiology, pp.184-198