K. Abdelouahab, M. Pelcat, J. Sérot, and F. Berry, Accelerating CNN inference on FPGAs: A survey. ArXiv, abs/1806.01683, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01695375

V. Badrinarayanan, A. Kendall, and R. Cipolla, Segnet: A deep convolutional encoder-decoder architecture for image segmentation, PAMI, vol.39, issue.2, 2017.

L. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, Encoder-decoder with atrous separable convolution for semantic image segmentation, ECCV, 2018.

F. Chollet, Xception: Deep learning with depthwise separable convolutions, CVPR, 2017.

J. Drönner, N. Korfhage, S. Egli, M. Mühling, B. Thies et al., Fast cloud segmentation using convolutional neural networks, Remote Sensing, vol.10, issue.11

M. Everingham, L. Van-gool, C. K. Williams, J. Winn, and A. Zisserman, The Pascal Visual Object Classes (VOC) Challenge, IJCV, vol.88, issue.2, 2010.

A. Garcia-garcia, S. Orts-escolano, S. Oprea, V. Villenamartinez, P. Martinez-gonzalez et al.,

, A survey on deep learning techniques for image and video semantic segmentation, Applied Soft Computing, vol.70, issue.2, pp.41-65, 2018.

S. Ghassemi, E. Magli, S. Ghassemi, and E. Magli, Convolutional Neural Networks for On-Board Cloud Screening. Remote Sensing, vol.11, p.7, 2005.

Y. Guo, Y. Liu, T. Georgiou, and M. S. Lew, A review of semantic segmentation using deep neural networks. International journal of multimedia information retrieval, vol.7, 2018.

M. K. Hamdan, VHDL auto-generation tool for optimized hardware acceleration of convolutional neural networks on FPGA (VGT), vol.2, p.7, 2018.

K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition, CVPR, 2016.

A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang et al., Mobilenets: Efficient convolutional neural networks for mobile vision applications, 2004.

M. Hughes, D. Hayes, M. J. Hughes, and D. J. Hayes, Automated Detection of Cloud and Cloud Shadow in Single-Date Landsat Imagery Using Neural Networks and Spatial PostProcessing, Remote Sensing, vol.6, issue.6, 2014.

B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang et al., Quantization and training of neural networks for efficient integer-arithmetic-only inference, CVPR, 2018.

J. Deng, W. Dong, R. Socher, L. Li, K. Li et al., ImageNet: A large-scale hierarchical image database, CVPR, 2009.

A. Kamilaris and F. X. Prenafeta-boldú, Deep learning in agriculture: A survey. Computers and electronics in agriculture, vol.147, 2018.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, Gradientbased learning applied to document recognition. Proceedings of the IEEE, vol.86

Y. Lecun, J. S. Denker, and S. A. Solla, Optimal Brain Damage, NIPS, 1990.

H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, Pruning filters for efficient convnets, 2016.

D. Lin, S. Talathi, and S. Annapureddy, Fixed point quantization of deep convolutional networks, ICML, 2016.

T. Lin, M. Maire, S. Belongie, J. Hays, P. Perona et al., Microsoft COCO: Common objects in context, ECCV, 2014.

C. Liu, Y. Zhang, P. Chen, C. Lai, Y. Chen et al., Clouds classification from sentinel-2 imagery with deep residual learning and semantic image segmentation, Remote Sensing, vol.11, issue.2

J. Long, E. Shelhamer, and T. Darrell, Fully convolutional networks for semantic segmentation, CVPR, 2015.

S. Mehta, M. Rastegari, A. Caspi, L. Shapiro, and H. Hajishirzi, Espnet: Efficient spatial pyramid of dilated convolutions for semantic segmentation, ECCV, vol.5, p.6, 2004.

S. Mohajerani, T. A. Krammer, and P. Saeedi, A cloud detection algorithm for remote sensing images using fully convolutional neural networks, Workshop on Multimedia Signal Processing, vol.6, p.7, 2005.

S. Mohajerani and P. Saeedi, Cloud-net: An endto-end cloud detection algorithm for landsat 8 imagery, vol.4, p.5, 2019.

P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz, Pruning convolutional neural networks for resource efficient inference, 2016.

G. Morales, S. G. Huamán, and J. Telles, Cloud detection in high-resolution multispectral satellite imagery using deep learning, ICANN, vol.2, p.4, 2018.

R. Mottaghi, X. Chen, X. Liu, N. G. Cho, S. W. Lee et al., The role of context for object detection and semantic segmentation in the wild, CVPR, 2014.

H. Noh, S. Hong, and B. Han, Learning deconvolution network for semantic segmentation, ICCV, vol.2, p.4, 2015.

O. Ronneberger, P. Fischer, and T. Brox, U-net: Convolutional networks for biomedical image segmentation, 2004.

M. Siam, M. Gamal, M. Abdel-razek, S. Yogamani, and M. Jagersand, RTSeg: Real-Time Semantic Segmentation Comparative Study, ICIP, issue.2, 2018.

L. Sifre, Rigid-motion scattering for image classification, 2014.

K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale image recognition, 2014.

. Sinergise, Modified Copernicus Sentinel data, 2017.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed et al., Going deeper with convolutions, CVPR, 2015.

S. Wu, G. Li, F. Chen, and L. Shi, Training and inference with integers in deep neural networks, 2018.

F. Yu and V. Koltun, Multi-scale context aggregation by dilated convolutions, 2015.

X. Zhang, X. Zhou, M. Lin, and J. Sun, ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices, CVPR, 2018.

Y. Zhang, B. Guindon, and J. Cihlar, An image transform to characterize and compensate for spatial variations in thin cloud contamination of landsat images. Remote Sensing of Environment, vol.82, 2002.

Z. Zhang, G. Xu, and J. Song, Cubesat cloud detection based on JPEG2000 compression and deep learning, Advances in Mechanical Engineering, vol.10, p.7, 2005.

X. X. Zhu, D. Tuia, L. Mou, G. Xia, L. Zhang et al., Deep learning in remote sensing: A comprehensive review and list of resources, IEEE Geoscience and Remote Sensing Magazine, vol.5, issue.4

Z. Zhu, S. Wang, and C. E. Woodcock, Improvement and expansion of the fmask algorithm: Cloud, cloud shadow, and snow detection for landsats 4-7, 8, and sentinel 2 images. Remote Sensing of Environment, vol.159, p.5, 2015.