
HAL Id: hal-02279539
https://inria.hal.science/hal-02279539

Submitted on 5 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

GPU Memory Management Solution Supporting
Incomplete Pages

Li Shen, Shiqing Zhang, Yaohua Yang, Zhiying Wang

To cite this version:
Li Shen, Shiqing Zhang, Yaohua Yang, Zhiying Wang. GPU Memory Management Solution Sup-
porting Incomplete Pages. 15th IFIP International Conference on Network and Parallel Computing
(NPC), Nov 2018, Muroran, Japan. pp.174-178, �10.1007/978-3-030-05677-3_20�. �hal-02279539�

https://inria.hal.science/hal-02279539
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


GPU Memory Management Solution Supporting
Incomplete Pages

Li Shen1, Shiqing Zhang1, Yaohua Yang1, and Zhiying Wang1

National University of Defense Technology, CHINA

Abstract. Despite the increasing investment in integrated GPUs and
next-generation interconnect research, discrete GPUs connected by PCI
Express still account for the dominant position of the market, the man-
agement of data communication between CPU and GPU continues to
evolve. This paper analyze the address translation overhead and migra-
tion latency introduced by this paged memory management solution in
CPU-GPU heterogeneous systems. Based on the analysis, a new memory
management scheme is proposed: paged memory management solution
supporting incomplete pages, which can limit both address translation
overhead and migration delay. Incomplete refers to a page that has only
been partially migrated. This new memory management solution modi-
fies the address translation and data migration process with only minor
changes in hardware.

1 Introduction

The current GPU paged memory management solution is designed and imple-
mented based on the unified memory [1,2,3]. When the requested page is missing
on the device side, the system transfers the page to the local memory automat-
ically. Paged memory management solution introduces two major overheads:
address translation overhead and migration latency [4]. Due to the large GPU
memory capacity and limited number of TLB entries, large pages can reduce ad-
dress translation overhead. On the other hand, the migration delay is positively
related to the page size.

In order to limit the address translation overhead and migration delay at
the same time, this paper proposes a new GPU memory management scheme:
paged memory management solution supporting incomplete pages.“Incomplete”
refers to a page that has only been partially migrated. We implemented it on the
gpgpu-sim simulator. Experimental results show that, compared to page memory
management, it can reduce address translation overhead and migration latency
at the same time.

This paper has the following three contributions:

1. We analyzed the address translation overhead and migration latency intro-
duced by paged memory management solution. Based on this, a new memory
management scheme is proposed: paged memory management solution sup-
porting incomplete pages, which can limit both address translation overhead
and migration delay.



2

2. We defined the “incomplete” page status, added records of the migrated
range in the TLB and page table entries, modified the address translation
operation, and divided it into two steps: check hit/miss and check whether
it has been migrated, to support our new memory management scheme.

3. We modified the page migration operation and adjusted the functionality of
GPU memory management unit(GMMU), so that it can specifies migration
scope and merge requests when generating migration requests, to support
our new memory management scheme and increase bandwidth utilization.

2 Related work

D. Lustig and M. Martonosi [5] designed a fine-grained data dependency tracking
mechanism to reduce migration delays. However, the system does not migrate
data automatically, and introduces the overhead of tracking full/empty bits. T.
Zheng et al. used the idle bandwidth to pre-migrate unrequested page based on
the observation that PCI-E bandwidth utilization is low [4]. N. Agarwal et al.
[6] use memory system information about the characteristics of heterogeneous
memory systems to set the conditions for page migration. However, subsequent
experiments have shown that the overhead exceeds the performance gains com-
pared to the simple “migrate at the first request” strategy. Vesely et al. [7] an-
alyzed address translation in heterogeneous systems and found that the cost in
the GPU was an order of magnitude higher than the CPU. R. Ausavarungnirun
et al. [8] designed and implemented Mosaic to provide application transparency
support for multiple page sizes. In Mosaic, TLB and page tables need to sup-
port both large pages and small pages. The complex design introduces a lot of
additional hardware modifications and overhead.

3 Paged memory management solution supporting
incomplete pages

3.1 Overall design

Compared with paged memory management solution, this new scheme has the
following two differences. In the address translation process, in addition to deter-
mining whether the request is hit or miss, it is also checked whether the data in
the requested address range has been migrated to the GPU memory. During the
migration process, the system does not transfer the entire page. The generated
migration request needs to specify the scope of the transfer. The architectural
view of GPU MMU and TLBs in paged memory management solution support-
ing incomplete pages is shown in Figure 1.

3.2 Address translation

When querying each level of the TLB or the page table, the first step is to check
whether the page is recorded. If it is missing, the request is passed to the next



3

GPU

SIMT Core

CU

L1 TLB

L1 Cache

ICNT

Memory Sub-partition

L2 TLB

L2 Cache

Page Table

DRAM

GMMU

MSHR

CPU
PCI-E

hit & migrated hit & not migrated miss

Fig. 1. Architectural view of GPU MMU and TLBs in paged memory management
solution supporting incomplete pages

level TLB or page table. If it is hit, then check if the request address range has
been migrated to the GPU. If it has been migrated, the address is translated and
returned for cache access; if not, the GMMU informs the corresponding L1 TLB
to suspend the request processing, generates a migration request and sends it to
the CPU. When determining whether the request address has been migrated to
the GPU, the page status and the migrated range are queried sequentially.

3.3 Migration process

Since only the partial pages corresponding to the request are migrated, the
migration request needs to inform the migration scope. It improves the ratio
of calculation and memory access, reduces the unnecessary data transmission
overhead, and significantly reduces the migration delay. In order not to waste
CPU-GPU bandwidth, the scope of the migration request sets the minimum
length based on the bandwidth value. The GMMU views the migration request
waiting to be processed when generating a new migration request, and merges
the requests whose migration range is less than the default threshold.

3.4 Data access

When the requested data is migrated to the GPU local memory, the page ta-
ble and the TLB are updated, then the request address is re-queried from the
L1 TLB, and the cached and dram are accessed step by step with the converted
address until the required data is obtained. Since the address translation and mi-
gration phases have already handled possible data misses, data can be obtained
locally on the GPU.

4 Evaluation

4.1 Simulator and Benchmarks

We implemented our solution on gpgpu-sim [9,10]. The system configuration we
use is shown in Table 1, including the key parameters of the GPU core and



4

Table 1. Simulator configuration

Simulator GPGPU-Sim 3.x
GPU Arch NVIDIA GTX-480 Fermi-like, 15 CUs @ 1.4GHz
Caches 16KB/CU L1, Mem Side 128kB/Channel L2
TLBs 128-entry Per CU L1, 512-entry Shared L2
Clock Freqs Core:IC:L2:DRAM 700:700:700:1024 (MHz)
GPU GDDR5 12-channels, 384GB/sec aggregate
MSHR 128Entries/Memory Partition

1,831 72 303 339 142 190 16 25 22 18 
0
2
4
6
8

10
12
14
16
18
20

AES BFS CP LPS RAY STO LIB MUM NN WP

No
rm

al
iz

ed
 e

xe
cu

tio
n 

tim
e 

Incomplete Programmer Controlled Complete

Fig. 2. Performance comparison under 16GB/sec bandwidth. Workload execution time
(lower is better) is normalized to ideal copy + execute overlap execution time.

memory partition. It is assumed that the GPU memory is large enough so that
no over-subscription will occur. We test under both 16GB/sec and 32GB/sec
as representative of the current and future bandwidth [11]. The 10 benchmarks
tested in our experimental are from ispass2009-benchmarks in gpgpu-sim. They
come from different benchmark suites and are applied in various elds. BFS, MUM
and NN are included in Rodinia, which is a general benchmark suite in GPGPU
research.

4.2 Performance comparison

We use 1KB migration unit size as an example of multiple valid ranges migra-
tion, and the page size is 2MB. Figure 2 shows that, when the bandwidth is
16GB/sec, the performance of our new solution (“Incomplete”) is much better
than paged memory management solution (“Complete”, which is called baseline
in the following part). On average, our scheme improves from baseline’s 82.43×
deceleration to 1.36× acceleration compared with programmers controlled trans-
fer.



5

5 Conclusion and Future Work

We defined the “incomplete” page status, added records of the migrated range
in the TLB and page table entries, and divided the address translation opera-
tion into two steps: check hit/miss and check whether it has been migrated, to
support our new memory management scheme. We modified the page migration
operation and adjusted the functionality of GMMU, to support our new memory
management scheme and increase bandwidth utilization.

But our experimental part is not perfect enough. There are many aspects to
be tested and analyzed, including the performance comparison with Mosaic. We
will complete the follow-up experiments in the next period of time, and analyze
the experimental results to further improve our scheme. In addition, our scheme
wastes part of memory capacity while reducing address translation overhead and
migration delay, and this part of the cost needs to be further solved.

References

1. Harris M. Unied memory in cuda 6. GTC On-Demand, NVIDIA, 2013.
2. Lindholm E, Nickolls J, Oberman S, Montrym J. Nvidia tesla: a unied graphics

and computing architecture. In: Proceedings of IEEE Micro, 2008, 28(2).
3. Landaverde R, Zhang T, Coskun A K, Herbordt M. An investigation of unied

memory access performance in cuda. In: Proceedings of IEEE High Perfor-
mance Extreme Computing Conference, 2014, 16.

4. Zheng T, Nellans D, Zulqar A, Stephenson M, Keckler S W. Towards high
performance paged memory for gpus. In: Proceedings of IEEE International
Symposium on High Performance Computer Architecture, 2016, 345357.

5. Lustig D, Martonosi M. Reducing gpu ooad latency via ne-grained cpu-gpu
synchronization. In: Proceedings of IEEE International Symposium on High
Performance Computer Architecture, 2013, 354365.

6. Agarwal N, Nellans D, Stephenson M, OConnor M, Keckler S W. Page place-
ment strategies for gpus within heterogeneous memory systems. ACM SIG-
PLAN Notices, 2015, 50:607618.

7. Vesely J, Basu A, Oskin M, Loh G H, Bhattacharjee A. Observations and
opportunities in architecting shared virtual memory for heterogeneous systems.
In: Proceedings of IEEE International Symposium on Performance Analysis of
Systems and Software, 2016, 161171.

8. R. Ausavarungnirun, J. Landgraf, V. Miller, S. Ghose, J. Gandhi, C. J. Ross-
bach, and O. Mutlu, Mosaic: A GPU Memory Manager with Application-
Transparent Support for Multiple Page Sizes, Carnegie Mellon Univ., SAFARI
Research Group, Tech. Rep. TR-2017-003, 2017.

9. Bakhoda A, Yuan G L, Fung W W L, Wong H, Aamodt T M. Analyzing cuda
workloads using a detailed gpu simulator. In: Proceedings of IEEE Interna-
tional Symposium on Performance Analysis of Systems and Software, 2009,
163174.

10. Aamodt T M, Fung W W L, Singh I, El-Shaey A, Kwa J, Hetherington T,
Gubran A, Boktor A, Rogers T, Bakhoda A. Gpgpu-sim 3.x manual, 2012.

11. Ajanovic J. Pci express 3.0 overview. In: Proceedings of Hot Chips: A Sympo-
sium on High Performance Chips, 2009.


	GPU Memory Management Solution Supporting Incomplete Pages
	Introduction
	Related work
	Paged memory management solution supporting incomplete pages
	Overall design
	Address translation
	Migration process
	Data access

	Evaluation
	Simulator and Benchmarks
	Performance comparison

	Conclusion and Future Work


