
HAL Id: hal-02279555
https://inria.hal.science/hal-02279555

Submitted on 5 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Mimir+: An Optimized Framework of MapReduce on
Heterogeneous High-Performance Computing System

Nan Hu, Zhiguang Chen, Yunfei Du, Yutong Lu

To cite this version:
Nan Hu, Zhiguang Chen, Yunfei Du, Yutong Lu. Mimir+: An Optimized Framework of MapReduce on
Heterogeneous High-Performance Computing System. 15th IFIP International Conference on Network
and Parallel Computing (NPC), Nov 2018, Muroran, Japan. pp.164-168, �10.1007/978-3-030-05677-
3_18�. �hal-02279555�

https://inria.hal.science/hal-02279555
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Mimir+ : An Optimized Framework of
MapReduce on Heterogeneous

High-Performance Computing System

Nan Hu, Zhiguang Chen, Yunfei Du, and Yutong Lu?

School of Data and Computer Science, Sun Yat-sen University

Abstract. In this paper, we present an optimized data processing frame-
work: Mimir+. Mimir+ is an implementation of MapReduce over MPI.
In order to take full advantage of heterogeneous computing system, we
propose the concept of Pre-acceleration to reconstruct a heterogeneous
workflow and implement the interfaces of GPU so that Mimir+ can fa-
cilitate data processing through reasonable tasks and data scheduling
between CPU and GPU. We evaluate Mimir+ via two benchmarks (i.e.
the WordCount and large-scale matrix multiplication) on the Tianhe-2
supercomputing system. Experimental results demonstrate that Mimir+
achieves excellent acceleration effect compared with original Mimir.

Keywords: High-performance Computing; MapReduce; Heterogeneous

1 Introduction

With the continuous development of information technology, the data generated
in daily life, industrial productions and scientific researches are exploding. The
convergence of high-performance computing and big data processing is becoming
a promising solution to efficiently tackle with the massive data.

MapReduce is a programming paradigm popularized by Google [1] which
presents a parallel computing model and method for large-scale data processing.
Implementations of MR-MPI [5] have given practical and feasible solutions to
transplant MapReduce to high-performance computing system. However, MR-
MPI suffers from a severe shortcoming which is its simple memory management.
In our previous work, we presented Mimir [2] which is an optimized frame-
work based on MR-MPI. Mimir redesigns the execution model to incorporate a
number of sophisticated optimization techniques that achieve similar or better
performance with significant reduction in the amount of memory used. Never-
theless, we can see that MR-MPI and Mimir mainly perform their calculation
in CPUs.

Among the latest TOP500 list published in June 2018, Summit captured the
number one spot with a performance of 122.3 petaflops on High Performance
Linpack. Each node of Summit is equipped with two 22-core Power9 CPUs, and

? Corresponding author: yutong.lu@nscc-gz.cn



six NVIDIA Tesla V100 GPUs. Summits championship demonstrated the capa-
bilities and potentiality of heterogeneous high-performance computing system.
Although MapReduce-MPI and Mimir can implement the MapReduce model
well on high-performance computing system, their lack of heterogeneous archi-
tecture will cause a problem that the heterogeneous resources cannot be fully
utilized.

We continued the work of Mimir and present Mimir+ in this paper. This work
targets to promote the calculation speed of Mimir and support heterogeneous
GPU acceleration on high-performance computing system.

The remainder of the paper is organized as follows. Section 2 introduces
the optimizations of Mimir+. Section 3 describes the experimental environment
and results. Other research related to our paper is presented in Section 4. We
conclude this paper in Section 5.

2 Design of Mimir+

In this section, we introduce the main optimizations and designs in Mimir+.

2.1 Heterogeneous Workflow

The original Mimir designs two special objects called KV containers and KMV
containers to help manage the intermediate data < key, value > pairs between
map phase and reduce phase. Similar to Mimir and MR-MPI, Mimir+ still adopts
the KV containers and four basic phases: map, aggregate, convert and reduce.
However, in order to further improve the computation speed, we reconstruct
a heterogeneous workflow for Mimir+. Specifically, Mimir+ integrates the map
phase and the aggregate phase into one process called MAP, and the convert
phase and the reduce phase are integrated into another process called REDUCE.

Fig. 1 shows the reconstructed workflow of Mimir+. The first thing to do in
MAP is to process the input data according to a user-defined callback function.
Here, we implement a new interface for GPU to perform the map jobs and users
can select whether to perform the calculation on the GPU or on CPU by using
the corresponding interfaces. Then, Mimir+ performs the MPI Alltoallv function
to exchange the KVs and stored them in KVCs through an interleaved execution
model. When the MAP process ends, the REDUCE process starts and Mimir+
converts < key, value > in KVC to < key,< value1, value2, value3... >> into
the KMVC. Mimir+ also has two types of interfaces in reduce phase for users
to determine whether they will use GPU to calculate the reduce jobs or not. A
user-defined reduce GPU function implemented in CUDA is needed to start the
data processing in GPU and the final output data will be transferred back from
GPU memory.

2.2 Design of GPU Acceleration Modules

When we implement the heterogeneous workflow of Mimir+, we can’t simply
load the map/reduce tasks and data into GPU because GPU is not suitable for



receiving fragmented data. Here we propose a concept of Pre-acceleration. Pre-
acceleration actually refers to the operations we perform before we use GPU to
calculate data. Specifically, operations like data partitioning, data communica-
tion and data transmission required before GPU acceleration can all be regarded
as a part of Pre-acceleration. In combining the concept of Pre-acceleration, we
divide the GPU acceleration process into four modules to achieve an efficient
and convenient management. Fig. 2 shows a brief architecture of Pre-processing
Module, Transmission Module, Calculation Module and Feedback Module.

input data GPU

User-defined
map

MPI_Alltoallv communication

copy

User-defined
map_GPUcopy

...

KMVC

KMVs User-defined
reduce

GPU User-defined
reduce_GPU

copy

copy

output data

Fig. 1. Workflow of Mimir+

...

KMVC

KMVsPre-processing
Module

GPUcudaMemcpy

User-defined
kernel_function

cudaMemcpy

Pre- acceleration

Transmission
Module

Calculation
Module

Feedback
Module

Fig. 2. GPU Acceleration Modules

3 Evaluation

In this section, we evaluate the acceleration effect of Mimir+ and compare it
with the original Mimir.

3.1 Performance Comparison

We perform WordCount (WC) and matrix multiplication on 4 nodes of hetero-
geneous computing system: Tianhe-2. Each node in Tianhe-2 is equipped with a
2-way 8-cores Intel Xeon CPU E5-4640, 128 GB memory, running at 2.40 GHz.
The GPU equipped on the node is NVIDIA Tesla K80 GPU with two sets of
12 GB GDDR5 memory (24 GB in total), 4992 stream processors, the memory
bandwidth is 240 GB/s. Each node installs a 64-bit Linux 3.10.0 operating sys-
tem, and we use mvapich2-2.2, gcc-4.8.5 and CUDA 8.0 to conduct the tests on
Mimir+.

The results of WC are shown in Fig. 3 (a). As we can notice, Mimir+ obtains
a comparatively good acceleration effect on WC. With the increase of test data,
the acceleration effect achieved by Mimir+ is becoming more and more obvi-
ous. Because the tasks of WordCount in MapReduce do not require intensive
computing, the effect of acceleration in Mimir+ is not fully reflected.



0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

64M 512M 1G 2G

sp
ee

d
up

dataset size

Mimir

Mimir+

(a) WordCount

0

1

2

3

4

5

6

7

8

9

map reduce overall

sp
ee

d
up

calculation phase

Mimir

Mimir+

GPU

(b) Matrix Multiplication

Fig. 3. Performance Comparison on WordCount and Matrix Multiplication

Since the tasks of matrix multiplication vary from the map phase and the
reduce phase, we tested and compared the two phases separately in the other
experiment. Moreover, in order to compare the difference between the calculation
of heterogeneous systems and pure parallel GPU computing, we performed the
matrix multiplication in GPU alone using CUDA with the same input data and
put the result into comparison. The results are shown in Fig. 3 (b). In the map
phase, because of the little calculation, the effect of acceleration is not good.
However, in the reduce phase which contains a huge amount of calculation,
Mimir+ achieves a considerable speedup of about 7.4 compared with Mimir.
After comparing Mimir+ and Mimir in map and reduce phase, we performed
an overall test and the whole framework can achieve a speedup of about 8.1 to
8.3. Nevertheless, the calculations performed in GPU alone achieved a speedup
of about 8.5 which is close to Mimir+.

4 Related Work

MapReduce is an extremely popular model and many researches intend to im-
prove the performance of MapReduce jobs on heterogeneous system.

Phoenix [8] [6] proposed by Colby Ranger et al. from Stanford University
is a MapReduce implementation on shared memory system targeting thread-
based parallel programming. Shared memory minimizes indirect costs caused by
parallel task spawning and data communication. Mrphi [4] is also a MapReduce
implementation optimized for the Intel Xeon phi. Different from these systems,
Mimir+ works on large-scale distributed-memory systems.

Mars [3] is a MapReduce implementation totally deployed on GPUs. In Mars,
there are a large number of threads running in parallel on the GPUs. Each thread
computes a KV pair at a time. To avoid multi-threaded write conflicts, Mars uses
a lock-free strategy to ensure that parallel programs are correct, with minimal
synchronization costs.

On high performance computing system, Kuen Hung Tsoi et al. developed a
heterogeneous computing system, Axel [7], which consist of FPGAs and GPUs,



and they implemented a MapReduce framework on Axel which significantly pro-
moted the speed of calculation.

5 Conclusion

In this paper, we propose an optimized MapReduce framework on heteroge-
neous high-performance computing system: Mimir+. This framework inherits
the core idea of MR-MPI, reconstructs a heterogeneous workflow and imple-
ments the GPU acceleration interfaces so that we can accelerate the data pro-
cessing of MapReduce jobs and make full use of resources on heterogeneous
high-performance computing system. Our results on the Tianhe-2 supercomput-
er prove that Mimir+, compared to the original Mimir, significantly improves
the speed of data processing during the computing phase for data-intensive ap-
plications.

Acknowledgments. We are grateful to the anonymous reviewers for their valu-
able suggestions that will be used to improve this paper. This work is partially
supported by National Key R&D Program of China 2017YFB0202201, Nation-
al Natural Science Foundation of China under U1611261, 61433019, U1435217,
61872392 and the Program for Guangdong Introducing Innovative and Enter-
preneurial Teams under Grant NO. 2016ZT06D211.

References

1. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
ACM (2008)

2. Gao, T., Guo, Y., Zhang, B., Cicotti, P., Lu, Y., Balaji, P., Taufer, M.: Mimir:
Memory-efficient and scalable mapreduce for large supercomputing systems. In: Par-
allel and Distributed Processing Symposium. pp. 1098–1108 (2017)

3. He, B., Fang, W., Luo, Q., Govindaraju, N.K., Wang, T.: Mars:a mapreduce frame-
work on graphics processors. In: International Conference on Parallel Architectures
and Compilation Techniques. pp. 260–269 (2008)

4. Lu, M., Liang, Y., Huynh, H.P., Ong, Z., He, B., Goh, R.S.M.: Mrphi: An optimized
mapreduce framework on intel xeon phi coprocessors. IEEE Transactions on Parallel
and Distributed Systems 26(11), 3066–3078 (2015)

5. Plimpton, S.J., Devine, K.D.: Mapreduce in mpi for large-scale graph algorithms.
Parallel Computing 37(9), 610–632 (2011)

6. Talbot, J., Yoo, R.M., Kozyrakis, C.: Phoenix++:modular mapreduce for shared-
memory systems. In: International Workshop on Mapreduce and ITS Applications.
pp. 9–16 (2011)

7. Tsoi, K.H., Luk, W.: Axel:a heterogeneous cluster with fpgas and gpus. In: Inter-
national Symposium on Field-Programmable Gate Arrays. pp. 115–124 (2010)

8. Yoo, R.M., Romano, A., Kozyrakis, C.: Phoenix rebirth: Scalable mapreduce on a
large-scale shared-memory system. In: IEEE International Symposium on Workload
Characterization. pp. 198–207 (2011)


