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Sébastien Ferré?
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Abstract. The open nature of Knowledge Graphs (KG) often implies that
they are incomplete. Link prediction consists in infering new links between
the entities of a KG based on existing links. Most existing approaches rely
on the learning of latent feature vectors for the encoding of entities and
relations. In general however, latent features cannot be easily interpreted.
Rule-based approaches offer interpretability but a distinct ruleset must
be learned for each relation, and computation time is difficult to control.
We propose a new approach that does not need a training phase, and
that can provide interpretable explanations for each inference. It relies on
the computation of Concepts of Nearest Neighbours (CNN) to identify
similar entities based on common graph patterns. Dempster-Shafer theory
is then used to draw inferences from CNNs. We evaluate our approach
on FB15k-237, a challenging benchmark for link prediction, where it gets
competitive performance compared to existing approaches.

1 Introduction

There is a growing interest for knowledge graphs (KG) as a way to represent and
share data on the Web. The Semantic Web [1] defines standards for represention
(RDF), querying (SPARQL), and reasoning (RDFS, OWL), and thousands of open
KGs are available: e.g., DBpedia, Wikidata (formerly Freebase), YAGO, WordNet.
The open nature of KGs often implies that they are incomplete, and a lot of work
have studied the use of machine learning techniques to complete them.

The task of link prediction [16] consists in predicting missing edges or missing
parts of edges. Suppose that film Avatar is missing a director in the KG, one wants
to predict it, i.e. identify it among all KG nodes. The idea is to find regularities
in the existing knowledge, and to exploit them in order to rank the KG nodes.
The higher the correct node is in the ranking, the better the prediction is. Link
prediction was originally introduced for social networks with a single edge type (a
single relation) [12], and was later extended to multi-relational data and applied
to KGs [16]. Compared to supervised classification, link prediction faces several
challenges. First, there are as many classification problems as there are relations,
which count in the hundreds or thousands in KGs. Second, for each relation, the
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number of “classes” is the number of different entities in the range of the relation,
which typically counts in the thousands for relations like spouse or birthPlace. Third,
some relations can be multi-valued, like the relation from films to actors.

In this paper, we report on first experimental results on a novel approach to link
prediction based on Concepts of Nearest Neighbours (CNN), which were introduced
in [5], and applied to query relaxation in [6]. This approach is a symbolic form of the
k-nearest neighbours where numerical distances are replaced by graph patterns that
provide an intelligible representation of how similar two nodes are. Our hypothesis
is that the partitioning of the KG nodes into CNNs (see Section 4) provides a
valuable basis for different kinds of inference. We here focus on link prediction, i.e.
the inference of the missing node of an incomplete edge. The contribution of this
work is a novel approach to link prediction that has the following properties:

1. it is a form of instance-based learning, i.e. it has no training phase;
2. it is a symbolic approach, i.e. it can provide explanations for each inference;
3. it shows competitive performance on a challenging link prediction benchmark.

The rest of the paper is organized as follows. Section 2 discusses related work on
link prediction. Section 3 contains preliminaries about knowledge graphs and queries.
Section 4 recalls the definition of CNNs, and their efficient computation. Section 5
presents our method to perform link prediction, using CNNs and Dempster-Shafer
theory. Section 6 reports positive experimental results on benchmark FB15k-237
and two other datasets. Finally, Section 7 concludes and sketches future work.

2 Related Work

Nickel et al [16] have recently written a “review of relational machine learning for
knowledge graphs”, where link prediction is the main inference task. They identify two
kinds of approaches that differ by the kind of model they use: latent feature models, and
graph feature models. The former is by far the most studied one. Before going into the
details, it is useful to set the vocabulary as it is used in the domain. Nodes are called
entities, edge labels are called relations, and edges are triples (ei,rk,ej), where ei is the
head entity, ej is the tail entity, and rk is the relation that links the head to the tail.

Latent feature models learn embeddings of entities and relations into low-
dimensional vector spaces, and then make inferences about a triple (ei,rk,ej) by
combining the embeddings of the two entities and the embedding of the relation. The
existing methods vary by how they learn the embeddings, and how they combine them.
Those methods are based on a range of techniques including: matrix factorization,
tensor factorization, neural networks, and gradient descent. For example, one of the
first method for KGs, TransE [2], models a relation as a translation in the embedding
space of entities, and scores a candidate triple according to the distance between the
translated head and the tail. Bordes et al also introduced two datasets, FB15k and
WN18, respectively derived from Freebase and Wordnet, which became references in
the evaluation of link prediction methods. Toutanova and Chen [19] however showed
that a very simple method was able to outperform previous methods because of a flaw
in the datasets: many test triples have their inverse among the training triples. They



introduced a challenging subset of FB15k, called FB15k-237, where all inverse triples
are removed. Lately, performance was significantly improved on FB15k-237 by using
convolutional architectures to learn embeddings [18] or to combine them in scoring
functions [4]. The task of link prediction has also been extended with the embedding
model RAE to multi-fold relations (aka. n-ary relations) and to instance reconstruction
where only one entity of an n-ary relation is known, and all other entities have to
be infered together [20]. In this work, we limit ourselves to binary relations.

Graph feature models, also called observed feature models, make inferences directly
from the observed edges in the KG. Random walk inference [11] takes relation paths
as features, and sets the feature values through random walks in the KG. The feature
weights are learned by logistic regression for each target relation, and then used to score
the candidate triples. The method has shown improvement over Horn clause generation
with ILP (Inductive Logic Programming) [15]. AMIE+ [8] manages to generate such
Horn clauses in a much more efficient way by designing new ILP algorithms tailored to
KGs. They also introduce a novel rule measure that improves the inference precision
under the Open World Assumption (OWA) that holds in KGs. Both methods offer the
advantage to produce intelligible explanations for inferences, unlike the latent feature
models. However, they require a distinct training phase for each of the hundreds to
thousands of target relations, whereas the latent feature models are generally learned
in one phase. A fine-grained evaluation [14] has shown that rule-based approaches are
competitive with latent-based approaches, both in performance and in running time.

A key difference of our approach is that there is no training phase, and all the
learning is done at inference time. It is therefore an instance-based approach rather
than a model-based approach. Given an incomplete triple (ei,rk,?) we compute
Concepts of Nearest Neighbours (CNN) from the observed features of head entity ei,
where CNNs have a representation equivalent to the bodies of AMIE+’s rules. From
there, we infer a ranking of candidate entities for the tail of relation rk. In fact, as rk
is not involved in the computation of CNNs, many target relations can be infered at
nearly the same cost as a single relation. Indeed the main cost is in the computation
of CNNs, which is easily controlled because the computation algorithm is any-time.

3 Preliminaries

A knowledge graph (KG) is defined by a structure K=〈E,R,T〉, where E is the set of
nodes, also called entities, R is the set of edge labels, also called relations, and T⊆E×
R×E is the set of directed and labelled edges, also called triples. Each triple (ei,rk,ej)
represents the fact that relation rk relates entity ei to entity ej. This definition is
very close to RDF graphs, where entities can be either URIs or literals (or blank
nodes) and relations are URIs called properties. It is also equivalent to sets of logical
facts, where entities are constants, and relations are binary predicates. As a running
example, Figure 1 defines a small KG describing (part of) the British royal family
(where the notation ({a,b},r,{c,d}) is an abbreviation for (a,r,c),(a,r,d),(b,r,c),(b,r,d)).

Queries based on graph patterns play a central role in our approach as they are used
to characterize the CNNs, and can be used as explanations for inferences. There are two
kinds of query elements: triple patterns and filters. A triple pattern (x,r,y)∈V ×R×V



E = {Charles,Diana,William,Harry,Kate,George,Charlotte,Louis,male,female}
R = {parent,spouse,sex}
T = {({William,Harry},parent,{Charles,Diana}),

({George,Charlotte,Louis},parent,{William,Kate}),
(Charles,spouse,Diana),(Diana,spouse,Charles),
(William,spouse,Kate),(Kate,spouse,William),
({Charles,William,Harry,George,Louis},sex ,male),
({Diana,Kate,Charlotte},sex ,female)}

Fig. 1. Example knowledge graph describing part of the British royal family.

is similar to a triple but with variables (taken from V ) in place of entities. A filter
is a Boolean expression on variables and entities. We here only consider equalities
between a variable and an entity: x=e. A graph pattern P is a set of query elements.
Equality filters are equivalent to allowing entities in triple patterns. There are two
advantages in their use: (1) simplifying the handling of triple patterns that have a
single form (var-var) instead of four (var-var, entity-var, var-entity, entity-entity);
(2) opening perspectives for richer filters (e.g., intervals of values: x ∈ [a,b]). A
query Q = (x1, ...,xn) ← P is the projection of a graph pattern on a subset of
its variables. Such queries find a concrete form in SPARQL with syntax SELECT

?x1...?xn WHERE { graph pattern }. Queries can be seen as anonymous rules, i.e.
rules like those in AMIE+ [8] but missing the relation in the head. For example,
the query Qex = (x,y)← (x,parent,u),(u,parent,v),(y,parent,v),(y,sex,s),s=male
retrieves all (person,uncle) pairs, i.e. all pairs (x,y) where y is a sibling of a parent
of x, and is male.

We now define the answer set that is retrieved by a query. A matching of a
pattern P on a KG K = 〈E,R,T〉 is a mapping µ from variables in P to entities
in E such that µ(t)∈T for every triple pattern t∈P , and µ(f) evaluates to true for
every filter f∈P , where µ(t) and µ(f) are obtained from t and f by replacing every
variable x by µ(x). In the example KG, a possible matching for the pattern of the
above query is µex={x 7→Charlotte,y 7→Harry,u 7→William,v 7→Diana,s 7→male}.
A matching is therefore a homomorphism from the pattern to the graph. Term
“matching” is taken from the evaluation of SPARQL queries. In logics, terms
“grounding” and “instantiation” are used instead. The answer set ans(Q,K) of a
query Q=(x1,...,xn)←P is the set of tuples (µ(x1),...,µ(xn)) for every matching µ
of P on K. In the running example, the pair (Charlotte,Harry) is therefore an
answer of query Qex. Note that several matchings can lead to a same answer, and
that duplicate answers are ignored. In the following, we only consider queries with
a single projected variable, whose sets of answers are assimilated to sets of entities.

4 Concepts of Nearest Neighbours (CNN)

In this section, we shortly recall the theoretical definitions underlying Concepts
of Nearest Neighbours (CNN), as well as the algorithmic and practical aspects of



computing their approximation under a given timeout. Further details are available
in [5,6]. In the following definitions, we assume a knowledge graph K=〈E,R,T〉.

4.1 Theoretical Definitions

Definition 1. A graph concept is defined as a pair C = (A,Q), where A is a set
of entities and Q is a query such that A=ans(Q) is the set of answers of Q, and
Q = msq(A) is the most specific query that verifies A = ans(Q). A is called the
extension ext(C) of the concept, and Q is called the intension int(C) of the concept.

That most specific query Q = msq(A) represents what the neighborhood of
entities in A have in common. It is well-defined under graph homomorphism (unlike
under subgraph isomorphism). It can be computed from A by using the categorical
product of graphs (see PGP intersection ∩q in [7]), or equivalently Plotkin’s
anti-unification of sets of facts [17]. In the example KG, William and Charlotte
have in common the following query that says that they have married parents:
QWC =x←(x,sex,s), (x,parent,y), (y,sex,t), t=male, (x,parent,z), (z,sex,u), u=
female, (y,spouse,z), (z,spouse,y). We have AWC =ans(QWC)={William, Harry,
George, Charlotte, Louis} so that CWC =(AWC,QWC) is a graph concept. A con-
cept C1=(A1,Q1) is more specific than a concept C2=(A2,Q2), in notation C1≤C2,
if A1⊆A2. For example, by adding filter y=William to the previous example, we
get a more specific concept whose extension is {George, Charlotte, Louis}.

Definition 2. Let e1, e2 ∈ E be two entities. The conceptual distance δ(e1, e2)
between e1 and e2 is the most specific graph concept whose extension contains both
entities, i.e. δ(e1,e2)=(A,Q) with Q=msq({e1,e2}), A=ans(Q).

For example, the above concept CWC is the conceptual distance between William
and Charlotte. The “distance values” have therefore a symbolic representation through
the concept intension Q that represents what the two entities have in common. The
concept extension A contains in addition to the two entities all entities e3 that match
the common query (e3 ∈ ans(Q)). Such an entity e3 can be seen as “between” e1
and e2: in formulas, for all e3∈ext(δ(e1,e2)), δ(e1,e3)≤δ(e1,e2) and δ(e3,e2)≤δ(e1,e2).
Note that order ≤ on conceptual distances is a partial ordering, unlike classical
distance measures. A numerical distance dist(e1,e2)= |ext(δ(e1,e2))| can be derived
from the size of the concept extension, because the closer e1 and e2 are, the more
specific their conceptual distance and the smaller the extension. Dually, a numerical
similarity sim(e1,e2)= |int(δ(e1,e2))| can be derived from the size of the concept in-
tension (number of query elements), because the more similar e1 and e2 are, the more
specific their conceptual distance and the larger the intension. For example, between
William and Charlotte, the numerical distance is 5 and the numerical similarity is 9.

Definition 3. Let e ∈ E be an entity. A Concept of Nearest Neighbours (CNN)
of e is a pair (Sl,δl) where Sl is the non-empty set of entities that are at the same
conceptual distance δl from e. Therefore, a CNN verifies Sl={e′∈E |δ(e,e′)=δl} 6=∅.
It also verifies Sl⊆ext(δl), and Sl is called the proper extension of the CNN. We
note CNN (e,K) the collection of all CNNs of e in knowledge graph K.



Here are the 6 CNNs of Charlotte in the running example.

l Sl |ext(δl)| int(δl) {l′ |δl′ �δl}
1 {Charlotte} 1 x←x=Charlotte -
2 {Diana,Kate} 3 x←(x,sex,s),s=female 1
3 {George,Louis} 3 x←(x,sex,s),(x,parent,y),y=William,... 1
4 {William,Harry} 5 x←(x,sex,s),(x,parent,y),... 1, 3
5 {Charles} 8 x←(x,sex,s) 1, 2, 3, 4
6 {male,female} 10 x←∅ 1, 2, 3, 4, 5

The proper extensions of CNN (e,K) define a partition over the set of entities E,
where two entities are in the same cluster Sl if they are at the same conceptual
distance to entity e. The intension of the associated graph concept δl provides a
symbolic representation of the distance/similarity between every e′∈Sl and e. The
partial ordering over CNNs means that some CNNs are closer to e than others. As
such, each CNN can be seen as a cluster of nearest neighbours of e, where the size
of the extension of δl can used as a numerical distance.

Discussion. Given that CNN (e,K) partitions the set of entities, the number of
CNNs can only be smaller or equal to the number of entities, and in practice it is
generally much smaller. This is interesting because, in comparison, the number of
graph concepts is exponential in the number of entities in the worst case. Note that
the search space of ILP approaches like AMIE+ is the set of queries, which is even
larger than the set of all graph concepts. Computing the CNNs for a given entity is
therefore a much more tractable task than mining frequent patterns or learning rules,
although the space of representations is the same. The pending questions that we
start studying in this paper is whether those CNNs are useful for inference, and how
they compare to other approaches.

Compared to the use of numerical measures, like commonly done in k-nearest
neighbours approaches, CNNs define a more subtle ordering of entities. First, because
conceptual distances are only partially ordered, it can be that among two entities
none is more similar than the other to the chosen entity e. This reflects the fact that
there can be several ways to be similar to something, without necessarily a prefered
one. For instance, which is most similar to Charlotte? Diana because she is also a
female (CNN S2) or George because he is also a son of William (CNN S3)? Second,
because conceptual distances partition the set of entities, it can be that two entities
are at the exact same distance, and are therefore undistinguishable in terms of
similarity (ex. George and Louis in CNN S3). Third, the concept intension provides
an intelligible explanation of the similarity to the chosen entity.

4.2 Algorithmic and Practical Aspects

We here sketch the algorithmic and practical aspects of computing the set CNN (e,K)
of concepts of nearest neighbours of query entity e in a knowlege graph K. More
details are available in [6]. The core principle of the algorithm is to iteratively refine
a partition {Sl}l of the set of entities, in order to get an increasingly accurate
partition converging to the partition induced by the proper extensions of CNNs.



Each cluster Sl is associated to a query Ql =x←Pl, and a set of candidate query
elements Hl. The relationship to CNNs is that when Hl is empty, (Sl,δl) with
δl=(ans(Ql),Ql) is a CNN, i.e. Sl is the proper extension of a CNN whose conceptual
distance has intension Ql. When Hl is not empty, Sl may be an union of several
proper extensions (lack of discrimination), and Ql is not necessarily the most specific
query that matches all entities in Sl (lack of precision in the conceptual similarity).
In that case, one gets overestimates of conceptual distances for some entities in Sl.

Initially, there is a single cluster S0=E with P0 being the empty pattern, and H0

being the description of e. The description of an entity e is a graph pattern that is
obtained by extracting a subgraph around e and, for each entity ei in the subgraph,
by replacing ei by a variable yi, and by adding filter yi = ei. Here, we choose to
extract the subgraph that contains all edges starting from e up to some depth.

Then at each iteration, any cluster S – with pattern P and set of candidate
query elements H – is split in two clusters S1,S0 by using an element h∈H as a
discriminating feature. Element h must be chosen so that P∪{h} defines a connected
pattern including variable x. In this work, this element is chosen so as to have a
trade-off between depth-first and breadth-first exploration of the description of e
but many other strategies are possible. The new clusters are defined as follows:

P1=P∪{h} S1=S∩ans(Q1=x←P1, K) H1=H\{h}
P0=P S0=S\S1 H0=H\{h}

The equations for S1,S0 ensure that after each split there is still a partition, possibly
a more accurate one. The empty clusters (Si=∅) are removed from the partition. As
a consequence, although the search space is the set of subgraphs of the description
of e, which has a size exponential in the size of the description, the number of clusters
remains below the number of entities at all time. In the running example, the initial
cluster S1−6 (the union of clusters S1 to S6) is split with element x=Charlotte
into S1 and S2−6. Then cluster S2−6 is split with element (x,sex,s) into S2−5 and S6.
Then cluster S2−5 is split with element s= female into S2 and S3−5. Next splits
involve elements (x,parent,y) and y=William on S3−5.

Discussion. The above algorithm terminates because the set H decreases at each
split. However, in the case of large descriptions or large knowledge graphs, it can still
take a long time. Runtime is easily controlled with a timeout because the algorithm
is anytime. Indeed it can output a partition of entities at any time, along with an
overestimate of conceptual distance for each cluster. Previous experiments indicate
that the algorithm has the good property to ouput more than half of the concepts in
a small proportion of the total runtime.

Actually, the above algorithm converges to an approximation of the CNNs, in the
sense that the conceptual distance may be still be an overestimate at full runtime
for some entities. This is because graph patterns are constrained to be subsets of the
description of e. In order to get exact results, the duplication of variables and their
adjacent edges should be allowed, which would considerably increase the search space.

Experiments on KGs with up to a million triples have shown that the algorithm
can compute all CNNs for descriptions of hundreds of edges in a matter of seconds
or minutes. In contrast, query relaxation does not scale beyond 3 relaxation steps,



which is insufficient to identify similar entities in most cases; and computing pairwise
symbolic similarities does not scale to large numbers of entities. A key ingredient
of the efficiency of the algorithm also lies in a notion of lazy join for the computation
of answer sets of queries. In short, the principle is to avoid the enumeration of all
matchings of a query pattern by computing joins only as much as necessary to
compute the set of query answers (see details in [6]).

5 Link Prediction

The problem of link prediction is to infer a missing entity in a triple (ei,rk,ej), i.e. either
infer the tail from the head and the relation, or infer the head from the tail and the rela-
tion. Because of the symmetry of the two problems, we only describe here the inference
of the tail entity. In the following, we therefore consider ei and rk as fixed (we avoid
them in indices), and ej as variable. Our approach to link prediction is inspired by the
work of Denœux [3], and adapted to our Concepts of Nearest Neighbours (CNNs). De-
noeux defines a k-NN classification rule based on Dempster-Shafer (D-S) theory. Each
k-nearest neighbour xl of an instance to be classified x is used as a piece of evidence that
supports the fact that x belongs to the class cl of xl. The degree of support is defined
as a function of the distance between x and xl, in such a way that the choice of k is less
sensitive so that large values of k can be chosen. D-S theory enables to combine the k
pieces of evidence into a global evidence, and to define a measure of belief for each class.

We adapt Denoeux’s work to the inference of ej in triple (ei, rk, ej) in the
following way. Given a computed partition of entities {(Sl,Ql) with Ql=x←Pl)}l, as
an approximation of CNN (ei,K), each cluster (Sl,Ql) is used as a piece of evidence
for the inference of the tail entity ej relative to relation rk. The degree of support
depends on the extensional distance dl between ei and entities in Sl,

dl= |ans(Ql)|,

i.e. the number of answers of query Ql, and on the confidence φl,j of the association
rule (x,rk,ej)←Pl, which is defined as

φl,j =
|ans(x←Pl∪{(x,rk,ej)})|

|ans(Ql)|
,

i.e. the proportion of entities among the answers of Ql that have an rk-link to
entity ej. Because in KGs a head entity can be linked to several tail entities through
the same relation, we consider a distinct classification problem for each candidate tail
entity ej∈E with two classes c1j (ej is a tail entity) and c0j (ej is not a tail entity). For
each cluster Sl and each candidate tail entity ej∈E, the degree of support can therefore
be formalized by defining a mass distribution ml,j over sets of classes as follows.

ml,j({c1j})=α0φl,je
−dl ml,j({c0j})=0 ml,j({c1j ,c0j})=1−α0φl,je

−dl

ml,j({c1j}) represents the degree of belief for ej being the tail entity, whileml,j({c1j ,c0j})
represents the degree of uncertainty. ml,j({c0j}) is set to 0 to reflect the OWA (Open



World Assumption) of KGs according to which a missing fact is not considered as
false. Constant α0 determines the maximum degree of belief, which can be lower than
1 to reflect uncertainty about known triples (e.g. 0.95). The degree of belief decreases
exponentially with distance. Finally, we make the degree of belief proportional to the
confidence of infering entity ej from Ql. In [3], that confidence factor does not exist
because it would be 1 for the class of the nearest neighbour, and 0 for every other class.

The Dempster’s rule is then used to combine the evidence from all clusters of our
partition {(S1,Q1),...,(SL,QL)}. It states that the joint mass distribution is defined
for every non-empty set of classes ∅ 6=C⊆{c1j ,c0j} by

mj(C)=

∑
C1∩...∩CL=C m1,j(C1)...mL,j(CL)

1−
∑

C1∩...∩CL=∅ m1,j(C1)...mL,j(CL)

Because ml,j({c0j}) = 0 for all l,j, it follows that the denominator equals 1, and

mj({c0j})=0, and hence mj({c1j})=1−mj({c1j ,c0j}). Then, for C={c1j ,c0j}, C=C1∩
...∩CL implies that C1= ...=CL=C, and hence mj({c1j ,c0j})=

∏
l∈1..L ml,j({c1j ,c0j}).

Finally, we arrive at the following equation for the belief of each candidate tail entity ej.

Belj =mj({c1j})=1−
∏

l∈1..L

(1−α0φl,je
−dl)

From the belief of each entity ej, we can rank the entities by decreasing belief. Then,
rankings of entities can be evaluated with measures such as Hits@N (the proportion of
inference tasks where the correct tail entity appears in the first N entities) and MRR
(Mean Reciprocal Rank, the average of the inverse of the rank of the correct entity).

Note that the above method can easily be generalized to the joint inference of the
relation rk and the tail entity ej. It suffices to use indices k,j everywhere index j is
used: φl,k,j would be the confidence of infering relation rk and tail entity ej from Ql,
c1k,j would be the class of entities linked to ej through rk, and Belk,j would be the
belief of infering such a link.

6 Experiments

We here report on experiments comparing our approach to other approaches on several
datasets. We first present the methodology, then we report the main performance
results before an in-depth analysis, and examples of inferences and explanations. The
companion page1 provides links to the source code, the datasets, and the output logs.

6.1 Methodology

Datasets. We use three datasets to evaluate our approach. Table 1 provides statistics
about them (numbers of entities, relations, train edges, validation edges (if any),
and test edges). The main dataset is FB15k-237, introduced by Toutanova and
Chen [19] as a challenging subset of dataset FB15k, which was formerly introduced

1 Companion page: http://www.irisa.fr/LIS/ferre/pub/link prediction/



Table 1. Statistics of datasets.

Dataset entities relations train edges valid. edges test edges

FB15k-237 15,541 237 272,115 17,535 20,466
JF17k 28,645 322 171,559 - 66,615
Mondial 2,473 20 7,979 778 970

by Bordes et al [2] for link prediction evaluation. It is a set of triples derived from
the Freebase KG. FB15k-237 is more challenging than FB15k because relations that
are almost equivalent to another relation or to the inverse of another relation have
been removed, and because (head, tail) entity pairs that exist in the train dataset
have been removed from the validation and test datasets to avoid potential trivial
inferences. The dataset also comes with textual mentions but we ignore them as we
focus on knowledge graphs. The two other datasets are used to complement and
confirm results. JF17k is another dataset extracted from Freebase, introduced by [10]
and available at http://github.com/lijp12/SIR. Although it was designed to go
beyond binary relations, we here only consider binary relations, letting n-ary relations
to future work. We introduce Mondial as a subset of the Mondial database [13], which
contains facts about world geography. We simplified it to the task of link prediction by
removing labelling edges and edges containing dates and numbers, and by unreifying
n-ary relations. It is available from the companion page.

Task. We follow the same protocol as introduced in [2], and followed by subsequent
work. The task is to infer, for each test triple, the tail entity from the head and
the relation, and also the head entity from the tail and the relation. We call test
entity the known entity, and missing entity the entity to be infered. We evaluate
the performance of our approach by using the same four measures as in [18]: MRR
and Hits@{1,3,10}. Like in previous work, we use filtered versions of those measures
to reflect the fact that, for instance, there may be several correct tail entities for a
1-N relation (e.g., the relation from awards to nominees). For example, if the correct
entity is at rank 7 but 2 out of the first 6 entities form triples that belong to the
dataset (and are therefore considered as valid), then it is considered to be at rank 5.

Method. Because our approach has no training phase we can use both train
and validation datasets as examples for our instance-based inference. Our approach
has only two (hyper-)parameters (and no parameter to learn) for the computation
of CNNs: the depth of the description of the test entity, and the timeout (i.e. the
allocated computation time). We study the sensitivity to those parameters. For the
inference of a ranking of entities, we set α0=0.95 and use all computed CNNs (no
selection of the k-nearest CNNs). The implementation of our approach has been
integrated to SEWELIS as an improvement of previous work on the guided edition
of RDF graphs [9]. A standalone program for link prediction is available from the
companion page. We ran our experiments on Fedora 25, with CPU Intel(R) Core(TM)
i7-6600U @ 2.60GHz, and 16GB DDR4 memory. So far, our implementation is simple
and uses a single core, although our algorithm lends itself to parallelization. We have
observed that in all our experiments the memory footprint remains under 1.5%, i.e.
about 240Mb.



Table 2. Results on FB15k-237 for Freq, latent-based approaches (TransE, DistMult, HolE,
ComplEx, R-GCN, ConvE), a rule-based approach (AMIE+), and our approach (CNN)
with three timeouts (0.01s, 0.1s, 1s): *-results are from [18], **-results are from [4].

Approach MRR Hits@1 Hits@3 Hits@10

Freq .236 .175 .253 .356
AMIE+ .143 .096 .155 .241

(from [14]) - .174 - .409
DistMult* .191 .106 .207 .376
ComplEx* .201 .112 .213 .388
HolE* .222 .133 .253 .391
TransE* .233 .147 .263 .398
R-GCN* .248 .153 .258 .414
ConvE** .325 .237 .356 .501

CNN 0.01s (ours) .250 .186 .268 .377
CNN 0.1s (ours) .264 .198 .284 .395
CNN 1s (ours) .286 .215 .311 .428

Baselines. We compare our approach to latent-based approaches by choosing
the same tasks and measures as in previous work because it was not possible for us
to run them ourselves (no access to a GPU), and also because it allows for a fairer
comparison (e.g., choice of hyper-parameters by authors). On FB15k-237, we use
results from [18,4] to compare with TransE, DistMult, HolE, ComplEx, R-GCN, and
ConvE. On JF17k, we use results from [20] to compare with mTransH and RAE.
We also compare our approach to a rule-based approach, AMIE+, which we ran
with its default parameters2. As suggested by AMIE+’s authors (equation 8, [8]),
we ranked entities ej by aggregating their PCA confidence φl,j of each rule Rl that
enables to infer triple (ei,rk,ej): φj =1−

∏
l(1−φl,j). We also report better results

on FB15k-237 from [14], although we were not able to reproduce them. We add
yet another baseline Freq that simply consists in ranking entities ej according to
their decreasing frequency of usage in rk over the train+valid dataset, as defined by
freqj = |ans(x←(x,rk,y),y=ej)|. It is independent of the test entity, and therefore
acts as a default ranking.

6.2 Results

Table 2 compares the results of our approach (CNN) to other approaches presented
above as baselines on dataset FB15k-237. CNN was run with timeouts that are
compatible with user interaction (0.01s, 0.1s, 1s), and description depth 10, which
ensures that most if not all relevant graph features of the test entity are captured.
The output logs of CNN predictions and explanations is available from the companion
page. Except for ConvE that outperforms other approaches on FB15k-237, CNN
outperforms all other approaches as soon as 0.01s for the fine-grain measures (MRR,

2 We also ran it with advanced parameters on a 8-core server under AMIE+’s authors
guidance. That led to many more rules but did not improve the results.



Table 3. Results on JF17k and Mondial for baseline Freq, two latent-based approaches
(mTransH, RAE), a rule-based approach (AMIE+), and our approach (CNN, timeout=0.1s).
Results marked with * are from [20].

JF17k Mondial
Approach MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

Freq .234 .170 .252 .355 .142 .069 .159 .309
mTransH* - - - .497 - - - -
RAE* - - - .504 - - - -
AMIE+ .211 .139 .252 .360 .179 .127 .208 .281
CNN 0.1s (ours) .409 .334 .440 .556 .327 .271 .355 .433

Table 4. Results on FB15k-237 of CNN (depth=10, timeout=1s) for all prediction tasks,
for predicting tails only, and for predicting heads only.

predicting MRR Hits@1 Hits@3 Hits@10

all .286 .215 .311 .428
tails .391 .307 .428 .553
heads .182 .123 .194 .303

Hits@1, Hits@3), and as soon as 1s for measure Hits@10. CNN-1s reaches MRR=0.286,
halfway between the two other best approaches, R-GCN (-3.8%) and ConvE (+3.9%).

It can also be observed that CNN outperforms the simple Freq baseline on all
measures and for all timeouts, which implies that it learns something useful beyond
global statistics. Note that this is not the case of other approaches except ConvE,
especially for fine-grain measures, MRR and Hits@1. Apart from CNN and ConvE,
none improves Hits@1 over Freq.

Those positive results are confirmed on the two other datasets, as far as results
are available (see Table 3). CNN results are significantly higher than Freq and
AMIE+ in both datasets and for all measures, by an MRR margin of 17.5% on
JF17k and 14.8% on Mondial. On JF17k, CNN also outperforms the latent-based
approach RAE by a margin of 5.2% with measure Hits@10=0.556. Given that our
approach tends to be better at fine-grain measures, as shown on FB15k-237, the
latter result is very encouraging. Indeed, CNN’s first ranked entity is correct 33%
of the time on JF17k, which makes its predictions really effective.

6.3 In-depth Analysis

Predicting heads vs tails. Table 4 details the results of CNN on FB15k-237, distin-
guishing between predicting tails and heads. It shows clearly that it is much easier to
predict tails than heads. This is not surprising given that, in KGs, relations are gen-
erally oriented in the more deterministic direction. For example, the relation between
films and genres is oriented from films to genres because each film has only one or a
few genres, while for each genre there are many films. This behaviour is even stronger
in Mondial (MRR-all=0.327, MRR-tails=0.584, MRR-heads=0.057) but very small
in JF17k (±0.004). The latter can be explained by the fact that binary relationships
are derived from n-ary relations, and therefore do not have a privileged orientation.



Table 5. Results of tail prediction for some of the most frequent relations in FB15k-237.
#heads (resp. #tails) is the number of unique heads (resp. tails) for that relation. The
MRR of baseline Freq is also included for comparison.

relation #heads #tails MRRFreq MRR Hits@1 Hits@3 Hits@10

profession 4245 150 .434 .601 .455 .694 .874
gender 4094 2 .882 .899 .798 1 1
nationality 4068 100 .720 .772 .662 .866 .941
award 3386 406 .080 .270 .154 .296 .511
type of union 3033 4 .971 .971 .942 1 1
place of birth 2613 704 .155 .183 .100 .235 .359
place lived 2519 804 .172 .194 .108 .239 .344
film/genre 1875 123 .315 .380 .226 .429 .711
film/language 1735 59 .744 .759 .688 .790 .911
film/country 1708 61 .685 .701 .573 .809 .931

Table 6. Evolution of the number of concepts, the maximum belief, and MRR as a function
of timeout on FB15k-237 (depth=1).

timeout #concepts max. belief MRR

0.01 11.8 .467 .235
0.1 49.1 .795 .264
1 219.6 .943 .286

Results per relation. Table 5 details the results further for a selection of 10 of the
most frequent relations in dataset FB15k-237, only considering tail prediction. In
order to give an idea of the difficulty to predict tails for each relation, we give the
number of unique heads and tails in the train+valid dataset, as well as the MRR
for baseline Freq. The results show that MRR is significantly increased with our
approach for all relations, except type of union whose baseline MRR is already
very high at .971. For half of the relations, Hits@1 is greater than .5, which means
that predicting the first entity would be more than 50% correct. This includes
properties with large numbers of tails, e.g. relation nationality has 100 unique tails
and Hits@1=.668. In Mondial, the best predicted relations are the continent of a
country, the category of a volcano or island, the neighbour sea/ocean of a place, the
archipelago of an island or the range of a mountain, with MRR all above 0.500.

Influence of timeout. Table 6 shows the influence of timeout on the resulting MRR,
and also on the number of computed concepts and on the maximal belief achieved
for predicted entities. It can be observed that with only 1% of the largest timeout,
the MRR is already at 82% of the largest MRR, despite the fact that only 5%
of the concepts have been computed. This indicates that early approximations of
concepts of nearest neighbours are already informative. Furthermore, improving the
approximation with more concepts does not only improve MRR but also increases
confidence in predictions as indicated by the steadily increasing maximal beliefs.



Influence of description depth. The description depth has a huge impact on the
size of descriptions from which edges are chosen to discriminate concepts of nearest
neighbours. In FB15k-237, descriptions have on average 750 edges at depth 1, already
20,000 edges at depth 2, and 110,000 edges at depth 10, i.e. 38% of the train+valid
edges. This has an impact on computation times but in a reasonable proportion:
the runtime overhead relative to the computation of CNNs for timeout=0.1s (i.e.,
loading triples, computing descriptions, triple inference), ranges from 0.03s at depth 1
to 0.3s at depth 10.

We now look at the impact of description depth on results. We can expect a priori
that a greater depth provides more information to discriminate candidate entities but
is computationally more demanding. However, by varying depth between 1 and 20
for timeout=1s, we observed very small standard deviations for the four measures, all
around ±0.005. This shows that most of the useful information is already present at
depth 1. Nonetheless, it is a good property that increasing depth does not deteriorate
performance because it means that depth does not need to be learned and can be
set to a large value safely. The explanation for that property is that the iterative
partitioning algorithm starts with shallow triples, proceeds with triples of increasing
depth, and is usually stopped by timeout rather than by maximum depth.

6.4 Example Inferences and Explanations

Finally, we illustrate our inference method by looking at a few examples in detail (all
inferences are available as logs from the companion page). In FB15k-237, the language
of film “Dragon Ball Z: Bojack Unbound” is correctly predicted to be “Japanese” with
MRR=1, compared to MRR=0.2 for baseline Freq. CNN-1s generates 26 concepts,
from which the best explanation (in terms of belief) for “Japanese” is that the film
is from Japan and has Toshiyuki Morikawa as an actor. The living place of “Tabu”
is correctly predicted to be “Mumbai” with MRR=1, compared to MRR=0.059 for
baseline Freq. CNN-1s generates 32 concepts, from which the best explanation is
that “Tabu” has been awarded with “Filmfare Award for Best Actress”, indicating
that many people who earned this award live in Mumbai. The next predicted places
are other cities in India. In a more systematic way, we looked at all successful and
non-trivial inferences of the nationality of people, i.e. inferences where the correct
entity is ranked first by our method, and is not in the three most frequent nationalities
(MRRFreq < 0.333). Over the 10 such inferences, the number of concepts generated
by CNN-1s is remarkably consistent and small, between 22 and 37. The concept
intents have 2 or 3 elements (the explanation query), and the concept extents contain
between 2 and 29 entities (the similar entities that serve as examples). The best
explanations tell that nationality can be infered by either the living place, the death
place, the spoken language, a film in which the person played, or a winned award.

In Mondial, the continent of Sweden is correctly predicted as Europe because it
is a constitutional monarchy (3-elements query), similarly to Denmark. Matterhorn
is correctly predicted to be located in Switzerland because it is a mountain in the
Alps that is also located in Italy (5-elements query), similarly to Monte Rossa. Lagen
is correctly predicted to be located in Norway because it is the estuary of a river
located in Norway (4-elements query).



Our instance-based approach is able to find very specific explanations, as shown
by the above illustrations, which a rule-based approach would be unlikely to produce
given their huge number. However, a limitation of our inference method is that it
cannot yet provide generalized explanations such as “if a person X lives in any city
of country Y, then X has nationality Y”, which are the main kind of explanations
rule-based and path-based approaches rely on.

7 Conclusion

We have shown that a symbolic approach to the problem of link prediction in knowl-
edge graphs can be competitive with state-of-the-art latent-based approaches. This
comes with the major advantage that our approach can provide detailed explanations
for each inference, in terms of the graph features. Compared to rule-based approaches,
which can provide similar explanations, we avoid the need for a training phase
that can be costly in runtime and memory (rule mining), while achieving superior
performance. Our approach is analogous to classification with k-nearest neighbours
but our distances are defined as partially-ordered graph concepts instead of metrics.

There are many tracks for future work. Extending graph patterns with n-ary
relations or richer filters over numbers, dates, etc. Optimizing the computation of
CNNs by finding good strategies to drive the partitioning process, or by parallelizing
it. Extending the CNN-based inference procedure to mimick non-instantiated
AMIE+’s rules (e.g., the nationality is the country of the living place). Evaluate our
approach on other datasets, and other inference tasks.
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