T. Berners-lee, J. Hendler, and O. Lassila, The semantic web, Scientific American, vol.284, issue.5, pp.34-43, 2001.

A. Bordes, N. Usunier, A. Garcia-duran, J. Weston, and O. Yakhnenko, Translating embeddings for modeling multi-relational data, Advances in neural information processing systems, pp.2787-2795, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00920777

T. Denoeux, A k-nearest neighbor classification rule based on Dempster-Shafer theory, IEEE Trans. Systems, Man, and Cybernetics, vol.25, issue.5, pp.804-813, 1995.

T. Dettmers, P. Minervini, P. Stenetorp, and S. Riedel, Convolutional 2D knowledge graph embeddings, Conf. Artificial Intelligence (AAAI), pp.1811-1818, 2018.

S. Ferré, Concepts de plus proches voisins dans des graphes de connaissances, Ingénierie des Connaissances (IC), pp.163-174, 2017.

S. Ferré, Answers partitioning and lazy joins for efficient query relaxation and application to similarity search, Int. Conf. The Semantic Web (ESWC), vol.10843, pp.209-224, 2018.

S. Ferré and P. Cellier, Graph-FCA in practice, Int. Conf. Conceptual Structures (ICCS), vol.9717, pp.107-121, 2016.

L. Galárraga, C. Teflioudi, K. Hose, and F. Suchanek, Fast rule mining in ontological knowledge bases with AMIE+, Int. J. Very Large Data Bases, vol.24, issue.6, pp.707-730, 2015.

A. Hermann, S. Ferré, and M. Ducassé, An interactive guidance process supporting consistent updates of RDFS graphs, Int. Conf. Knowledge Engineering and Knowledge Management (EKAW), vol.7603, pp.185-199, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00757083

W. Jianfeng, L. Jianxin, M. Yongyi, C. Shini, and Z. Richong, On the representation and embedding of knowledge bases beyond binary relations, Int. Joint Conf. Artificial Intelligence (IJCAI), pp.1300-1307, 2016.

N. Lao, T. Mitchell, and W. W. Cohen, Random walk inference and learning in a large scale knowledge base, Conf. Empirical Methods in Natural Language Processing, pp.529-539, 2011.

D. Liben-nowell and J. Kleinberg, The link-prediction problem for social networks, Journal of the American society for information science and technology, vol.58, issue.7, pp.1019-1031, 2007.

W. May, Information extraction and integration with Florid: The Mondial case study, 1999.

C. Meilicke, M. Fink, Y. Wang, D. Ruffinelli, R. Gemulla et al., Fine-grained evaluation of rule-and embedding-based systems for knowledge graph completion, The Semantic Web (ISWC), vol.11136, pp.3-20, 2018.

S. Muggleton, Inverse entailment and Progol, New Generation Computation, vol.13, pp.245-286, 1995.

M. Nickel, K. Murphy, V. Tresp, and E. Gabrilovich, A review of relational machine learning for knowledge graphs, Proc. IEEE, vol.104, issue.1, pp.11-33, 2016.

G. Plotkin, Automatic Methods of Inductive Inference, 1971.

M. Schlichtkrull, T. N. Kipf, P. Bloem, . Van-den, R. Berg et al., Modeling relational data with graph convolutional networks, The Semantic Web Conf. (ESWC), pp.593-607, 2018.

K. Toutanova and D. Chen, Observed versus latent features for knowledge base and text inference, Work. Continuous Vector Space Models and their Compositionality, pp.57-66, 2015.

R. Zhang, J. Li, J. Mei, and Y. Mao, Scalable instance reconstruction in knowledge bases via relatedness affiliated embedding, Conf. World Wide Web (WWW), pp.1185-1194, 2018.