
HAL Id: hal-02281963
https://inria.hal.science/hal-02281963

Submitted on 9 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

InKS, a Programming Model to Decouple Algorithm
from Optimization in HPC Codes

Ksander Ejjaaouani, Olivier Aumage, Julien Bigot, Michel Mehrenberger,
Hitoshi Murai, Masahiro Nakao, Mitsuhisa Sato

To cite this version:
Ksander Ejjaaouani, Olivier Aumage, Julien Bigot, Michel Mehrenberger, Hitoshi Murai, et al.. InKS,
a Programming Model to Decouple Algorithm from Optimization in HPC Codes. Journal of Super-
computing, 2019, �10.1007/s11227-019-02950-2�. �hal-02281963�

https://inria.hal.science/hal-02281963
https://hal.archives-ouvertes.fr


InKS, a Programming Model to Decouple Algorithm
from Optimization in HPC Codes

Ksander Ejjaaouani · Olivier Aumage ·
Julien Bigot · Michel Méhrenberger ·
Hitoshi Murai · Masahiro Nakao ·
Mitsuhisa Sato

Abstract Existing programming models tend to tightly interleave algorithm
and optimization in HPC simulation codes. This requires scientists to become
experts in both the simulated domain and the optimization process and makes
the code difficult to maintain or port to new architectures. In this paper, we
propose the InKS programming model that decouples these concerns with two
distinct languages: InKSpia to express the simulation algorithm and InKSpso
for optimizations. We define InKSpia and evaluate the feasibility of defining
InKSpso with three test-languages: InKSo/C++, InKSo/loop, InKSo/XMP. We
evaluate the approach on synthetic benchmarks (NAS and heat equation) as
well as on a more complex example (6D Vlasov-Poisson solver). Our evaluation
demonstrates the soundness of the approach as it improves the separation of
algorithmic and optimization concerns at no performance cost. We also identify
a set of guidelines for the later full definition of the InKSpso language.

Keywords programming model · separation of concerns · HPC · DSL

Ksander Ejjaaouani
Maison de la Simulation, CEA, CNRS, Univ. Paris-Sud, UVSQ, Université Paris-Saclay
Inria
Gif-sur-Yvette, France
E-mail: ksander.ejjaaouani@inria.fr

Olivier Aumage
Inria, LaBri, Bordeaux, France
E-mail: olivier.aumage@inria.fr

Julien Bigot
Maison de la Simulation, CEA, CNRS, Univ. Paris-Sud, UVSQ, Université Paris-Saclay
Gif-sur-Yvette, France
E-mail: julien.bigot@cea.fr

Michel Mehrenberger
Université de Marseille, Marseille, France
E-mail: mehrenbe@math.unistra.fr

Hitoshi Murai · Masahiro Nakao · Mitsuhisa Sato
Riken CCS, Kobe, Japan
E-mail: {h-murai,masahiro.nakao,msato}@riken.jp



2 K. Ejjaaouani et al.

1 Introduction

It is more and more common to identify simulation as the third pillar of sci-
ence together with theory and experimentation. Parallel computers provide the
computing power required by the more demanding of these simulations. The
complexity and heterogeneity of these architectures do however force scientists
to write complex code (using vectorization, parallelization, accelerator specific
languages, etc.). These optimizations heavily depend on the target machine,
the code has to be adapted whenever it is ported to a new architecture.

As a result, scientists have to become experts in the art of computer op-
timizations in addition to their own domain of expertise. It is very difficult
in practice to maintain a code targeting multiple distinct architectures. One
fundamental cause for this situation is the tight interleaving of two distinct
concerns imposed by most programming models. On the one hand, the algo-
rithm comes from the expertise of the domain scientists and does not depend
on the target architecture. On the other hand, optimizations form another do-
main of expertise and has to be adapted for a given architecture. Thereby, both
algorithm and optimizations concerns are expressed within a single code. This
mix impedes simulation codes maintainability and readability while hindering
developers productivity.

Many approaches have been proposed to improve this situation in the form
of libraries or languages [17, 4, 20, 19]. Approaches based on automated opti-
mization processes typically isolate the algorithmic aspects well, but restrict
their domain of applicability and/or the range of supported optimizations. Ap-
proaches based on optimization tools and libraries enable optimization special-
ists to express common optimizations efficiently but leave others mixed with
the algorithm.

In this paper, we propose the Independent Kernel Scheduling (InKS) pro-
gramming model to separate algorithm from optimization choices in HPC sim-
ulation codes. We define the InKSpia language used to express the algorithm of
an application independently of its optimization. This separation aims to im-
prove the readability and maintainability of codes while easing portability and
new optimization expression. This approach is used for common optimizations
while InKSo/C++ for less common optimizations. Such a program can then
be optimized using InKSo/XMP and InKSo/loop, two domain-specific languages
(DSLs) which ask for optimization information only. While these DSLs target
some common optimizations, InKSo/C++ can be used for less common ones.

This paper makes the following contributions: 1) it defines the InKS pro-
gramming model and its platform-independent algorithmic language InKSpia;
2) it proposes an implementation of InKS and tests the InKSpso approach
with three optimization DSLs, InKSo/C++, InKSo/loop and InKSo/XMP; and
3) it evaluates the approach on the synthetic NAS parallel benchmarks [3] and
on the 6D Vlasov-Poisson solving with a semi-Lagrangian method.

The remaining of the paper is organized as follows. Section 2 analyzes re-
lated works. Section 3 describes InKS and its implementation. Section 4 shows
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the use of InKS on a 6D Vlasov-Poisson solver. Section 5 evaluates our ap-
proach. Section 6 concludes the paper.

2 Related Work

We now present approaches currently available to scientific programmers to
help implementing simulation applications. A first widely used approach is
based on imperative languages such as Fortran or C. Libraries like MPI extend
this to distributed memory with message passing. Abstractions very close to
the execution machine make fine-tuning possible to achieve good performance
on any specific architecture. It does however require encoding complex opti-
mizations directly in the code. As there is no language support to separate the
algorithm and architecture-specific optimizations, tedious efforts have to be
applied [13] to support performance portability. Algorithm and optimizations
are instead often tightly bound together in codes.

A second approach is offered by tools (libraries, frameworks or language
extensions) that encode classical optimizations. OpenMP [5], REPARA [8] or
Kokkos [4] support common shared-memory parallelization patterns. For ex-
ample, Kokkos offers multidimensional arrays and iterators for which efficient
memory mappings and iteration orders are selected independently. UPC [9]
or XMP [17] support the partitioned global address space paradigm. For ex-
ample, in XMP, directives describe array distribution and communications
between nodes. These tools offer gains of productivity when the optimization
patterns they offer fit the requirements. The separation of optimizations from
the main code base also eases porting between architectures. Even if expressed
more compactly optimizations do however remain mixed with the algorithm.
For instance, in OpenMP or REPARA, parallel concerns are specified on top
of an existing code which already carries optimization choices, such as loops
order.

A third approach pushes this further with tools that automate the opti-
mization process. For example, PaRSEC [12] or StarPU [1] support the many-
tasks paradigm. In StarPU, the user expresses its code as a directed acyclic
graph (DAG) of tasks with data dependencies that is automatically scheduled
at runtime depending on the available resources. Other examples are SkeTo [21]
or Lift [19] that offer algorithmic skeletons. Lift offers a limited set of parallel
patterns whose combinations are automatically transformed by an optimizing
compiler. Automating optimization improves productivity and clearly sepa-
rate these optimizations which improves portability. The tools do however not
cover the whole range of potential optimizations such as the choice of work
granularity inside tasks in StarPU for example. The algorithm remains largely
interleaved with optimization choices even with this approach.

A last approach is based on DSLs that restrict the developer to the ex-
pression of the algorithm only while optimizations are handled independently,
such as Pochoir [20] or PATUS [6], DSLs for stencil problems. In Pochoir,
the user specifies a stencil (computation kernel and access pattern), boundary
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conditions and a space-time domain while all optimizations are handled by a
compiler. These approaches ensure a very good separation of concerns. The
narrower the target domain is, the more efficient domain and architecture-
specific optimizations are possible. However, it makes it less likely for the tool
to cover the needs of a whole application. On contrary, the wider the target
domain is, the less efficient optimizations are possible.

To summarize, one can consider a continuum of approaches from very gen-
eral approaches where the optimization process is manual to more and more
domain specific where the optimization process can be automated. The more
general approaches support a large range of optimizations and application do-
mains but yield high implementation costs and low separation of concerns and
portability. The more automated approaches reduce implementation costs and
offer good separation of concerns and portability but restrain the range of sup-
ported domains and optimizations. Ideally, one would like to combine all these
advantages: 1) the domain generality of imperative languages, 2) the ease
of optimization offered by dedicated tools and 3) the separation of concerns
and performance portability offered by DSLs with 4) the possibilities of fine
and manual optimizations offered by both imperative languages and dedicated
tools. The following section describes the InKS programming model that aims
to combine these approaches to offer such a solution.

3 The InKS programming model

This section first introduces the design of our InKS programming model, based
on the use of distinct languages to express the algorithm and optimization
choices separately. It then present a prototype implementation of the model
composed of InKSpia, the algorithm language, and two InKSpso optimization
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Fig. 1: The InKS model

languages. The simulation algorithm con-
sists in the set of values computed, the for-
mula used to produce them as well as the
simulation inputs and outputs. Optimiza-
tion choices include all that is not the al-
gorithm: e.g. the computing unit selected
for each computation, their ordering, the
memory location for each value, etc. Mul-
tiple optimization choices can differ in per-
formance but simulation results depend on
the algorithm only. The InKS approach
is summarized in Figure 1. The InKSpia
language is used to express the algorithm
with no concern for optimization choices.
A compiler can automatically generate non-
optimized choices from an InKSpia specifi-
cation, mostly for testing purposes. The InKSpso language is used to define
optimizations only, while other information is gathered from the InKSpia code.
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Many versions of the optimization choices can be devised for a single algorithm;
for example to optimize for multiple targets.

We now describe the InKSpia language. and proposes three preliminary
DSLs to validate strategies for the design of the InKSpso language: InKSo/XMP
handles domain decomposition, InKSo/loop focuses on efficient loop nest and
InKSo/C++ enables to use C++ and write arbitrary complex optimization.

3.1 The InKSpia language.

In InKSpia [2] values are stored in infinite multidimensional arrays based on
dynamic single assignment (DSA, each coordinate can only be written once).
Memory placement of each coordinate is left unspecified. Computations are
specified by kernel procedures that 1) take as parameters data arrays and
integer coordinates; 2) specify the coordinate they might read and will write
in each array; and 3) define either a C++ or InKS implementation. An InKS
implementation defines kernels validity domains: coordinates where C++ ker-
nels can generate values in arrays. Kernel execution order is left unspecified.
The simulation entry point is a kernel marked public. Listing 1 presents a sim-
ple InKSpia code: a 1D 3-point stencil computation. The simulation consists
of one 2D logical array, Array (line 12), two kernels, stencil3 (line 1) and
boundary (line 6), and is parameterized by two integers, X and T (line 11).
Line 12 specifies that the simulation starts with a subset of Array (every val-
ues in the space dimension, at the first time-step) and expects, as output,
another subset: every values in the space dimension at the last time-step. To
do so, it can call the stencil3 and boundary kernels with a specific set of
values for their integer parameters x and t (validity domain) and with Array
as their logical array parameter, as expressed on line 15 and 16.

A InKSpia code specifies a parameterized task graph (PTG) [7]. This graph
is encoded using the Polyhedron Model [10]. It provides a compact represen-
tation of static control programs. This representation covers a large range of
problems but imposes a few limitations. Mostly, all the problem parameters
must be known at launch time, it does for example not support adaptive mesh
or time-steps. It is still possible to express these concerns outside InKSpia and
call the InKS implementation multiple times with different parameters.

Once the algorithm is specified in InKSpia, the goal is to write the opti-
mization choices meaning choosing a memory layout and a scheduling of the
kernels. Two approaches exist to produce these choices: the automatic com-
piler or InKSpso. All approaches rely on the Kernel file. This file is generated
by the InKSpia compiler which translates the InKSpia kernels to C++ func-
tions. The InKSpia compiler can produce generic optimization choices with a
valid but non-optimized computations scheduling and memory allocations to
execute them. Scheduling and memory layouts are computed using the Inte-
ger Set Library [22] and recent works on modular mapping in the polyhedron
model [14]. Arbitrarily complex versions of optimization choices can also be
written manually in plain C++. These functions can be called from any ex-
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1 kernel stencil3(x, t) : (
2 double A(2) {in: (x-1:x+1, t-1) | out: (x, t)}
3 )
4 #CODE(C) A(x, t+1) = 0.5*A(x, t-1) + 0.25*(A(x-1, t-1)+A(x+1, t-1)); #END
5
6 kernel boundary(x, t) : (
7 double A(2) {in: (x, t-1) | out (x, t)}
8 )
9 #CODE(C) A(x,t) = A(x, t-1); #END

10
11 public kernel inks_stencil(X, T) : (
12 double Array(2) {in: (0:X, 0) | out: (0:X, T-1)}
13 )
14 #CODE(INKS)
15 stencil3 (1:X-1, 1:T) : (Array),
16 boundary {(0, 1:T), (X-1, 1:T)} : (Array)
17 #END

Listing 1: 1D stencil computation on a 2D domain in InKSpia

isting code whose language supports the C calling convention. However, that
approach requires information present in InKSpia to be repeated. The InKSpso
DSL thus interface the optimization process with InKSpia, offering the opti-
mization specialists to specify optimization only.

3.2 InKSpso DSLs implementation

Implementing a complete optimization DSL for the InKS model is a long-term
objective. In this study, we present the two DSLs InKSo/XMP and InKSo/loop.
Both DSLs solely describe optimizations, and get missing information from
InKSpia code.

InKSo/XMP (illustrated in Listing 2) handles distributed memory domain
decomposition by combining C and directives based on XMP and adapted for
InKS. The compiler replaces these directives by C and XMP code. The inks
decompose directive supports static or dynamic allocation of logical arrays de-
scribed in the algorithm. The domain size is extracted from InKSpia source and
the user only has to specify its mapping onto memory. As in XMP, InKSo/XMP
supports domain decomposition mapped onto an XMP topology. In InKSpia
code, there are no concerns for memory optimization such as dimension or-
dering or memory reuse. Therefore, InKSo/XMP supports dimension reordering
and folding which consists in reusing the same memory address for subsequent
indices in a given dimension. The exchange directive supports halo exchanges.
The user specifies which dimension should be exchanged and which computa-
tional kernel will be executed after the exchange. From these informations and
the InKSpia kernel specification, the InKSo/XMP compiler then computes the
halo size. While XMP requires halo values to be stored contiguously with the
domain, InKSo/XMP supports a dynamic halo extension where halo values are
stored in dedicated, dynamically allocated buffers to reduce memory footprint.

InKSo/loop (illustrated in Listing 3) offers to specify manually loop nests
for which the compiler generates plain C++ loops. Plain C++ is usable in
combination with InKSo/loop. The loop keyword introduces a nest optimiza-
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1 /***InKSo/XMP specification***/
2 #pragma xmp nodes p[nNodes]
3 void inks_stencil(T& Input, size_t X, size_t T){
4 #pragma inks decompose % Array // allocation of "Array" algorithmic array
5 (2*2, 1) // dimension reordering, time dimension is fold by 2 and not distributed
6 with t onto p // block decomposition mapped on the XMP topology
7
8 for(int t=1; t<T; t++){
9 boundary(Array, 0, t);

10 for(int x=1; x<X-1; x++)
11 stencil3(Array, x, t);
12 boundary(Array, X-1, t);
13 }
14 }
15
16 /***XMP + C result***/
17 #pragma xmp nodes p[nNodes]
18 #pragma xmp template t[:][:] // xmp 1d logical array
19 #pragma xmp distribute t[*][block] onto p
20 void inks_stencil(T& Input, size_t X, size_t T){
21 #pragma xmp align Array[t][x] with t[t][x]
22 #pragma xmp template_fix t[2][X]
23 Array = (double(*)[X]) xmp_malloc(xmp_desc_of(f6d), 2, X);
24 for(int t=1; t<T; t++){
25 boundary(Array, 0, t);
26 for(int x=1; x<X-1; x++)
27 stencil3(Array, x, t);
28 boundary(Array, X-1, t);
29 }
30 }

Listing 2: InKSo/XMP optimization choices of the InKSpia code presented in
Figure 1 and the C + XMP result

1 /*** stencil.iloop InKSo/Loop optimization choices file ***/
2 loop stencil3_loop(t, X) : stencil3 { // set "t" value
3 // "Set" not specified -> loop bounds are computed, with a fixed "t"
4 Order: x; // order of the loop
5 }
6 /*** C++ result ***/
7 void stencil3_loop(T& Array, size_t t, size_t X){
8 for (int x=0; x<X; x++)
9 stencil3(Array, x, t);

10 }
11 /*** InKSo/Loop result used ***/
12 void inks_stencil(T& Input, size_t X, size_t T){
13 for(int t=1; t<T; t++){
14 boundary(Array, 0, t);
15 stencil3_loop(Array, t, X);
16 boundary(Array, X-1, t);
17 }
18 }

Listing 3: InKSo/loop optimization choices of a loop from the InKSpia code
presented in Figure 1 with its C++ result and use

tion with a name, the list of parameters from the algorithm on which the loop
bounds depend and a reference to the optimized kernel. Loop bounds can be
automatically extracted from InKSpia, but the Set keyword makes it possi-
ble to restrict these bounds. The Order keyword specifies the iteration order
on the dimensions named according to the InKSpia code. The Block keyword
enables the user to implement blocking. It takes as parameters the size of
block for the loops starting from the innermost one. If there are less block
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∂f(t, x, v)
∂t

+ v.∇xf(t, x, v)− E(t, x).∇vf(t, x, v) = 0

−∆φ(t, x) = 1− ρ(t, x)
E(t, x) = −∇φ(t, x)

ρ(t, x) =
∫
f(t, x, v)dv
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Fig. 2: The 6D Vlasov-Poisson algorithm
sizes than loops, the remaining loops are not blocked. The Buffer keyword
supports copying data in a local buffer before computation and back after to
ensure data continuity and improve vectorization. The compiler uses data de-
pendencies from the InKSpia code to check the validity of the loops order and
generate vectorization directives whenever possible.

4 The 6D Vlasov/Poisson problem

The 6D Vlasov-Poisson equation, presented in (1), describes the movement of
particles in a plasma and the resulting electric field. We study its resolution
for a single species on a 6D Cartesian mesh with periodic boundary conditions.
We solve the Poisson part using a fast Fourier transform (FFT) and rely on
a Strang splitting (order 2 in time) for the Vlasov part. This leads to 6 1D
advections: 3 in space dimensions (x1, x2, x3) and 3 in velocity dimensions
(v1, v2, v3). Each 1D advection relies on a Lagrange interpolation of degree 4.
In the space dimensions, we use a semi-Lagrangian approach where the stencil
is not applied around the destination point but at the foot of characteristics,
only known at runtime, as described in more details in [18].

The main unknown is f (f6D in the code), the distribution function of
particles in 6D phase space. Due to the Strang splitting, a first half time-step
of advections is required after f6D initialization but before the main time-loop.
These advections need the electric field E as input. E is obtained through the
FFT-based Poisson solver that in turn needs the charge density ρ as input. ρ
is computed by a reduction of f6D. The main time-loop is composed of 4 steps:
advections in space dimensions, computation of the charge density (reduction)
and electric field (Poisson solver) and advections in velocity dimensions. The
algorithm of the simulation is presented in Figure 2.

The remaining of the section presents two optimizations implemented in
the Selalib [16] version of the 6D Vlasov-Poisson problem.

The 6D nature of f6D requires a lot of memory, but the regularity of
the problem means it can be distributed in blocks with good load-balancing.
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(a) Halo buffers in first dimension (b) Halo Buffers in second dimension

Fig. 3: Dynamic halo exchange representation on a 2D domain
Halos are required to hold values of neighbors for the advections. Connected
halo zones would increase the number of points in all dimensions and consume
too much memory. Split advections mean that halos are required in a single
dimension at a time though. We therefore use dynamic halos composed of two
buffers, one for each boundary of the advected dimension (denoted “right" and
“left"). Figure 3 shows this optimization on a 2D domain. Listing 4 shows the
InKSo/XMP implementation of this strategy on 6D Vlasov-Poisson.

1 /*** InKSo/XMP code for the f6d domain decomposition and dynamic halo exchange ***/
2 #pragma xmp nodes p6d[pV3][pV2][pV1][pZ][pY][pX]
3 #pragma inks decompose dynamic
4 % f6d // dynamic allocation of f6d algorithmic array
5 (8:, 7:, 6, 5, 4, 3, 2, 1) // dimension reordering, dim 7 and 8 are folded
6 with t6d onto p6d // block decomposition mapped on the XMP topology
7 // Dynamic halo exchange on the 4th dimension, halo sizes are computed automatically
8 // R and L are now allocated buffers and contain the halo values
9 #pragma inks exchange periodic f6d(4, advection4) to R and L

10 foo(R, L);
11 /*** Generated C+XMP code for the f6d domain decomposition ***/
12 double (f6d*)[][][][][]; // need to declare f6d global, valid in xmp
13 #pragma xmp nodes p6d[pV3][pV2][pV1][pZ][pY][pX] // xmp 6d cartesian node topology
14 #pragma xmp template t6d[:][:][:][:][:][:] // xmp 6d logical array
15 #pragma xmp distribute t6d [block][block][block][block][block][block] onto p6d
16 // map element of f6d to element of t6d
17 #pragma xmp align f6d[n][m][l][k][j][i] with t6d[n][m][l][k][j][i]
18 #pragma xmp template_fix t6d[N][M][L][K][J][I]
19 f6d = (double(*)[M][L][K][J][I]) xmp_malloc(xmp_desc_of(f6d), N, M, L, K, J, I);

Listing 4: 6D decomp. & halo exchange in InKSo/XMP and resulting code

Advections account for the main computational cost of the problem, up
to for 95% of the sequential execution time. Six loops surround the stencil
computation of each advection and in a naive version, the use of a modulo
to handle periodicity and application along non-contiguous dimensions slow
down the computation. To enable vectorization and improve cache use, we
copy f6D elements into contiguous buffers along with the left and right halos.
Advections are applied on these buffers before copying them back into f6D.
Blocking further improves performance by copying multiple elements at a time.
Listing 5 corresponds to the InKSo/loop implementation of these optimizations
in a sequential version and presents the generated code. The Poisson solver
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1 /*** advec.iks InKSpia algorithmic file ***/
2 kernel advection3 (i, j, k, l, m, n, t, K, step) : (
3 double f6d {in: (i, j, 0:K, l, m, n, t, step-1) |out: (i, j, k, l, m, n, t, step)},
4 int disp {in: (n)},
5 double coef{in: (n, 0:4)}
6 )
7 #CODE (C)
8 f6d(i, j, k, l, m, n, t, step) =
9 coef(n, 0) * f6d(i, j, k-1+disp(n), l, m, n, t, step-1)

10 + coef(n, 1) * f6d(i, j, k+0+disp(n), l, m, n, t, step-1)
11 + coef(n, 2) * f6d(i, j, k+1+disp(n), l, m, n, t, step-1)
12 + coef(n, 3) * f6d(i, j, k+2+disp(n), l, m, n, t, step-1);
13 #END
14 public kernel main_code(t, I, J, K, L, M, N, Niter) : (
15 double coef(2),
16 int disp(1),
17 double f6d(6) {in: (i, j, 0:K, l, m, n, t, step-1) |out: (i, j, k, l, m, n, t, step)}
18 )
19 #CODE(INKS)
20 advection3 (0:I, 0:J, 0:K, 0:L, 0:M, 0:N, 1:Niter, K, 2) : (f6d, disp, coef)
21 /* ... */
22 #END
23 /*** advec.iloop InKSo/Loop optimization choices file ***/
24 loop advection3_loops(t, I, J, K, L, M, N, Niter) : advection3 { // set "t" value
25 // "Set" not specified -> loop bounds are computed, with a fixed "t"
26 Order: n, m, l, k, i, j; // order of the loop
27 Block: 16; // blocking on the inner dimension j
28 Buffer: f6d(3); // copy the third dimension of f6d to a 1d buffer
29 }

Listing 5: A loop nest in InKSpia optimized in InKSo/loop

relies on a remapping scheme, where the domain decomposition is modified
between each FFT execution.

5 Evaluation

This section evaluates the InKS model on the NAS benchmark, a simple
stencil code and the 6D Vlasov-Poisson problem. We have implemented the
algorithm of the following programs using InKSpia.

– 4 sequential NAS kernels (IS, FT, EP and MG), C++ version [11] as reference;
– finite difference 3D heat resolution (7-point stencil) ([15] as reference);
– 6D Vlasov-Poisson, using Fortran/MPI Selalib [16] as reference.

For the 3d heat equation solver, two strategies were implemented: one uses dou-
ble buffering (Heat/Buf) and the other implements a cache oblivious strategy
(Heat/Obl). To evaluate the InKS programming model on Vasov-Poisson 6D,
we have conduct three experiments. The first one is based on optimization
choices written in plain C++ and cover the whole simulation. Then, we eval-
uate InKSo/XMP and InKSo/loop on Vlasov-Poisson separately as they target
different optimizations and are not usable together currently. A first experi-
ment focuses on the sequential aspects with the intra-node optimization of the
v1 advection using either InKSo/loop or InKSo/C++. A second experiment fo-
cuses on the parallel aspects with the charge density computation, the Poisson
solver and a halo exchange optimized either with C/XMP or with InKSo/XMP.
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Algorithm InKSo/C++ InKSo/loop InKSo/XMP

Heat Buf 3 versions: Same as reference, 2D and 3D cache blocking
Obl

NAS

EP
FT
MG
IS

VP6D

Initialization
Advections adv_v1
Reduction

Poisson solver

Table 1: Summary of the InKSo/C++, InKSo/loop and InKSo/XMP optimization
choices implemented based on six InKSpia algorithm: the 3D heat solver, 4
NAS kernels (EP, FT, MG, IS) and the Vlasov-Poisson 6D solver.

Execution time (second) Complexity
Benchmark Reference InKSo/C++ Rel. dev. Ref. InKS

NAS/FT 49.16 (±0.16) 44.00 (±0.05) 11.66% 6 5
NAS/IS 1.91 (±0.00) 1.90 (±0.01) 0.53% 55 52

NAS/MG 4.61 (±0.02) 4.29 (±0.01) 7.46% 20 12
NAS/EP 53.52 (±0.02) 55.35 (±0.37) -3.30% 19 19
Heat/Buf 2.76 (±2.78) 2.93 (±3.53) -6.22% 5 3
Heat/Obl 1.20 (±1.16) 1.18 (±0.96) 1.81% 22 13

VP6D 25.92 (±0.21) 21.92 (±0.16) 18.28% N/A N/A
Benchmark Reference (C++) InKSo/loop Rel. dev. Reference (Fortran)

NAS/IS 1.91 (±0.00) 1.91 (±0.01) 0.00% N/A
NAS/MG 4.61 (±0.02) 4.32 (±0.02) 6.84% N/A

VP6D 4.18 (±0.05) 4.23 (±0.06) -1.10% 3.63 (±0.09)
Benchmark Reference InKSo/XMP Efficiency (# cores)

NAS/EP 53.52 (±0.02) 14.00 (±0.13) 70.5% (4 cores)

Table 2: Execution time of the InKSo/C++, InKSo/loop and InKSo/XMP im-
plementations of the sequential NAS benchmark, class B - Time/iteration of
the 3D heat equation (7point stencil), size (10243) - Time/iteration of the
InKSo/C++ and Fortran implementation of the sequential 6D Vlasov-Poisson,
size (326). Median and standard deviation of 10 executions - GNU Complexity
score of the implementation.

The table 1 summarizes the optimization choices we have implemented. All
codes are compiled with Intel 18 compiler (-O3 -xHost), Intel MPI 2018 and
executed on the Irene cluster (TGCC, France) equipped with 192GB RAM,
two Skylake 8168 CPUs per node and a EDR InfiniBand interconnect. The
table 2 summarizes the optimization choices we have implemented.

The NAS CG kernel relies on indirections not expressible in the polyhedron
model of InKSpia. Its implementation would thus have to rely on a large C++
kernel whose optimization would be mixed with the algorithm. For the same
reason, the NAS FT kernels was only partially implemented. InKSpia can how-
ever be used to express all other NAS kernels, the 3D heat equation solver
as well as the 6D Vlasov-Poisson algorithm. Even if not as expressive as C
or Fortran, InKSpia, through the polyhedron model, handles static controls
programs. This covers the needs of a wide range of simulation domains and
offers abstractions close to the execution machine rather than from a specific
simulation domain. More specifically, it supports programs expressible as Pa-
rameterized Task Graphs [7]: a directed acyclic graph of tasks (here kernels)
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in a compact representation whose dependence and scheduling are parame-
terized by integers fixed at the InKS entry point execution. Among others,
it can express computations such as FFTs or stencils with input coordinates
unknown at compile-time, as in 6D Vlasov-Poisson.

InKS separates the specification of algorithm and optimization in dis-
tinct files. Multiple optimization strategies can be implemented for a single
algorithm, as shown for the 3D heat equation where each relies on a specific
memory layout and scheduling. Similarly, based on the InKSpia algorithm im-
plemented for the IS, EP and MG NAS kernels, we have developed multiple op-
timization choices based on InKSo/C++ and either InKSo/loop or InKSo/XMP.
For more complex cases such as the 6D Vlasov-Poisson problem, we were
able to develop four optimization choices based on one InKSpia algorithm: (1)
InKSo/XMP, (2) C with XMP, (3) InKSo/loop and (4) InKSo/C++. This proves,
to some extent, that the separation of concerns is respected.

Finding the right metric to evaluate the easiness of writing a code is a
difficult question. As illustrated in Listings 1 and 5 however, algorithm expres-
sion in InKSpia is close to the most naive C implementation where loops are
replaced by InKS validity domains with no worry for optimization. The poly-
hedron model used to represent the InKSpia code is compatible with a subset
of the C language. Therefore, we could have choose the C as the algorithm
language. However, the optimization process would have suffer from such a
choice. Indeed, while InKSpia is designed to remove optimizations through the
use of DSA and fine granularity kernels, C enables its users to reuse memory
and specify a total scheduling. Although it is possible to analyze the code and
to retrieve the DSA form and the partial order of the code using the polyhe-
dron model, it will be complicated for optimization specialists to find which
loops can be broke or which arrays can be expended from a C code.

Concerning the specification of optimization choices, it is close to their
expression in C++. Table 2 compares the GNU complexity score of InKS op-
timizations to the reference code. InKS scores are slightly better, which indi-
cates that our language is not more complex than C++. The difference comes
from the extraction of the computational kernels, placed in the algorithm,
which hides parts of the complexity. In addition, the use of InKSo/C++ to
write optimizations let optimization specialists reuse their preexisting knowl-
edge of this language. Similarly writing the InKSo/C++ version of optimization
choices for the InKSpia version of Vlasov-Poisson 6D is close to the expression
to the same optimization in Fortran, in the reference version. These consider-
ations should not hide the fact that some information has to be specified both
in the InKSpia and InKSo/C++ files with this approach leading to more code
overall.

On contrary, InKSo/XMP and InKSo/loop enables the developer to spec-
ify optimization choices only while algorithmic information is extracted from
InKSpia code. This is illustrated by Listing 2 presenting the InKSo/XMP 6D
domain decomposition and the XMP result. Both are equivalent, but the
InKSo/XMP expects only optimization choices parameters. Hence, one can test
another memory layout, such as a different dimension ordering, by changing
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only a few parameters, while multiple directives must be modified in XMP.
Moreover, using the domain decomposition directive offered by InKSo/XMP and
XMP code, one can derive a simple parallel code from a InKSpia algorithm,
as we did with the 3D Heat solver. Note that since InKSo/XMP is a wrapper
for XMP using InKSpia to retrieve some information, it is usable in any codes
that can be expressed using InKSpia and optimized with XMP. Similarly, with
InKSo/loop (Listing 5), developers can easily test different optimization choices
that would be tedious in plain C++. This is what we did with the 3D Heat
solver based on the double buffering technique. As shown on Figure 1, using
InKSo/loop, we have implemented 3 versions of the loops: the same as reference,
one based on a 2D cache-blocking and a last one using a 3D cache-blocking
by modifying almost nothing in the InKSo/loop code. Since InKSo/XMP and
InKSo/loop are respectively usable with C and C++, InKS does not restrict
the expressible optimization choices: one can still implement optimizations
not handled by our DSLs in C/C++. Moreover, operations such as halo size
computation or vectorization capabilities detection are automatized using the
InKSpia code. In summary, the approach enables optimization specialists to
focus on their specialty which make the development easier.

Regarding performance, the InKS approach makes it possible to express
optimizations that do not change the algorithm. Optimizations of the four
NAS parallel benchmarks and 3D heat equation solver in InKS were trivial
to implement and their performance match or improve upon the reference as
presented in Table 2. Investigation have shown that Intel ICC18 does not vec-
torize properly the reference versions of MG and FT. The use of the Intel ivdep
directive as done on the InKS versions leads to slightly better performance.

For the full Vlasov-Poisson 6D problem, InKSpia and C++ enable us to
implement the same complex optimization strategies written in the reference
version. Therefore, our implementation match the reference in terms of per-
formance, as shown on Table 2. For the v1 advection, both the InKSo/C++
and InKSo/loop optimizations of the InKS code achieve performance similar
to the reference as shown in Table 2. For the parallel aspects, the InKSo/XMP
optimization offers performance similar to XMP as shown on Figure 4. MPI is
faster on all cases compared to both XMP and InKSo/XMP. At the moment, it
seems that XMP does not optimize local copies which slows down the Poisson
solver. Besides, some XMP directives are based on MPI RMA which make
the comparison with MPI Send/Receive complex. Still, MPI is much harder
to program: more than 350 lines of MPI and Fortran are required to handle
domain decomposition, remapping for FFT and halo exchange in Selalib while
50 lines in XMP and 15 in InKSo/XMP.

However, InKSpia, InKSo/loop and InKSo/XMP have limitations. As men-
tioned earlier, InKSpia can not be used to express non static control program,
such as the CG or the full FT NAS kernel. It also makes more complex the opti-
mization of arrays passed in parameters (as input or output). InKSo/loop offers
very limited option, making it unusable with complex loops such as the one
in the 3D heat solver optimized using the cache-oblivious strategy. Similarly,
loop nests calling multiple InKSpia computational kernels can not be expressed
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Fig. 4: Weak and strong scaling for 3 parts of the Vlasov-Poisson solver up
to 64 nodes (1 process/node) on a 326 grid divided among processes (strong
scaling) or 166 grid per process (weak scaling). Median of 10 executions.

using InKSo/loop. Moreover, it can not respects the constraints imposed by a
specific memory mapping and offers only a few optimization. Adding new op-
timization strategies would require to add new keywords, such as unrolling,
loop fusion, etc. InKSo/XMP offers memory allocations but no controls on the
access to this memory, letting optimization specialists in charge of the good
use of this memory. Besides, it is usable only with XMP.

Although we want to address some issues in the InKSpia language, InKSo/loop
and InKSo/XMP were preliminary tests before a real InKSpso implementation.
The goal was to propose a way to express optimizations and retrieving the al-
gorithmic information in InKSpia code. These two DSLs enables us to highlight
a set of guidelines for the full definition of the InKSpso language. First, this
definition must be based on the concepts that InKSpso must express, i.e. the
optimizations related to memory (allocations and layouts) and to computa-
tions scheduling. With InKSo/XMP we tried some tests on the memory aspects,
providing a directive to allocate a logical array and to reorder its dimensions.
InKSo/loop focus on computations scheduling by adding strong constraint on
the order of the computations. Secondly, in order to express these optimiza-
tion concepts only, it must be bound to its algorithmic counterpart, express
in InKSpia. In InKSo/XMP, the domain decompistion directive makes reference
directly to logical arrays described in InKSpia, making possible the computa-
tion of the size of each dimension and the halo size depending of the data being
accessed. In InKSo/loop, the Order keyword refers to the structuring variable
of a computational kernel defined in InKSpia. Finally, we must work on the
mean to express these optimization concepts with the most generality. For this
part, we think that working with existing tools is probably mandatory for most
complex strategy, such as XMP for the domain decomposition. Using another
existing tool for computations scheduling, making it more general. Similarly, a
declarative language such as InKSo/loop may not be the best strategy: to han-
dle the interaction between memory and computation, an imperative language
could be easier.
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6 Conclusion and future works

In this paper, we have presented the InKS programming model to separate
the algorithm and the optimization choices and its implementation support-
ing two DSLs: InKSo/loop for loop optimizations and InKSo/XMP for domain
decomposition. We have evaluated InKS on synthetic benchmarks and on the
Vlasov-Poisson solving. We have demonstrated its generality and advantages
in terms of separation of concerns to improve maintainability and portability
while offering performance on par with existing approaches.

While this paper demonstrates the interest of the InKS model, it still re-
quires some work to further develop it. We will improve the optimization DSLs;
base InKSo/loop on existing tools and ensure interactions with InKSo/XMP. This
will be done within the scope of the development of a complete InKSpso DSL
enabling its users to manage memory placement and computations schedul-
ing. This planed DSL will truly separates algorithm from optimization choices
in static programs while its compiler could offer static analysis of the pro-
gram to ensure correctness. We also want to target different architectures to
demonstrate the portability gains of the InKS model.
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