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to increase data re-use and to optimize communication flow from/to the accelerators within each
node. The algorithm is written within the PARSEC runtime system, which allows for a fast
and generic implementation, while achieving close-to-peak performance for a large variety of
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Produit de matrices sur plates-formes distribuées équipées
de noeuds multi-GPUs avec PARSEC

Résumé : Ce rapport présente un algorithme pour le produit de matrices sur
plates-formes a mémoire distribuée dont les noeuds sont équipé de plusieurs accélérateurs
(GPUs), comme Summit. Cet algorithme est écrit avec le logiciel PARSEC, ce qui
permet d’avoir une implémentation rapide et flexible. Les performance obtenues

sur Summit sont proches des performances de créte de la machine.

Mots-clés : produit de matrices, mémoire distribuée, noeuds multi-GPUs, PAR-
SEC.
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1 Introduction

As of today, the Summit [17] and Sierra systems [15] are the fastest machines on
the TOP500 list [24]. Both systems are distributed-memory platforms where each
node is equipped with several high performance NVidia accelerators. For instance
Summit nodes include 6 NVIDIA V100 GPUs, interconnected at the node level by
multiple NVLinks. The forthcoming Frontier exascale system [16] is announced
with four GPUs per node. On Summit, more than 97% of the overall compute
performance is on the GPU side. The trend is the same for all state-of-the-art plat-
forms equipped with multi-GPU accelerated nodes: these machines draw most of
their computing power out of the accelerators; hence, it is crucial, for any effi-
cient and scalable algorithm, to be able to extract the most performance out of the
accelerators to achieve global efficiency. Several on-going projects aim at design-
ing dense linear algebra kernels for these platforms, let alone to provide TOP500
performance and ranking.

Thus, it is critical that one of the most basic operations in dense linear algebra,
the matrix-matrix multiplication, has an efficient implementation, whatever the size
of the input matrices, on such architectures. To the best of our knowledge, the only
publicly available library for dense linear algebra kernels on multi-GPU acceler-
ated distributed memory platforms is SLATE [13, 9]. The current implementation
only supports a limited number of operations in a multiple-accelerator setting and
has size limitations: for instance the matrix product C = AB prototype is limited to
problem instances where the entire C matrix can reside in the memory of the GPU
accelerators. On Summit with 6 GPU with 16 gigabytes of memory each, each
node can store a double precision floating-point submatrix C (with 8-byte coeffi-
cients) of size N X N, where N ~ 40,000 (leaving a quarter of the memory for A
and B elements).

The main contribution of this work is the design of a generic and flexible
matrix-matrix multiplication algorithm C = A x B for multi-GPU accelerated distributed-
memory platforms, for matrices unrestricted by the size of the GPU memory. Our
algorithm relies on the classical tile-based outer-product algorithm, but enhances
it with several control dependences to increase data re-use and optimize commu-
nication flow from/to the accelerators within each node. The algorithm is written
within the PARSEC runtime system, which allows for a fast and generic imple-
mentation portable across a variety of architectures, while achieving a sustained
performance close to the practical peak of the machine.

The rest of the paper is organized as follows. Section 2 overviews the main
design principles of our algorithm. An analytical count of the number of inter-
node and node-accelerator communications is given in Section 3. Then Section 4
discusses the main details of the prototype implementation, which is publicly avail-
able [4]. In Section 5, we report preliminary performance results. Section 6 briefly
discusses related work. Finally, Section 7 is devoted to concluding remarks and
directions for future work.
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Matrix multiplication for multi-GPU accelerated platforms 4

Table 1: Key Notations

Notation Explanation

M,K,N size of input matrices A(M,K), B(K,N), C(M,N)

t tile siz (tiles are square)

M;, K;, Ny matrix sizes expressed in tiles

pXq size of processor grid

G number of accelerators per node

bxc size of C blocks

d depth of chunk

(x,,2) index of chunk, 0 <x < X,0<y<Y,0<z<Z
X= % number of C blocks across rows

Y= LMD number of C blocks across columns
Z= K; number of chunks per C block

y4 value of lookahead in terms of chunks

2 Design principles

In this section, we outline the general layout of our matrix multiplication algorithm,
which obeys simple design principles, and whose architecture is inspired by out-
of-core implementations [23, 19, 12]. Key notations are summarized in Table 1.
We partition the original matrices into square tiles, which we distribute among
the participating processes. A coarse grain view of the platform is a 2 dimensional
grid of computing nodes, for which the standard 2D-cyclic layout of tiles is en-
forced. Let A(M,K), B(K,N), and C(N,N) be the three matrices, regularly tiled
into square tiles of size ¢2, and assigned with a 2D-cyclic distribution of tiles onto
a grid of processors of size p x g. For simplicity, assume that ¢ divides M, K and N
and let M, = M /t, K, = K /t and N, = N/t be the number of tiles in each dimension.
We consider a processor grid of size p X g, where p divides M, and g divide N,. The
standard outer product algorithm [1, 25, 6, 5] goes as shown in Algorithm 1.

Algorithm 1: Outer product algorithm.

for k =0 to K; — 1 in sequential do
foralli=0r0 M, —1, j=0to N, — 1 in parallel do
L Task GEMM(I,],k) C,'_yj = Ci,j +Ai,kBk,j

Let (u,v) denote the position of node number gu+v on the grid, with0 <u < p
and 0 <v < ¢. Node (u,v) initially hosts all the tiles A; ;, B;; and C;; whose
indices satisfy to i = u mod p and j = v mod ¢, and is in charge of computing all
these C; ; tiles. At step k of the algorithm (iteration k of the outer loop), tiles A; x
are broadcast horizontally: there are p parallel broadcasts, initiated by each node
on column k, =k mod ¢ on the grid: each processor of index (u,k,) broadcasts its
local N; /p tiles A; ;. across its grid row. Similarly, tiles By ; are broadcast vertically,
and there are g parallel broadcast across grid columns. Then all processors update

RR n° 9289
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their local C; ; matrices. In several implementations, the broadcasts at each step are
organized as pipelined ring algorithms, but any broadcast tree can be used.

Algorithm 1 shows the outer loop as sequential, but in general there is no syn-
chronization enforced across the nodes, and the progression of each node can be
kept independent. Also, overlapping the communications of the next step(s) with
the computations of the current step is a classical approach to ensure that nodes
are kept active all the time. In fact, the nodes have become so powerful (being
multi-GPU accelerated) that prefetching tiles of the A and B matrices is key to per-
formance. Runtime task systems such as StarPU [2] or PARSEC [3] are able to
determine that all A;; and By ; tiles are read-only input data that are ready to be
sent to the processor owning tile C; ; at the very beginning of the execution. This
triggers all the broadcasts in the whole algorithm, meaning that each node ends
up receiving (and storing) M, /p rows of A and N;/q columns of B. Such an ea-
ger communication scheme completely floods the communication network, with
potentially unordered communications, leading to a drop in performance.

To avoid this congestion phenomenon, a simple solution is to partition the C
matrix into blocks and to (logically) compute one block after the other. We use
local blocks of size b x ¢, which means that each processor is in charge of b X ¢
tiles of C within a block. Globally, each block is of size bp X cq. Assume that bp
divides M; and cq divides N, for simplicity, and let X = M,/(bp) and Y = N, /(cq).
Here, b and c are design-parameters, that will be tuned to enhance locality and
re-use, as discussed in Section 3 below. Altogether, the blocks have indices (x,y)
ranging as follows: 0 <x < X, 0 <y < Y. The blocked version writes as shown in
Algorithm 2.

Algorithm 2: Blocked outer product algorithm.

fory=01t0Y —1 in sequential do
for x =0 to X — 1 in sequential do
Compute block (x,y) of C:
for k =0 to K; — 1 in sequential do
forall i = x(bc) to (x+1)(bc) — 1, j=y(cq) to (y+1)(cq) — 1
in parallel do
L Task GEMM(i,j,k)Z C,'J = C,'J JrAi,kBk?j

The end of each C block can be viewed as a synchronizing barrier: only those
tiles of A and B that are needed for the current block are communicated across
the network. This corresponds to bp rows of A and cq columns of B. The main
idea is to choose b and c so that bK; tiles of A and cK; tiles of B would fit in the
main memory of each node, in addition to the bc tiles of C. This leads to a total of
T(K;) = (b+c)K; + bc tiles that need to reside in the main memory of each node.
Note that this global barrier is only logical. We actually implemented a lookahead
version, as explained below.

RR n° 9289
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Now consider the integration of accelerators. For large problems (with large
K;), T(K;) tiles will not fit in the memory of the accelerators. To ensure a good
data-re-use, we further control the execution of each block by partitioning the in-
ternal k loop into chunks of length d, where d is the third parameter of the algo-
rithm. Assume that d divides K; and let Z = K, /d. Inside block (x,y), chunks are
labeled (x,y,z), where 0 < z < Z. The algorithm with chunks writes as shown in
Algorithm 3.

Algorithm 3: Chunked blocked outer product algorithm.

for y=01t0Y — 1 in sequential do
for x =0 to X — 1 in sequential do
Compute block (x,y) of C:
for z =010 Z—1 in sequential do
Compute chunk (x,y,z):
for k = zd to (z+ 1)d — 1 in sequential do
Broadcast d elements of kth row of A and kth column of B
forall i = x(bc) to (x+1)(bc) — 1, j=y(cq) to
(y+1)(cq) — 1 in parallel do
L Task GEMM(i,j,k)I C,"j = C,"j +Ai,kBk7j

Again, the execution of each chunk terminates by a barrier, local to the node,
to prevent that too many elements of A and B to be loaded from main memory to
GPU memory. This barrier controls the amount of tiles that are active on a GPU
at a given time, but does not enforce synchronization between nodes. Now each
chunk requires each node to hold bc tiles of C, and (b + c)d tiles of A and B, for a
total of T'(d) = bc+ (b+ ¢)d tiles. Figure 1 gives a visual representation of these
values.

In the chunked version of the algorithm, the global barrier is enforced after
each chunk (x,y,z), before beginning the computations of the GEMMs that belong
to the next chunk succ(x,y,z). More precisely, each node (u,v) in the processor
grid reaches a local barrier of index (x,y,z,u,v) at the end of chunk (x,y,z), and
this local barrier introduces a control dependency to the global barrier of index
(x,,2z), which in turns enables the inputs needed for the GEMMs of the next chunk
succ(x,y,z) for each node. In Algorithm 3, succ(x,y,z) is computed as follows:

e if z < Z—1, then succ(x,y,z) = (x,y,z+ 1): we proceed to the next fraction
of computations for the current block of C;

o if x <X —1, succ(x,y,Z—1) = (x+1,y,0): we start the next block of C,
which involves the same columns of B but requires new rows of A;

e ify<Y—1, succ(X —1,y,Z—1) = (0,y+1,0): we start the next block of
C, which requires new columns of B (and new rows of A).

RR n° 9289
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Figure 1: Representation of the major variables used in the chunked GEMM algo-
rithm. Matrix A is on the left, B on top, and C at the intersection of A and B. The
highlighted blocks of C are the blocks belonging to the current chunk of coordinate
(x,¥,z) and to the process (0,0) in the p x ¢ process grid. The Gy and G| are the
names of the GPUs on that process that compute these updates. Parts of A and B
that need to be loaded are represented with plain rectangles.

RR n° 9289



Matrix multiplication for multi-GPU accelerated platforms 8

The lookahead version of Algorithm 3 is implemented as follows: at the end of
chunk (x,y,z), each local barrier of index (x,y,z,u,v) points to the global barrrier
of index succ(*V (x,y,7) instead of pointing to the global barrrier of index (x,y,z).
Here, succ't")(x,y,z) denotes the £+ 1-st successor of (x,y,z). The lookahead
parameter ¢ is the fourth (and last) parameter of the algorithm; it is introduced
to allow for prefetching the input data needed for the ¢+ 1 next chunks while
computing GEMMSs of the current chunk. Note that we only prefetch input data,
not the next block of C. Prefetching is more costly when the successors of (x,y,z)
involve a different value of y, because B tiles of two different blocks will co-exist
in memory. In the general case, prefetching with ¢ requires ¢(b + ¢)d extra input
tiles (from A or B) to be stored in memory.

Finally, let G be the number of accelerators per node (G = 6 for Summit).
Assume that G divides ¢ for simplicity. Inside each node, we allocate columns
to accelerators in a wrap-around (cyclic) fashion, so that accelerator g of node
(u,v) is in charge of computing columns j = v+ gg mod (¢G) of C. Within a
block of C, each accelerator is in charge of b rows and & columns of C. Hence
T(d,G) =b§ + (b+ )d tiles must fit into the memory of each accelerator to be
able to compute a full chunk without swapping.

3 Communication volume

In this section, we analytically compute an estimate of the number of tiles that are
communicated across nodes on the network, and from main memory to accelerator
memory within a node.

3.1 Problem size

Let Memy,4. be the available memory per node and Memgpy be the available
memory per accelerator (GPU). We express these quantities in double-precision
words rather than bytes to ease the conversion into matrix sizes. On Summit,
Memypg, = 64 -10° doubles and Memgpy = 2 - 10° doubles.

First, what is the size of the largest problem that fits within a single node?
Assume square matrices with M = K = N, there are 3N coefficients that must fit in
the node memory, hence 3N 2 < Memypge. We find N ~ 145,000. Now, what is the
size of the largest problem whose size would allow the entire C matrix to fit within
the available memory of the G accelerators of a node? The G = 6 accelerators
can accommodate a block of C of size, say, 90K x 90K (and we would for instance
partition the columns across the GPus, allocating a rectangle of size 90K x 15K per
GPU). Such a C block would fill three-quarters of the memory of the G = 6 GPUs,
leaving some space to store few matching A and B tiles. With a square p x p grid
of nodes and square matrices of size N, we need that N < 90,000 x p for the C
matrix to entirely reside in the GPU memory of the Gp? available GPUs.

RR n° 9289
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3.2 Communications

We discuss in terms of tiles of size ¢ to clarify the discussion. Consider a p x g grid
of processes and let M;, K, and N, be the total number of tiles in each dimension.

3.2.1 Inter-node transfers

How many inter-node communications are triggered by the algorithm? There are
X x Y blocks of C, each b rows and ¢ columns on each processor. Hence X = %

and ¥ = IC%. Each block can be accounted for independently. Consider a given
block owned by process P. For each block, we need to communicate b full rows of
A and c full columns of B to process P. Although these communications are parti-
tioned into chunks of size d, we can view them globally. Process P already owns
the 1/g-th fraction of each of these b rows of A and the 1/p-th fraction of these ¢
rows of B. This means that we send bK;(1 — é) tiles of A and cK;(1 — %) tiles of
B onto process P. Note that these sends are usually implemented as part of broad-
casts, but we focus on the volume of inter-process communication here. There is
no inter-process communication involving C tiles. Altogether, process P receives
(b(1— é) +c(l— %))K, tiles per block of C, and it has XY blocks, hence receives

Commiprocess = (b(1 — é) +c(1- %))K,X Y tiles. With pq processes, the grand total
b(1-Ly+c(1-1

is Commypyq = (b(1 — é) +e(l— %))K,Xqu = WM,K,N,. Rather than

being communication-avoiding, our algorithm is communication-redundant. We

voluntarily transmit the same data several times, namely Y times for an A tile and

X times for a B tile; this the price to pay to control locality, data re-use, and allow

the computation of very large products.

3.2.2 Intra-node transfers

Now how-many communications from the memory of each node to the memory
of the accelerators? Each tile of C is read either zero time (for C = AB or one
time (for C = C + AB) and written back once. Again, consider one block of b rows
and ¢ columns of C onto one process. The tiles of B are partitioned across the
accelerators, so each of them receives the 1/G-th fraction of the needed cK; tiles
of B (we had cK;(1 — %) before with inter-node communications, but now we also
need to send the tiles local to the process onto the accelerators). Furthermore, each
accelerator receives bK; tiles of A, be it from the main memory of the node or from
other accelerators from the NVIDIA link.

Altogether, there are several cases, depending upon the problem size. Overall,
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the number of tile transfers Commgpy to each GPU will be given by:
(Cl) Mth + KNy + MrNt

KgG
f M;, K’N’ + be < Memgpy
Ny MK, K,Nt M,N,
(b)cq V4 + K +bqu (1)
if bd + © 1 + ¢ < Memgpy
N; MK, M K;N, M, N,
(I LA
| if bd + <4 + % < Memgpy

CommGPU =

Here is the case analysis to compute Commgpy in Equation (1). There are pg
nodes, each with G accelerators. In all cases, we have to transfer a total of IPW;G’
tiles of C, those that are computed by the GPU. We process by rectangles of size
b x & where b and ¢ are computed so that these %" tiles occupy most of the GPU
memory, say around 75%. As for A and B tiles, it depends on the global problem

size as follows:

* Case (a): This is the case where all the tiles needed by the GPU throughout
the algorithm will fit in its memory: in addition to the N’ tiles of C, there

is a full slice of AI{’ rows of A, hence M;,K’ tiles of A, and a full slice of ;Vé

columns of B, hence % tiles of B;

* Case (b): This is the case where B tiles are loaded only once, meaning that
¢ full columns of B, hence K" tiles of B, fit in memory in addition to the
tiles of C. Now tiles of A are loaded many times, as many as there are block
columns of C, i.e. ¥ = ZX—‘}. We load these tiles by chunks of size bd, hence
the count;

* Case (c): This is the general case for larger problems where g columns of B
do not fit in the GPU memory. Then B tiles are loaded once for each block
row of C, hence X = M‘ times. Of course A tiles are still loaded Y times. We
proceed by chunks of depth d, hence we need space for bd tiles of A and cd

tiles of B in addition to the b(g tiles of C, hence the count.

3.2.3 Optimal values for parameters b, c and d

In our implementation of Algorithm 3, we always aim at loading the largest pos-
sible block of C that will fit in the memory of the GPUs. This is because the
larger the block, the more intensive the data re-use, as shown by numerous stud-
ies [23, 19, 12]. This is also confirmed by the number of transfers reported in case
(c) of Equation (1): each tile of A is loaded X = % times, and we aim at minimiz-

ing X. Similarly, each tile of B is loaded ¥ = ?’—é times, and we aim at minimizing
Y. Typically, we use b = ¢ for square matrices, because square blocks are more
prone to data re-use than rectangles. We compute the values of b and ¢ to ensure
that b x ¢ tiles of C will occupy, say, three quarters of the memory of each GPU.
There are two sub-cases:
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* Case (c1): The simplest case is when b = % and ¢ = %, i.e., when the entire
C matrix fits in the memory of the accelerators. In that case, depending upon
the amount of leftover memory, we will be able to: (i) either load A and B
entirely , and hence only once (case (a)); or only % full columns of B, and
A tiles will cycle and be loaded several times; or both A and B will have to
cycle, because we can only keep bd + % + % tiles in memory (case c)). Note
that case a) is for small problems only, and case b) is unlikely to happen.

* Case (cp): This is the general case for large problems when we have to
partition C into several blocks because the whole C would not fit into the
GPU memories. In that case, X > 1,Y > 1, and A and B are loaded several
times.

In both cases (c¢;) and (cz), once we have chosen b and c as large as possible, we
proceed by chunks of depth d, hence we need additional space for bd tiles of A
and cd tiles of B: we choose d as large as possible while enforcing the condition
bd + % + %‘ < Memgpy.

3.24 Lookahead parameter /¢

Finally, we point out that using a lookahead further constrains the memory: with
¢ =1, we need space for (b+ c¢)d additional tiles in the general case, that of con-
tinuing the computations for the same block of C. Section 5 shows that ¢ =1 is
enough to ensure good performance when there is a single block of C (case cy)).
However, when C is partitioned into several blocks, we also need to renew the C
tiles. When moving to the next block of C, and these additional transfers cannot
be fully overlapped with the computations of a signgle chunk, so we use ¢ = 2 for
case ¢).

4 Implementation

In this section, we detail some implementation elements that are key to understand
the performance of the algorithm.

4.1 Adaptation of the runtime system to the target architecture

The target architecture, featuring multiple accelerators per node, becomes easily
unbalanced in favor of computations, compared to communications. For example,
on Summit, with six GPUs per node, and two P9 sockets, the bandwidth between
a GPU and the closest socket is 50GB/s, but data flowing from one GPU to the
farther socket or to a GPU close to the other socket need to transit through the
X-Bus that links the two P9 sockets. Since this bus has a maximum bandwidth of
64GB/s, it can become easily contended. Similarly, to pull or push data from and
to RAU needs to transit through at least a P9 bus and may need to utilize the X-Bus
between the two sockets.

RR n° 9289
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These architectural constraints encourage two steps in the implementation and
deployment of the runtime system that supports the matrix multiplication algo-
rithm: first, it is highly beneficial to reduce communications that transit through
the X-Bus, and this can easily be achieved by deploying the runtime system with
two processes per node (one process per socket). This way, each node of two sock-
ets and 6 GPUs is presented to the algorithm and the runtime as two entities, each
with a single socket and 3 GPUs. All data sent explicitly by the runtime system
from one process to the other can transit through the X-Bus, but only these data
will transit through it; hence there will be no contention created by eager schedul-
ing policies that pull remote data through complex paths in the node. An added
benefit of this deployment is that it doubles the number of progress threads for
the communication subsystem of the runtime system, enabling it to reach the peak
network bandwidth of the hardware, and reducing the contention on the progress
queues of the underlying communication system.

The second step taken to increase the performance of the runtime system over
this architecture is to enable direct Device-to-Device communications. In the PAR-
SEC programming paradigm we used, communications are implicit: they are de-
duced by the runtime system, from the data flow itself, and implemented in the
background, while other tasks progress. PARSEC manages these transfer by keep-
ing a trace of the data movements through a set of meta-data, called the data copies.
A data copy is a particular instance of a user data, that can reside on a given de-
vice. Multiple data copies that represent the same or different versions of the same
user data on one or multiple devices are connected under a same set, called a user
data. The data flow engine passes data copies between tasks, and instantiates each
copy on the target device when it decides to run a task on it. By default, all ini-
tial data copies seat in the main RAM, when they are initially generated by the
user, or received from the network during the distributed progress of the data flow
execution.

We extended the PARSEC runtime to implement an opportunistic strategy:
when the runtime system detects that a new data copy needs to be instantiated on a
given GPU (typically it did not find a data copy with the appropriate version num-
ber on the target device, either because that copy was never uploaded, or because
it was reclaimed to allow for another computation), it first searches on the other
devices of the same type if another data copy with the appropriate version exists.
If such a copy is found, its usage count is updated to prevent the alternative source
device to release it, and a device to device transfer using the NVLink capabilities of
CUDA is scheduled. Once the copy is instantiated on the target device, the usage
count of the copy on the source device is updated, potentially triggering its release
in the LRU cache, as was already implemented in the runtime system.

4.2 Adaptation of the programming language

In order to guarantee that the input parameters b,c, and d will allow maximum
reuse and minimal data movement, not only must the implementation guarantee
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that only tasks that pertain to specific data can execute at a given time, but also
that the distribution of work between the accelerators remains fixed. The first point
is ensured by the additional control flow that is embedded in the algorithm; the
second point, however, needed some extension of the Programming Language. In-
deed, work assignment between the different computing devices of a same process
is usually opportunistic in PARSEC: work stealing is the default behavior of all
computing devices, including the GPU managers.

PARSEC, however, follows a last-writer heuristic for GPU work-scheduling
in order to minimize the data movement: if a given data has been accessed read-
write recently, and its corresponding most recent copy is residing on a given GPU,
that device is the only one that can execute another task that accesses the data in
read-write mode, until an explicit update of the RAM data copy is requested by the
user. We leveraged this policy to statically assign the device that can work on a
given block of C, by extending the programming language to allow for the explicit
creation of a data copy generated by a task onto a given device. Thus, the GEMM
implementation is modified so that each new chain of updates of a given tile starts
on a specific device, computed according to the algorithms above. Then, as the
algorithm leaves that tile of C resident onto the same GPU until all updates have
been applied, all the work on that tile is guaranteed to be assigned to the same
accelerator.

5 Performance evaluation

All performance measurements are conducted on Summit, a supercomputer with
over 200 Petaflops of double precision theoretical performance [17] hosted at Oak-
Ridge National Laboratory. It consists of 4,600 IBM AC922 compute nodes, each
containing two POWER9 CPUs and six Nvidia Volta V100 GPUs. The POWER9
CPUs have 22 cores running at 3.07 GHz, and 42 cores per node are made avail-
able to the application. Dual NVLink 2.0 connections between CPUs and GPUs
provides a 25GB/s transfer rate in each direction on each NVLink, yielding an
aggregate bidirectional bandwidth of 100GB/s.

The program evaluated below implements Algorithm 3 over the PARSEC run-
time system [3], using the Parameterized Task Graph (PTG) DSL featuring the
extensions described in Section 4. The algorithm implementation, the driver pro-
gram and the extensions are all available online in a fork repository [4]. The PAR-
SEC runtime, the GEMM operation and the driver program were all compiled in
optimized (Release) mode, using XLC 16.1.1-2, CUDA 9.2.148, Spectrum MPI
10.3.0.0 available on the Summit programming environment. The BLAS3 GEMM
kernel was the one provided in the cublas library provided with CUDA.

We measured the practical peak of the GEMM kernel in this version of cublas
and this hardware at 7.2TFLOP/s per GPU. To obtain this value, we ran a single
GEMM operation on large matrices that were pre-initialized in the GPU memory,
repeated the operation 10 times, and took the fastest run measured.
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All performance evaluation results presented below are obtained by measur-
ing the time of executing the parallel double precision real matrix matrix multiply
(PDGEMM) with all data ready in the main memory of the nodes (and nothing on
the GPU memory). The operation is complete only when the resulting C matrix is
back in the main memory of the node, where it started. Each point is measured 5
to 10 times, and all figures showing performance present a Tukey box plot at the
mark. On most figures, the measured variability is so small that the box plot is
hidden by the mark or the line placed at the mean value.

5.1 Single node runs

First, we consider single node runs in order to find the optimal tile size for the
kernel implementation and the available hardware. Figure 2 shows the performance
per GPU, of a square GEMM of size M =K =N = t(m’tﬂw (or equivalently

M, =K, =N, = [70’10001), for different values of the tile size ¢ on the x-coordinate,
and for 1 to 6 GPUs. At this size, each matrix represents 36 GBytes of memory,
and the algorithm has to cycle A and B, with a stationary C (case c¢;)). When
running with 1 to 3 GPUs, even the matrix C is too big to fit on the GPU and
must be cycled by the algorithm (case ¢;)). The parameters b, ¢ and d are chosen
as described in Section 3.2.3: b = ¢, b X c¢ is a divisor of %, and b x é occupies
at most three quarters of the GPU memory. Then d is chosen as a divisor of K;
such that bd + % + b—é tiles fit in the GPU memory. This run uses a single process
to control up to 6 GPUs, incurring potential NUMA effects and overload of the
X-bus.

As expected, performance grows with the tile size up to a plateau. This is
consistent with the traditional roofline model [26]: until a tile size of t = 1,024,
the cost of memory transfers dominates the execution time, and there is not enough
data reuse on the accelerators to keep them working at maximal efficiency. As
soon as a tile size of 1,024 is reached, the arithmetic intensity of the operation
is high enough to mask all RAM to GPU memory communication costs, and the
performance plateau.

The performance per GPU remains close to the practical peak (;95% for tile
sizes bigger than 1,024), for 1 to 3 GPUs, showing excellent strong scalability at
this problem size. When adding more GPUs, from 4 to 6 (maximum available on
the hardware), the performance per GPU drops slightly but remains high a 85%.
The issues due to X-bus usage and longer times to upload or download memory
between the GPUs and the RAM depending on the NUMA bank and the target
GPU also translate in a higher variability of the measurements: at 6 GPUs, the first
quartile of the runs can get up to 17% slower than the mean value. This perfor-
mance drop and variability increase is justified by the hardware, and motivates that
the other experiments allocate two PARSEC processes per node. Based on this
evaluation, we also select a tile size t = 1,024 for all subsequent experiments.
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Figure 2: Performance of double precision matrix product (PDGEMM) for three
square matrices of size 70,000 x 70,000, on a single node of Summit, for a varying
number of GPUs and a varying tile size

5.2 Distributed runs

We evaluate the implementation on square grids of processes. Since two processes
are assigned the same node, the grid of nodes is p x §: two consecutive processes
on the process grid are sharing the same tile-rows of the three matrices. Figure 3
shows the performance measured for different problem sizes, using different pro-
cess grids, and different values of the lookahead.

The problem size is represented with the x-coordinate, and the colors of the
lines define the process grid size, from 2 x 2 (12 GPUs) to 12 x 12 (432 GPUs).
Mean values for the measurements are represented with different markers: a plus
represents the case a) above, when the data fit on the GPU memory. A single run
in the 2 x 2 process grid experiments falls in that category. Then, a star represents
the case (c1): C is distributed amongst the GPUs and remains static, with parts
of A and B cycling multiple times from RAM to GPUs, in order to complete the
product. Last, squares represent the case (c;): C itself is too large to fit on the
GPU memory, and needs to be cycled with A and B. Last, a plain line links the
runs made with a lookahead ¢ = 1, while some runs with a lookahead ¢ = 2 are
linked together with a dashed line.

In all the runs, the parameters b, ¢, and d are selected according to the strategy
described in Section 3.2.3: first, we aim at leaving C static on the GPUs, until it is
not possible anymore, in which case C is split into even blocks of size b x ¢ with
¢ = b, and then d is used to fill the GPU memory with even chunks of A and B.

With the problem size increasing, and up to the point where it reaches the case
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Figure 3: Performance of real double precision matrix-matrix product (PDGEMM)
on Summit for variable numbers of nodes and variable problem sizes

(c2), the measured performance is consistent with the roofline model: performance
grows with the problem size, until it reaches a plateau. Up to a process grid of
6 X 6, this plateau is maintained, even when the task system transits from the case
(c1) to the case (cz). Almost no performance degradation is measured during that
transition. For the larger runs, however, a steep performance drop is observed when
this transition happens. As the scale of the system increases, that drop increases.
Then, the performance grows again until it reaches the same plateau.

As illustrated in Figure 3, that performance drop is due to a small lookahead
parameter. With a lookahead ¢ = 1 (plain lines), only the data necessary for the
execution of the next local chunk is pre-fetch by the runtime system (the input
tasks artificially depend upon the execution of the global barrier). When operating
on a static C, each new local block of tasks requires to load tiles of A or B from
the network The lookahead of 1 is sufficient to allow this load to happen in parallel
with the computation. However, when the algorithm reaches the step where the
current block of C must be switched with the next one, it needs to upload to the
GPU the new block of C, together with all the corresponding tiles of A and B.
This rush of data is too high for the network to sustain it within the execution of a
single local block, and GPUs become idle during each transition from one C block
to another. As the problem size continues to increase, that number of transitions
remains the same for a large set of problem sizes and grid sizes, while the overall
duration of the computation increases, so the performance increases again.

With a lookahead ¢ = 2, this drop of performance is absorbed by the system
much sooner: the idling itself is reduced, by allowing more time to overlap the
communication of future tiles with the current computation. We conducted exper-
iments with a lookahead of 3, 4 and 5, without measuring additional performance
gains. A lookahead of ¢ = 8 exceeds the memory capacity of the machine.
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Figure 4: Performance of real double precision matrix-matrix product (PDGEMM)
per GPU on Summit for variable numbers of nodes and variable problem sizes

Figure 4 represents the same data, but reports the performance per GPU, and
keeping only the runs with the best lookahead for each measurement. The figure
shows more clearly that the task system is capable of reaching close to peak per-
formance, and of maintaining this performance when the problem size does not
fit in the accumulated GPU memory, which is a unique feature at the time of this
writing.

To validate the communication model of Section 3, we collected the amount
of GPU communications during all previous experiments. We measure indepen-
dently how many bytes are transferred from the RAM to each GPU (H, D transfer),
from any other local GPU to each GPU (D, D transfer), and from each GPU to
the RAM (D,H transfer). We then compare the amount of data loaded per each
GPU (H,D + D, H), with the communication model, and represent this in Figures 5
and 6. Figure 5 shows the number of tiles loaded, and the number of tiles loaded
from RAM only, as well as the number of tiles that should be loaded according
to the algorithm analysis, while Figure 6 shows the same information as a ratio to
the model prediction. The x-coordinate for these two figures is any run presented
above, so they are sorted in an arbitrary order.

There were three case (a) measured, and the rest are cases (¢ ) and (cz), evenly
distributed. In all cases, approximately 95% of the number of tiles predicted to be
loaded is indeed loaded by a GPU. The number of actual loads is slightly smaller
than predicted by the model. This is due to the cache policy of PARSEC when
managing the GPU memory: when a tile is loaded onto the GPU, it remains there
unless the space is needed. When it is time to allocate a space for a tile, the PAR-
SEC runtime needs to eject an old one that is not currently in used. To do so, it
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maintains a LRU of the currently not-in-use tiles, and ejects the least recently used.

The parameters b,c, and d are selected to use as much memory as possible,
but also to distribute the load evenly between the blocks. As a consequence of
this choice, there is always a few hundred tiles of GPU memory that are not in the
active set of a given local block. The PARSEC runtime takes advantage of this
slack in memory management to slightly increase the data reuse, compared to the
algorithm model, and this explains the 5% difference.

More importantly, this figure shows that about 50% of all the loads are made
device to device: only half of the memory loads are issued from the RAM, and the
other half comes from another GPU that already loaded the required tile. This is
also a consequence of the strong synchronization implemented in the algorithm: as
all GPUs work on chunks of updates that are at most 1 away from each other, the
probability that they require the same data is high. The opportunistic approach that
replaces a RAM access by a device-to-device access hits half the time, reducing by
as much half the load on the bus to the RAM.

6 Related work

The design of matrix product algorithms for high-performance computing plat-
forms has received considerable attention in the recent years. On the theoretical
side, several authors have aimed at minimizing the number of communications for
rectangular matrices of arbitrary sizes, since the seminal paper of Hong and Kung
on the I/0O pebble game [11]. Due to lack of space, we refer to a recent report [14]
which provides a good overview and multlple references. Cache-oblivious algo-
rithms are surveyed in [10, 21].

Out-of-core algorithms for matrix product have been developed to optimize the
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number of transfers between hard disks and main memory. The pioneering work of
Toledo [23, 12] suggested to load three equal-size square blocks of A, B and C into
main-memory, while a refined analysis [19] suggests to load the largest possible
block of C, one slice of B and to cycle tiles of A. The chunked algorithm is an
extension of this approach to multi-GPU accelerated platforms, where the chunk is
needed to increase granularity and properly feed the GPUs.

On the practical side, many libraries provide an implementation of matrix-
product for distributed-memory machines [20, 18, 8, 7, 9]. But as already stated,
only SLATE [9] is capable of dealing with multi-GPU accelerated nodes, and cur-
rently suffers from the limitation that the whole C matrix must fit into the (cumu-
lated) memory of the accelerators. In other words, there must be a single block
of C, this is case (c;) of Section 3.2.3. On the contrary, our implementation with
PARSEC does not have any limitation.

7 Conclusion

This work has introduced a simple and flexible matrix-multiplication algorithm for
multi-GPU accelerated distributed-memory platforms. We designed a prototype
implementation that achieves a sophisticated management of transfers from node
memory to GPU memory, thereby guaranteeing optimal data re-use. The GPUs
are kept fully active by using a partitioned version of the computations into chunks
whose size is large enough to launch many GEMMs in parallel, while allowing
all input data to fit into GPU memory. Chunk data transfers are orchestrated so
as to prevent swapping, but with some overlap to avoid starvation and unneces-
sary synchronization. Altogether, we report preliminary performance results that
squeeze 85% of the peak performance of the platforms, and this even for larger
instances that do not fit into the cumulated memory of the platform GPUs. This
very good performance is achieved within a short time-frame, owing to the flex-
ibility and extended capabilities of the PARSEC task runtime system. It would
be straightforward to implement the algorithm onto a different GPU-accelerated
distributed-memory platform.

Future work will be devoted to extending the algorithm to handle the case of
matrices with irregular tiles. More precisely, in the TESSE framework [22], we
have to multiply matrices whose tiles can have very different sizes across rows and
columns. Moreover, a significant fraction of the tiles is in fact empty, making the
matrix block-sparse. This new setting raises new levels of difficulties, including
refined allocation techniques and load-balancing strategies.
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