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Machine Learning for Next-Generation Intelligent
Transportation Systems: A Survey

Tingting Yuan, Wilson da Rocha Neto, Christian Esteve Rothenberg, Katia Obraczka,
Chadi Barakat, and Thierry Turletti

Abstract�Intelligent Transportation Systems, or ITS for short,
includes a variety of services and applications such as road traf�c
management, traveler information systems, public transit system
management, and autonomous vehicles, to name a few. It is
expected that ITS will be an integral part of urban planning and
future cities as it will contribute to improved road and traf�c
safety, transportation and transit ef�ciency, as well as to increased
energy ef�ciency and reduced environmental pollution. On the
other hand, ITS poses a variety of challenges due to its scalability
and diverse quality-of-service needs, as well as the massive
amounts of data it will generate. In this survey, we explore the use
of Machine Learning (ML), which has recently gained signi�cant
traction, to enable ITS. We provide a comprehensive survey
of the current state-of-the-art of how ML technology has been
applied to a broad range of ITS applications and services, such as
cooperative driving and road hazard warning, and identify future
directions for how ITS can use and bene�t from ML technology.

Index Terms�Intelligent Transportation System (ITS), Ma-
chine Learning (ML), Cooperative Driving, Autonomous Vehicles

I. INTRODUCTION

Intelligent Transportation Systems, or ITS for short, typ-
ically refers to the application of information, communica-
tion, and sensing technology to transportation and transit
systems [1]. ITS is likely to be an integral component of to-
morrow’s smart cities [2] and will include a variety of services
and applications such as road traf�c management, traveler
information systems, public transit system management, and
autonomous vehicles, to name a few. It is expected that ITS
services will contribute signi�cantly to improved road and traf-
�c safety, transportation and transit ef�ciency, as well as to in-
creased energy ef�ciency and reduced environmental pollution.
While ITS applications have been enabled by unprecedented
advances in sensing, computing, and wireless communication
technology, they will pose a variety of challenges due to their
scalability and diverse quality-of-service needs, as well as the
massive amounts of data they will generate.

Recently, Machine Learning (ML) techniques have gained
signi�cant traction enabled by a variety of technologies,
notably cloud and edge computing. ML has been used by
a diverse set of applications, that similarly to ITS services,
impose a wide range of requirements. In particular, ML

Tingting Yuan, Chadi Barakat and Thierry Turletti are with Inria, Uni-
versity C�ote d’Azur, Sophia Antipolis, France. tingt.yuan@hotmail.com
chadi.barakat@inria.fr, thierry.turletti@inria.fr.

Wilson da Rocha Neto and Christian Esteve Rothenberg are with University
of Campinas. wborbaneto@gmail.com, chesteve@dca.fee.unicamp.br.

Katia Obraczka is with UC Santa Cruz. katia@soe.ucsc.edu.

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
Year

0

200

400

600

800

1000

1200

1400

N
um

be
r 

of
 A

rt
ic

le
s

65 86 95 116 149 175 204
304

590

1046

1316

55
103 102 138 131

195 227 191
244 286 282

ML based researches

Others

Fig. 1: Number of publications on ITS from 2010 to 2020.

approaches such as deep learning and reinforcement learning
have been useful tools to explore patterns and underlying
structures in big data sets for prediction and accurate decision
making [3-5]. Statistics on published papers in the recent ten
years con�rm this trend as can be seen in Fig. 1, which shows
an obvious increasing trend of research works proposing the
use of ML to enable and optimize ITS tasks.

The question of how to explore and adapt ML to address
ITS applications’ distinctive characteristics and requirements
remains challenging and offers promising research directions.
Some literature surveys have explored the broad �eld of
ITS, we provide a comparison of the recent surveys on the
topic in Table I. Notable works include [6-13], which focus
on speci�c aspects of ITS, such as vehicle detection [6-8],
VANET safety [9], VANET performance optimization [10],
and autonomous vehicle control [13]. However, none of these
surveys covers the usage of ML in ITS and its role in enabling
tasks such as perception, prediction and management.

The main goals of this paper are: (1) to provide a com-
prehensive survey of the current state-of-the-art of how ML
technology has been applied to a broad range of ITS appli-
cations and services, such as co-operative driving and road
hazard warning, and (2) to identify future directions for how
ITS can use and bene�t from ML technology. To this end, the
contributions of our survey can be summarized as follows:

� First, we present an overview of ITS based on an ITS
application-centric framework we propose.

� Second, we explain how ML can be used by ITS appli-
cations.

� Third, based on the application-centric ITS framework,
we provide a detailed review of the current state-of-the-
art on the application of ML to ITS.

� Finally, we discuss future trends and research directions
on how ML can be applied to bene�t ITS applications.

The structure of the paper, which is illustrated in Fig. 2,
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TABLE I: Comparison with other recent surveys on ITS

Ref. Year Scope Comments

[6] 2019 Survey on vision-based
vehicle re-identi�cation.

Only for vehicle re-
identi�cation, one of
perception tasks.

[7] 2019 Survey on 3D object de-
tection for autonomous
driving applications.

For 2D and 3D object de-
tection, one of perception
tasks.

[8] 2019 Survey on object detec-
tion.

More general survey of
perception tasks, not fo-
cused on ITS.

[11] 2019 Survey on AI-driven ve-
hicular systems.

Focused on vehicular ap-
plications, but lacks cov-
erage of some recent re-
search on the topic such as
4D and 5D detection.

[12] 2020 Survey on visual percep-
tion in industry intelli-
gence.

Only for visual perception
in industrial scenarios.

[13] 2020 Survey on deep learning
for autonomous vehicle
control.

Focused on autonomous
vehicle control, one of the
management tasks.

Ours Survey on ML in ITS in-
cluding perception, pre-
diction, management.

Overview of ML for main
tasks in ITS.

is as follows. In Section II, we present an overview of ITS
and in Section III, review some of the most prominent ML
and discuss how they can be employed by ITS applications.
Sections IV, V, and VI describe current studies that apply
machine learning to various ITS tasks, which mostly focus on
researches published in the last two decades. In Section VII,
we highlight several open research issues and discuss some
future trends. Section VIII concludes the survey with a brief
summary.

II. ITS OVERVIEW

ITS is a relatively recent- but fast-evolving area and has
been attracting considerable attention from the research and
practitioner communities. This section provides an overview of
ITS, including: (1) de�ning how ITS is currently understood,
(2) listing some of more prominent applications and services
of ITS, (3) proposing an application-centric framework for
ITS that will serve as the basis for the survey, and (4)
identifying basic tasks that are used as building blocks by
ITS applications.

A. Working De�nition of ITS

Even though ITS is a relatively recent term, its de�nition has
been evolving ever since it was �rst proposed in the 90’s [14].
Stakeholders tend to have different but not disassociated views
of what ITS means. The U.S. Department of Transportation
(DOT), for example, de�nes ITS as a mean to achieve safety
and mobility in surface transportation through the application
of information and communication technologies [15]. In this
case, surface transportation refers to transportation by roads,
rail, or water and excludes air transportation. The European
Union (EU) uses a similar de�nition but limits surface trans-
portation to transportation by roads [16]. This focus on surface
transportation can be explained by the distinct characteristics
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Fig. 2: Overview of the survey organization.

of aerial, marine, and terrestrial transportation in terms of
several aspects, including usage and security [17].

Other de�nitions approach ITS from different points of
view, e.g., focusing on the bene�ts that ITS can provide to ITS
users (including drivers, passengers, and pedestrians) through
the use of services aiming at traf�c ef�ciency, security [17]
(e.g., speed- and road condition monitoring, weather forecast-
ing), etc. Such services usually rely on the interaction between
vehicles and road infrastructure, which in turn motivates the
idea of Cooperative ITS.

Cooperative ITS (C-ITS), leverages Vehicle-to-Everything
(V2X) communication [18] and is consistent with the current
effort towards �smart and connected vehicles� as illustrated by
standardization activities worldwide [2]. The vision of intel-
ligent, interconnected transportation systems is aligned with
the U.S. Department of Transportation (USDOT) Connected
Vehicle Pilot Program [19] which views ITS as a �mean to de-
ploy applications utilizing data captured from multiple sources
across all the elements of surface transportation system�.

Based on these current ITS de�nitions, in this survey, we
de�ne ITS as the means to interact with road transporta-
tion systems and deliver improved security, ef�ciency, and
comfort to users through the deployment of applications that
employ information, communication, and sensing technology.
To further elaborate on this de�nition, we discuss notable ITS
applications next.

B. ITS Applications

Different ITS stakeholders propose different classi�cations
for ITS applications. For example, the CAR-2-CAR Com-
munication Consortium (C2C-CC) groups ITS services in (1)
Awareness driving (e.g., speed and position); (2) Sensing driv-
ing (e.g., pedestrian detection); and (3) Cooperative driving
(e.g., turning intention) and movement coordination between
vehicles [21]. The ISO 14813-1, in turn, groups ITS services
in 11 domains, ranging from traf�c management operation
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TABLE II: Examples of ETSI’s Basic Set of Applications (BSA) [20]

Application Class Application Objective Use Case Examples

Active Road Safety

Driver assistance - co-
operative awareness

Signal the presence of vehicles (e.g., slow and emer-
gency ones) and inform surrounding vehicles about
actions or maneuvers.

� Slow vehicle indication
� Emergency vehicle warning

Driver assistance - road
hazard warning

Warn surrounding vehicles about possible hazards and
safety concerns (e.g., hard breaking, wrong way driv-
ing).

� Stationary vehicle warning
� Traf�c condition warning

Cooperative collision
avoidance or mitigation.

Avoid collisions and mitigate their impacts. � Across traf�c turn collision risk warning
� Pre-crash sensing

Cooperative Traf�c
Ef�ciency

Speed management Warn vehicles about speed discipline. � Regulatory/Contextual speed limit noti-
�cation

Co-operative navigation Allow information exchange aiming traf�c navigation
coordination and ef�ciency (e.g., intersection manage-
ment and adaptive cruise control).

� Traf�c information and recommended
itinerary
� Enhanced route guidance and navigation

Cooperative Local
Services

Location based services Provide information for local commercial or non- com-
mercial services (e.g., food and parking) and multimedia
access.

� Media downloading
� Automatic access control and parking
management

Global Internet
Services

Communities services Enable interaction, monitoring and management of �-
nancial and insurance services provided by the wider
Internet.

� Fleet management
� Insurance and �nancial services

ITS station life cycle
management

Manage services and the functioning of the ITS infras-
tructure).

� Vehicle Software/data provisioning and
update
� Vehicle and RSU data calibration
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Fig. 3: Proposed application-driven ITS framework.

to weather and environmental conditions monitoring [17].
The USDOT Connected Vehicle Pilot Program (CV Program)
lists different applications categories, some of which (e.g.,
V2V/V2I safety and V2I mobility applications), have started
to be implemented in US cities. Examples of CV Program’s
applications include forward collision warning, intelligent
traf�c light and pedestrian crosswalk [22]. The European
Telecommunications Standards Institute (ETSI) proposed the
Basic Set of Applications (BSA), which is illustrated in
Table II. A comprehensive description of ETSI applications
is presented in [23]. Because ETSI’s BSA is well known
and widely adopted, we use it in this survey to guide our
exploration of ITS applications including our application-
driven ITS framework, which is described in detail below.

C. Application-driven ITS Framework

Our application-driven ITS framework is inspired by ETSI’s
BSA. As illustrated in Fig. 3, the proposed framework is
structured in three layers, namely: infrastructure-, resource-
and orchestration, along with an application realm.

1) ITS Environment: ITS applications and services inter-
act with the ITS physical environment which comprises:
transportation infrastructure, environmental conditions, and
users. Transportation infrastructure includes vehicles, traf�c
lights, traf�c signs, roads, toll booths, road elements (e.g.,
speed bumps), and other road infrastructure. Example of
environmental conditions are weather, lighting, geography, and
road conditions. Finally, ITS application users include drivers,
passengers, pedestrians, and operation and management per-
sonnel. The interaction between transportation infrastructure,
environmental elements, and users contributes to the complex-
ity, heterogeneity, and dynamicity of the ITS environment.

2) Infrastructure Layer: The infrastructure layer is re-
sponsible for collecting data from the ITS environment and
delivering it to the other ITS framework players. Therefore, the
infrastructure layer comprises both a (i) sensing infrastructure
which includes all data collection devices (e.g., sensors); and
(ii) communication infrastructure consisting of networking
equipment responsible for enabling data access and exchange.

As roads, vehicles, pedestrians, and passengers carry an in-
creasing number and variety of sensors (e.g., Internet of Vehi-
cles (IoV) [24, 25], On-Board Units (OBUs) [26]), the sensing
infrastructure must be able to acquire and communicate sensed
information at unprecedented scale and heterogeneity. While
sensors such as cameras, light radars (LiDARs) and ultrasonic
sensors offer visual data to ITS applications, kinetic sensors
(e.g., accelerometers), magnetic sensors (e.g., compasses), and
position tracking systems (e.g., global positioning system)
provide scalar information. Road-side units (RSUs), access
points (APs), routers, switches, and transceivers enable com-
munication amongst ITS users and components (e.g., Vehicle-
to-Infrastructure (V2I), Vehicle-to-Vehicle (V2V)) using stan-
dards like 4G/5G and IEEE 802.11p [27].

Besides, Unmanned aerial vehicles (UAVs) [28] are a new
type of vehicles in ITS, which cement the ITS participants with
high mobility. Recently, the enthusiasm for utilizing UAVs
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into a proliferation of �elds has exploded, thanks to advanced
technologies and their reduced cost. UAVs can play various
roles in ITS [29], such as aerial deliveries, aerial traf�c signals,
and aerial cameras.

3) Resource Layer: ITS applications and data collected by
the infrastructure layer can use a plethora of services provided
by the resource layer. Such services include computing, net-
working, storage, and energy. Storage resources are used to
store historical data and computational results locally or in
clouds. Computing resources provide data processing capabil-
ities, including fog computing and cloud computing services
deployed in dedicated hardware or virtual environments (e.g.,
virtual machines or containers). Networking resources are
used to deliver data and include physical- and virtual net-
working functions performed by communication infrastructure
elements [30]. Finally, energy resources provide power to the
ITS infrastructure, ensuring its continuous availability.

4) Orchestration Layer: Since ITS applications have dif-
ferent resource requirements and resource access priorities,
services provided by the resource layer need to be delivered
to applications according to their needs. As such, resource
allocation is one of the main roles of the orchestration layer,
which creates abstract representations, or models, for the
resource- and infrastructure layers in order to schedule their
resources and services and address the different needs of ITS
applications. Orchestrators then provide an interface between
ITS applications and the resource- and infrastructure layers
handling requests from different applications, scheduling the
appropriate resources and/or obtaining requested information
to ensure applications receive the quality-of-service they need.
By providing this �bridge�, the orchestration layer also facili-
tates application development and deployment. Embodiments
of the orchestration layer include Software De�ned Network-
ing (SDN) [31] controllers and applications as well as network
service orchestrators [32].

5) ITS Application Realm: As previously discussed, there
is a wide variety of ITS applications ranging from driver
assistance to traf�c ef�ciency and media downloading. ITS
applications need access to distinct resources, infrastructure,
and data. To capture the different needs of ITS applications,
we classify them into three different groups, namely: local,
global, and hybrid applications.

Local applications rely solely on data collected locally.
Cooperative collision avoidance is a typical example of local
application as it tries to identify possible crashes collecting and
exchanging information from the vehicle and its immediate
surroundings.

Global applications, on the other hand, require information
that transcends a speci�c locality. Road hazard warning ser-
vices, for example, collect different kinds of traf�c events and
use the information obtained from the orchestration layer to
enforce desired policies. For instance, in the case of stationary
vehicle warning, the road hazard warning application receives
stationary vehicles event information (e.g., where and when
it happened) and decides which geographical areas should
receive information about interested the event.

Finally, hybrid applications can use both local as well as
global information. Cooperative navigation services, for ex-

Fig. 4: Depiction of how ITS applications exploit tasks for
collision avoidance (adapted from Alam et al. [23]).

ample, can access optimized traf�c information data provided
by a server connected to the orchestration layer and use the
local perception of traf�c and hazards to de�ne the better
route for a vehicle. Note that, as illustrated in Fig. 3, ITS
applications which are represented by the application realm in
the proposed ITS framework can interact with all other layers
of the framework.

D. ITS Application Tasks
The wide scope of use-cases and the constant interactions

with the dynamic ITS environment raise challenges to ap-
plication deployment. For example, ITS applications need
to abstract valuable information and take actions based on
massive amounts of data. Because of this, ITS applications
are required to have competencies or perform speci�c tasks
to achieve their main objectives, i.e., providing ef�ciency,
security and comfort to the ITS environment and its users.

To better understand and deploy ITS applications, some
studies try to divide ITS applications into tasks. For example,
works in [33-35], which focus on driver assistance and co-
operative driving applications for semi-autonomous and au-
tonomous vehicles, give some examples of ITS tasks decom-
position. In this paper, we expand the concept of ITS tasks in
order to support the wide range of ITS applications. To this
end, we categorize ITS tasks tasks into (i) perception tasks, (ii)
prediction tasks, and (iii) management tasks. In the following
subsections, we de�ne and discuss the challenges for each
task. We also showcase how ITS applications can exploit such
tasks using Fig. 4 as an example of the interaction between
two applications, namely cooperative collision avoidance and
road hazard warning and the ITS framework.

1) Perception Tasks: Perception tasks are those that try
to detect, identify and recognize patterns of data to repre-
sent and understand the presented information. These tasks
are leveraged in today’s transportation systems due to the
widespread use of sensors, shifting the challenge from how to
gather to how to interpret data. With perception, ITS applica-
tions can receive information extracted from the environment.
For example, as depicted in Fig. 4, a co-operative collision
avoidance application interacts with the sensing infrastructure
of a vehicle, collecting data and using perception to raise
awareness of the surrounding environment. On the other hand,
the perception of road signs task identi�es signs on the side of
a road, providing a decision parameter to speed management
applications.

Nevertheless, the broad spectrum of data and variety in
the sensing infrastructure technologies [25] represent data
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fusion [36] and big data problems, which impact the ITS
perception. For example, the variety of vehicles with different
mobility patterns and physical features can impact how they
are identi�ed by a co-operative collision avoidance appli-
cation. On the other hand, camera images for a road sign
detection task deal with signs in different physical conditions,
angles, and brightness, which can change the perception of the
sign [37].

Even with these concerns, the perception tasks are expected
to be robust and stable, since their outputs are used in
the applications’ decision-making process. As new sensor
technologies [25] arrive in transportation systems, perception
tasks have to deal with new features. Standardization between
manufacturers [2] and the de�nition of a standard protocol [24]
are possible solutions to overcome challenges leveraged by
heterogeneity. However, solely adopting a global automated
data collection scheme is not enough. What ITS perception
really needs is real-time and situational assessment, which can
be achieved by the improvement of machine cognition [38].

2) Prediction Tasks: Prediction tasks, as their name sug-
gests, try to predict future states given historical and real-time
data. Due to dynamic ITS environment, these tasks are used
by proactive applications, which attempt to prepare for future
states by prediction. For example, the co-operative collision
avoidance application illustrated in Fig. 4 needs to predict
where a vehicle will be in a future point in time, prematurely
identify an accident and apply actions to mitigate or lessen
impacts (e.g., pre-crash warning use-case).

However, the heterogeneous and dynamic ITS environment
hinders the accuracy of prediction tasks. Besides, uncertainty,
ambiguity, and quality of the information are also crucial in
state prediction. For instance, in a traf�c �ow prediction task,
a plethora of factors are relevant, including time-related (e.g.,
day of the week, day’s schedule and holiday impact), vehicle
proportion (e.g., number of cars in relation to bicycles), acci-
dents, weather and even sociocultural ones (e.g., the behavior
of drivers in a speci�c country). Because of this, extracting
the correct features to give a precise prediction is a challenge,
which restricts the scope of prediction solutions.

3) Management Tasks: Management tasks are responsible
for dictating the behavior in ITS. Management tasks are
needed to provide a systematic and reliable solution for a
given problem. For example, in Fig. 4, a co-operative collision
avoidance application, after perceiving a vehicle ahead and
predicting a crash, has to use management tasks to control
the vehicle’s trajectory and motion to avoid the accident. If a
vehicle fails to avoid the collision, the orchestration layer can
gather information about the crash and provide it to a global
road hazard warning application. The latter application will
elect geographical locations and manage message dissemina-
tion policies to warn nearby vehicles about the crash (e.g.,
stationary vehicle warning use-case), leveraging the use of
management tasks.

As soon as the scope covered by an ITS application keeps
growing, the increased number of data necessary to deploy
a management solution can compromise the scalability of
the solution. Therefore, optimization in management is essen-
tial. Even for local applications, stringent time requirements
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Fig. 5: A taxonomy of mainstream ML approaches.

TABLE III: Comparison of SL, UL and RL

Techniques Data format Objective Feedback

SL labeled training data predict direct
UL no-labeled explore no feedback
RL zero-shot, but interact take action reward

demand optimal use of computational resources. Moreover,
the heterogeneity of nodes and applications leverage concerns
to network management, since essential nodes and sensitive
applications must be prioritized to lessen the data transfer
latency. The availability of data is yet another concern since
a management system has to decide how the needed data can
be retrieved.

III. MACHINE LEARNING FOR ITS

In this section, we discuss the potential of using ML in ITS,
focusing on how ML can integrate and enhance perception,
prediction, and management tasks. We provide a background
on the mainstream ML approaches, introducing nomenclature
and concepts typically found in the surveyed literature. An
ML-experienced reader may jump the ML background and go
directly to Section III-B, in which how ML works in ITS is
discussed.

A. Machine Learning

ML is an area of computer science, which emphasizes
the intelligence of machines in performing human-like tasks.
In this subsection, we focus on mainstream ML approaches,
including Supervised Learning (SL) [39], Unsupervised Learn-
ing (UL) [40], Reinforcement Learning (RL) [41], and Deep
Learning (DL) [42]. In order to have a better understanding
of state-of-the-art ML approaches, we provide a brief review
following the taxonomy presented in Fig. 5.

1) Supervised Learning: SL models relationships and de-
pendencies between predicted output and the input features.
It does so by inferring a classi�cation or regression from a
labeled training dataset. A training dataset is composed by
examples used for learning. Labeled data is a group of samples
that have been tagged with target variables. Based on the
function learned from the training data, SL can predict the
output values for new data.

According to its role, most of SL algorithms can be split
into two major categories:
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� Classi�cation algorithms learn to predict a category as
the output for a new observation, on the basis of la-
beled training data. For example, Support Vector Machine
(SVM) [43], and Adaptive Boosting (AdaBoost) [44] are
representative classi�cation algorithms.

� Regression algorithms work for the regression problem
whose output variable is a real or continuous value, such
as �salary� or �weight�. Many different approaches have
been proposed for the regression problem. The simplest
one is the Linear Regression (LR) [45], which tries to �t
data with the best hyper-plane going through the points of
training data. Another famous example is Support Vector
Regression (SVR) [46].

Note that some algorithms are applied on both classi�-
cation problems and regression problems, such as k-Nearest
Neighbors (k-NN) [47], Random Forest (RF) [48] and Boosted
Regression Trees (BRT) [49].

2) Unsupervised Learning: UL is a data-driven knowledge
discovery approach that can infer a function describing the
structure from datasets consisting of input data without labeled
responses. Unsupervised algorithms can be split into two
different categories:

� Clustering algorithms, such as K-means clustering [50],
discover the inherent groupings in the data.

� Dimension reduction algorithms, such as Principal Com-
ponent Analysis (PCA) [51] and Independent Component
Analysis (ICA) [52], �nd the best representation of the
data with fewer dimensions.

3) Reinforcement Learning: RL aims to learn how to take
a sequence of actions in an environment in order to maximize
cumulative rewards. RL can be a zero-shot learning, which
means it can begin to learn with no data. Fig. 6 depicts the
working mechanism of RL combined with the ITS environ-
ment. The ITS environment includes all the ITS layers and
the surrounding environment (for instance, the road condition).
The agent in RL is the component that makes decisions on
which action ought to take. To achieve it, the agent needs the
ability to interact with the environment to obtain data (state,
action, and reward). Then, with the obtained data, the agent
can train and update itself to provide better decisions. RL
algorithms can be split into three different kinds:

� Value-based algorithms are based upon temporal dif-
ference learning to obtain value function, which esti-
mates how good to take speci�c actions on given states.
Q-Learning [53], SARSA [54], and Deep Q-Network
(DQN) [55] are three typical value-based RL.

� Policy-based algorithms directly learn optimal policy or
try to obtain an approximate optimal policy based on
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Fig. 7: ML pipeline and interaction between ML and ITS.

the observation, such as Policy Gradients (PG) [56] and
Deterministic Policy Gradient (DPG) [57].

� Imitation algorithms [58] (also called Apprenticeship
Learning - AL) try to make decisions using demonstra-
tions, which usually obtain a good performance when
the reward function is dif�cult to specify or sparse and
when it is challenging to optimize actions directly. These
algorithms can deal with unexplored states (i.e. new
states not in the training data) so that they offer more
reliable frameworks for many tasks such as self-driving
cars. Generative Adversarial Imitation Learning (GAIL)
and Reward Augmented Imitation Learning (RAIL), are
mainstream AL methods.

Hybrid algorithms combine value-based algorithms with
policy-based algorithms. Their goal is to represent the pol-
icy function by policy-based algorithms, where updates of
policy functions depend on value-based algorithms. For ex-
ample, Actor Critic (AC) [59], Asynchronous Actor-Critic
Agents (A3C) [60] and Deep Deterministic Policy Gradients
(DDPG) [61] are typical hybrid algorithms.

4) Deep Learning and Neural Networks: DL is famous in
various �elds, its success mostly relies on arti�cial neural net-
works (ANNs). ANNs have become a trendy method for data
representation. An ANN consists of a set of interconnected
nodes designed to imitate the functioning of the human brain.
Each node has a weighted connection to several other nodes
in neighboring layers. Individual nodes take the input received
from connected nodes and use the weights together with a
simple function to compute output values. ANNs, especially
Deep Neural Networks (DNNs), became attractive inductive
approaches owing to their high �exibility, non-linearity, and
data-driven model building.

The main kinds of neural networks are Fully-connected
Neural Networks (FNNs), Convolutional Neural Networks
(CNNs) and Recurrent Neural Networks (RNNs), as shown
in Table IV. CNNs achieve dominant performance on visual
tasks, such as exploiting fundamental spatial properties of
images and videos. RNNs can successfully characterize the
temporal correlations of data, thus exhibit superior capability
for time series tasks. The long short-term memory (LSTM)
methods, whose units are RNNs, are capable of learning order
dependence in sequence prediction problems. Graph Neural
Networks (GNNs) [62, 63] are a kind of graph structure, which
models a set of nodes (entity) and edges (relationship). FNNs,
CNNs, and RNNs are based on Euclidean data. However,
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TABLE IV: Neural Networks Comparison

Type Entities Relations Scenario

FNN Units All-to-all -
CNN Grid elements Local Spatial correlation
RNN Time steps Sequential Time correlation
GNN Nodes Edges Node, edge correlations

GNNs use non-Euclidean data structures for deep learning.
The neural networks have a lot of extensions, such as

Deep Belief Networks (DBN) [64], Error-feedback Recurrent
Convolutional Neural Networks (eRCNNs), Fully Convolu-
tional Neural Networks (FCNs), and Spatio-Temporal Graph
Convolutional Neural Networks (ST-GCNNs). For example,
DBNs can be described as a stack of Restricted Boltzmann
Machines (RBMs) [65], which has a two-layer network model,
consisting of visible units and hidden units.

As shown in Fig. 5, there is a new item, namely Deep
Reinforcement Learning (DRL), to describe the algorithms that
combine RL with DL. For example, DQN, DDPG, and multi-
agent DRL (MA-DRL) are DRL algorithms.

B. ML Meets ITS

Data is one of the main commodities extracted from today’s
ITS. Given the different scopes of ITS applications (global,
local, and hybrid applications), data can be obtained from all
the ITS layers. This data-heavy characteristic of ITS paves
the way for the inherent ability of ML to discover knowledge
from data. Regression, classi�cation, prediction, clustering,
and even decision-making, are features provisioned by ML
capable of enhancing ITS and being foundations for the ITS
application’s building blocks, i.e., tasks. In this section, we
discuss 1) how ML is integrated inside ITS, backed by an ML
pipeline; and 2) how ML is harnessed by ITS tasks.

1) ML Pipeline:
In this part, we discuss the ML pipeline depicted in Fig. 7.

The main objective of such a pipeline is to model desired
ITS elements or behavior, which can be harnessed by ITS
tasks. For example, modeling vehicle’s mobility is useful for
prediction tasks, whereas models to classify transportation in-
frastructure from images can be applied in perception. The ML
pipeline consists of several steps, namely data preprocessing,
feature extraction, and modeling.

� Data preprocessing: The raw data usually needs prepro-
cessing; for example, data cleaning and data normaliza-
tion.

� Feature extraction: Feature extraction from data is a
critical step. There are two ways for feature extraction,
namely, hand-crafted features and deep learning features.
Hand-crafted features are selected with the knowledge
of human experts, which are relevant for a given task.
However, even the most experienced human cannot iden-
tify all the underlying features not explicitly related to
the captured data [66]. Therefore, the extracted features
can only re�ect limited aspects of the problem, which
yield lower accuracy. Examples of hand-craft extractors
are Gabor �lter, local binary pattern (LBP), local ternary

pattern (LTP), and histogram of oriented gradients (HOG)
for image feature extraction. Thanks to deep learning,
which has superiority in learning of deep features, the
feature extraction can be automatic without any manual
intervention.

� Modeling: Regarding model training, ML has reached
celebrity status. In particular, the advent of ML enables
great strides towards better visual understanding [42].
The trained ML models can be used for regression,
classi�cation, clustering, and making decisions, which
can be applied to ITS tasks.

2) ML for ITS Tasks:
In this part, we introduce how ML works for each ITS

task. Firstly, traditional approaches for perception were usu-
ally based on traditional sensors, such as magnetic sensors,
inductive loop detectors, GPS, REID, and so on. With the
widespread deployment of vision-based devices in ITS in-
frastructures, an unprecedented quantity of images and video
data is generated, which leverages vision understanding as
the crux of the perception task. Traditional techniques cannot
offer the needed speed and accuracy in vision-based percep-
tion, whereas ML approaches can be used to improve these
metrics. Such improvement was primarily done with hand-
crafted features, which are derived from the information in the
image. However, considering the growing diversity of objects
and little difference between similar objects in some perceptive
problems, the process of deriving hand-crafted features may
not be discriminative enough. Thanks to DL, perception ac-
curacy has been greatly improved with the extraction of deep
features.

Secondly, researchers have investigated a number of para-
metric and non-parametric methods for the prediction prob-
lem. When the model structure is �xed and parameters are
learned from data, this way of modeling is called a parametric
method; examples include Grey system models, time series,
and Kalman Filters. However, this method needs a good model
structure in advance, based on the qualitative judgment of
experts. It is highly subjective, and limited in the sense that
results come under a high cost in terms of time and money.
Likewise, non-parametric methods determine both parameters
and their model structure from data through training. ML-
based algorithms, a typical class of non-parametric methods,
are driven by big data analytics, allowing ML to discover
the patterns within the data automatically. For example, fuzzy
logic, k-NN, and SVM are variations of this class of meth-
ods. Especially, with the development of parallel processing
technology, neural networks are one of the best models for
prediction [67], since it can approximate almost all functions
without prior knowledge of its functional form, and it is
suitable for both linearity and non-linearity problems. By
practice and experimentation, ML-based prediction methods
can obtain accuracy with a fast learning speed [68].

Finally, classical management approaches try to �nd a
sequence of actions that transfer the environment or objects
from an initial state to a desired state with some objective.
In this kind of management mechanism, the problems are
assumed to be fully observable (the state of environment
is precisely known), �nite (state space and action space is
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limited), deterministic (the rule of state transfer is known in
advanced), and static (only the entity for which we control
changes the state) [69]. However, the environment of ITS is
more complicated, being unable to meet all the assumptions
of classical algorithms. ML approaches, such as RL, which
offer methods dealing with in�nite state and action space with
uncertain effects, are more suitable for ITS management tasks.

!"#$"%&'()
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Fig. 8: The evolution of ML technologies in ITS over years.

Fig. 8 shows the evolution over the recent ten years of the
trending application of different mainstream ML technologies
in ITS, and this is for the main tasks of perception, prediction,
and management. The data used to produce this �gure is
extracted from related published papers between 2010 and
2020. In this �gure, the radius of a circle is proportional to
the number of papers on each task and proposing the use of
the associated ML technology, the center of the circle is the
weighted average publication year, where the weight of a year
is the ratio of the number of published papers in this year
to the number of published papers over all years considered.
The �rst observation here, which is in line with the result
in Fig. 1, is that the number of circles tends to increase with
years, thus highlighting the trending application of ML in ITS.
Furthermore, DNN-driven technologies are becoming more
and more popular. Secondly, we can also observe that some
technologies are more popular for some tasks than others. For
example for perception, CNN seems to be the most attractive
in the recent three years, followed by R-CNNs and You only
look once (Yolo) [70], which got increased attention since
2019. For the prediction task, the LSTM technology has been
mostly used the recent 3 years, followed by RNN and CNN.
Older years than 2019 has seen a surge in the popularity of the
SVM technology for the prediction task, before this popularity
being decreased in the following years. For the management
task, Q-learning has been �rst mostly used, before leaving its
place to more advanced techniques such as DQN and DDPG
starting from 2019.

In a brief conclusion, the application of ML technologies
has considerably inspired the ITS revolution and the intelligent
upgrade of its main tasks, with a long list of research works
being proposed to advance the state of the art on the topic.
In the following sections, we introduce the main ML-based
works on perception, prediction and management of ITS and

show their role in each of the speci�c problems.

IV. ML-DRIVEN PERCEPTION IN ITS
Given the suitability of ML approaches to deal with image

processing, ML-driven perception is introduced mainly from
the view of vision-based perception. Giving that perception
tasks can be applied on different ITS topics and scopes, we
elected the ITS topic focused by each related work focused
alongside the ML approaches utilized and the role performed
by ML. Considering the topics surveyed, four major categories
for tasks were pro�led: road, vehicles, users, and networking.
These categories and all the information related to them are
grouped within Table V.

A. Perception of Road
Traf�c �ow and behavior are affected by different road

transportation elements. Roads, freeways, and bridges are full
of signaling infrastructure responsible for dictating traf�c �ow
(e.g., road surface markings and traf�c signals) and enforcing
the desired traf�c behavior (e.g., road signs). Road condition
(e.g., road integrity and wetness level) and surrounding scene
(e.g., obstacles, trees, and guardrails) are also relevant, given
their impact on driving behavior [132, 133]. Because of
this, the road has useful information that can be utilized by
applications. For instance, in co-operative driving, the vehicle
needs to be aware of other vehicles and road conditions to
de�ne a driving policy [133]. Therefore, the role of road
perception is to make the information present in the road
available for ITS applications.

1) Perception of Road Signs: Road signs are installed at the
side or above roads to give instructions with different shapes,
colors, and text. Given the high number of road signs, it is
too expensive to install and maintain a sensing infrastructure in
each one of them. Thus, the perception of road signs is mostly
realized by vision-driven system embedded in each vehicle.

As a typical pattern recognition task, the accuracy of the
road signs perception mainly depends on the feature extractor
and the classi�er [134]. In the beginning, ML approaches, like
SVM [71, 72] and RF [73], were used as classi�ers with hand-
crafted features. These ML approaches are still insuf�cient to
deal with the not typical (or regular or conforming) images.
DNN offers methods for automatic learning of deep features,
which are stored in massive data. Especially, CNN [74-76]
showed its outstanding capabilities of feature-learning in the
road signs perception.

Although the CNN-based methods demonstrated their ef-
�ciency for this kind of application, they still have some
drawbacks. CNN-based approaches usually deal with images
in RGB space, which have a negative effect on the repre-
sentation learning of CNN, in particular, due to non-uniform
color distribution and information coupling of RGB space.
For instance, DP-KELM [77], which is a kernel extreme
learning machine (ELM) classi�er with deep perceptual (DP)
features, is a learning method from the perceptual LAB color
space instead of the RGB space. On the other hand, when
the sign recognition task uses a video instead of a single
image, DNN-based methods may obtain good results but they
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TABLE V: Researches on ML-based Perception for ITS

Category Research Topic ML Approach Role of ML

Road

[71], [72], [73] Traf�c sign and marking recognition. SVM, RF Classi�cation method with the hand-crafted features.
[74], [75], [76] Road signs recognition with RGB space of

single image.
CNN Classi�cation and recognition method.

[77], [78] Road signs recognition with LAB color
space and in moving vehicles.

ELM,SVM Classi�cation and recognition method.

[79], [80], [81], [82] Road detection and road scene understand-
ing.

CNN Distinguish different image patches.

[83] Road lane detection. CNN Estimation the position of lane.
[84], [85] Obstacle detection. CNN, SVM Solving the regression problem.
[86], [87] Detecting parking occupancy. CNN Feature extractor and classi�er of parking.
[88], [89] Road surface state and road crack recogni-

tion.
SVM, CNN Classi�cation method of surface state and estimate

the position of cracks.

Vehicles

[90], [91], [92], [93], [94], [95] Vehicle detection using appearance features. SVM, Adaboost, R-CNN Classi�cation method of vehicles.
[96], [97], [98], [95], [99] Vehicle classi�cation. SVM, RF Classi�cation algorithm.
[100], [101] Vehicle identi�cation with license plate

recognition.
SVM, CNN Character recognition of license plates.

[102], [103], [104], [105] Vehicle re-identi�cation. CNN, SNN Feature extractor and classi�er.
[106], [107], [108], [109],

[110], [110]
Brake-lights and vehicle steering, lane
changing, orientation, and abnormal driving
behaviors detection.

CNN, RF, SVM Classify method for driving behaviors.

Users

[66], [111], [112], [113], [114],
[115], [116], [117], [118]

Recognize driving styles of drivers. K-means, SVM, k-NN,
RF, RNN, DL

Classi�cation driving styles into groups.

[119], [120] Pedestrian detection using handcrafted fea-
tures.

SVM, AdaBoost Tell pedestrians apart from the background of im-
ages.

[121], [122], [123] Pedestrian detection using deep features. UL and CNN, F-DNN, R-
CNN

Feature learning and classi�cation of pedestrians.

Network [124], [125], [126] Cluster or rank network messages or nodes. K-means, SL Classi�cation the network messages and nodes.
[127], [128], [129], [130], [131] Network safety hazard detection. LSTM, DRL, RF, DBN,

FasterRCNN
Feature extractor and classi�er.

require high computing resources, such as GPUs. To cope
with that, incremental SVM and multi-class SVM were used
in [78] alongside a scale-based voting method that combines
the classi�cation results of multi-images on the same signs in
a moving vehicle.

2) Perception of Surrounding Scene and Road Conditions:
The road and surrounding scene detection is an essential
task for some ITS applications, such as a driving assistance
application. Regarding the perception of the road scene in ITS,
image segmentation is an important method. For example,
classifying single image patches with CNN is an approach
in which the pixels of an image are classi�ed into the road
and non-road parts [79, 80]. More precise approaches, such as
SegNet [81] and DeconvNet [82] use ef�cient encoder-decoder
CNN based models for image segmentation, which have the
ability to model appearance, shape and can understand the
spatial relationship between different classes (such as roads
and sidewalks). Some researches focused on speci�c object
recognition in ITS, such as lane detection [83] and obstacle
detection [84, 85].

The recognition of vehicle parking is focused on detecting
parking occupancy [86, 87] along the road or in a parking
lot. The occupation detection of parking offers visibility into
parking space vacancies, which is used to assist the selection
of a parking location. CNN, for example, offers advantages
for occupancy detection by image processing [86]. Ling et
al. [87], in turn, used not only ML-driven local agents but
also remote ones by leveraging Amazon Web Services (AWS)
to solve the vehicle parking problem.

Furthermore, road surface conditions have a signi�cant im-
pact on transport safety and driving comfort. For this area, the
road surface state classi�cation (including dry, wet, snow, ice,
and water) [89] and road crack detection [88] were discussed.

B. Perception of Vehicles

Vehicle perception covers various aspects, such as vehicle
detection, vehicle classi�cation, vehicle identi�cation, and
driving behavior.

1) Vehicle Detection: Vehicle detection can �nd out ve-
hicles in the surrounding environment without the need to
distinguish vehicles. In particular, vision-based vehicle detec-
tion involves �ltering vehicles from an image’s background.
Appearance-based methods, for example, detect vehicles di-
rectly from images. In such methods, a variety of appearance
features can be used as cues for vehicle detection, from the
more straightforward image features like edges and symmetry
features to general and robust features like HOG features,
Gabor features and Haar-like features [135].

Before deep learning, ANNs were thought to be out of favor
for vehicle detection, since they require several parameters
to tune, and the training results tend to converge to a local
optimum [94]. Thus, researches were focused on classi�ers
whose training converges to a global optimum, such as SVM
and AdaBoost. SVM was used as a classi�er in vehicles
detection with different features, such as HOG [91] and Haar-
like features [93]. Compared to SVM classi�ers, AdaBoost
offers advantages in automatically �nding relevant features for
classi�cation in a vast feature pool, and it was proved to have
impressive performance in vehicle detection [92]. However,
the training process of AdaBoost is quite time-consuming, so
to tackle this weakness, an improved AdaBoost algorithm [94]
was proposed for vehicle detection with Haar-like features.
However, in recent years, deep models have proven to be
more accurate for classi�cation and detection across almost
all object types. Especially, CNN can minimize the work for
designing features, model objects and the need to rely on
additional sensors [90]. For example, faster R-CNN [90, 95]
was adopted in vehicle detection.
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2) Vehicle Classi�cation: Vehicle classi�cation aims to
categorize vehicles into different groups according to their
appearance based on vehicle detection. Compared to typical
image classi�cation, vehicle classi�cation, especially �ned-
grained vehicle classi�cation, is more challenging. The reason
is that many vehicle models are similar and dif�cult to distin-
guish. However, each kind of vehicles presents some unique
features, such as logos, wheels, and headlights, which makes
slight differences in appearance among different but similar
vehicle models. Thus, exploiting these vehicles’ features can
improve the classi�cation accuracy.

Traditional vision-oriented classi�cation uses a shallow
classi�cation model, such as SVM [96] and RF [97], to classify
an image based on the features extracted from the whole
images. Recently, CNN [95, 98] was widely applied to vehicle
classi�cation and made a huge breakthrough in learning the
feature representation from raw images automatically. Even
though CNN has achieved great success in vehicle classi�-
cation, each pixel of an image is treated without distinction,
which limits the capability of capturing and highlighting the
nuances in the critical features for classi�cation. For �ne-
grained classi�cation, CNNVA [99] integrates multi-glimpse
and visual attention mechanism into CNN, and it uses DRL
to �nd the critical areas of an image to assist vehicle classi�-
cation.

3) Vehicle Identi�cation: Vehicle identi�cation aims to
identify speci�c vehicles. In contrast to vehicle classi�cation, it
can distinguish individuals and describe the objects in details.
Vehicle re-identi�cation (V-reID) [6] is an essential branch of
vehicle identi�cation, whose role is to identify if a particular
vehicle is the same one as observed on a previous occasion.

V-reID can also be considered as a vehicle tracking problem
with multi-cameras. Both hand-crafted features [103] and
deep features [104] were exploited in existing vision-based
researches of V-reID. Most of these researches focused on
utilizing the license number plate recognition [100, 101] to
identify or re-identify vehicles. Liu et al. [103, 104] considered
both hand-crafted features (color and texture features) and
high-level semantic information extracted by CNN for V-reID.
Besides, they exploited Siamese Neural Network (SNN) for
the veri�cation of license number plates of vehicles, which
consists of twin networks that accept distinct inputs but are
joined by an energy function at the top. Liu et al. [105]
also utilized the spatio-temporal cues of vehicles in order to
improve the V-reID accuracy for vehicles that are spatially and
temporally close to each other. DRDL [102] exploited a two-
branch deep CNN to map vehicle images into an Euclidean
space where the L2 distance can be directly used to measure
the similarity of two arbitrary vehicles.

4) Driving Behavior: Driving behavior recognition is the
task responsible for recognizing the actions that a vehicle
makes, such as braking, steering, accelerating, and lane chang-
ing. Related to vision-enable tasks, CNN can be used to
recognize a vehicle braking through its brake-lights [109] and
SVM can determine the vehicle orientation [110]. On the other
hand, kinetics data, such as speed and acceleration, can be
paired with SVM to identify abnormal lane changing [108]
or with RF for identifying vehicle steering pattern [107].

Besides that, SVM can also be used for some abnormal driving
behaviors detection [106], which includes weaving, swerving,
side slipping, fast U-turn, turning with a wide radius and
sudden braking.

C. Perception of Users

One of the main participants of ITS are the users, given their
interaction as drivers and pedestrians in the ITS environment.
In this subsection, we highlight the user-oriented perception
tasks, grouped under driving style and pedestrian detection.

1) Recognition of Driving Style: Driving style [136] can
be de�ned as the way the driver controls the vehicle in the
context of the driving scene and external conditions, such
as time, weather, and mood. Given that the driver’s fault is
one of the most common causes of traf�c accidents [137],
driving style plays an essential role in ITS, especially for
driving safety and advanced driving assistance systems. The
data used to perform driving style evaluation can be col-
lected from different sources. The most common sources are
smartphones [138], the On Board Diagnostic system (OBD)
[139] and embedded systems equipped with vision and kinetic
sensors [140]. Features are usually extracted from the collected
data based on experiments, expertness or heuristics [66]. Given
the variety of features, numerous researches are motivated to
study ML for driving style recognition.

RF is one of the most used algorithms in this task, proving
itself as a good alternative to pro�le driving style from smart-
phone data [112] and embedded systems [118]. In a similar
application, RF was used to identify the same driving style
across multiple vehicles [113] and identify speci�c drivers
using data from a single accelerometer sensor [141]. Besides
that, K-means clustering is another widespread technique that
can be used to group information in datasets accordingly to
driver style. For instance, K-means was applied to classify
driver aggressiveness [114], alongside SVM to differentiate
drivers [117] and alongside RNN to model lane-changing
behavior [115]. Another classical technique for recognition
is k-NN, which was used by Vaitkus et al. [116] to classify
driving style into aggressive or normal with 3-axis accelerom-
eter signal statistical features. In a search to automate features
extraction and take advantage of hidden features as well, CNN
was used to classify driving styles with smartphone [66] data
and DL was exploited to model driving risk from OBD and
GPS information [111].

2) Detection of Pedestrians: Avoiding collisions with
pedestrians is one of the critical aims of safe driving. The
main challenges of the pedestrian detection task are due to
the cluttered background and signi�cant occlusions. As many
other vision-based tasks, a breakthrough has been achieved
in the �eld of pedestrian detection thanks to ML (especially
DL) [142].

First, hand-crafted features, such as Haar-like features [120]
and HOG [119], are used for this task. Recently, deep learn-
ing features have been found to be effective in pedestrian
detection. Sermanet et al. [123] used unsupervised feature
learning for a two-layer CNN based on convolutional sparse
coding. On the other hand, Du et al. proposed a Fused-DNN
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(F-DNN) [121] to improve the robustness and computational
performance of pedestrian detection, while Li et al. [122]
proposed a scale-aware fast R-CNN model, which has a good
performance in detecting pedestrians with different spatial
scales. Besides that, some approaches focus on occlusion
handling to improve the accuracy of pedestrian detection. For
example, DBN [143] was employed to learn the visibility
masks for different body parts, and FasterRCNN was proposed
in [131] to detect occluded pedestrians.

D. Perception of Networking Conditions in ITS
Some ITS applications are deployed in an open access

data-sharing environment where huge amounts of messages of
different types are exchanged. Although congestion and delay
in the network cannot be avoided in such an environment, their
impact can be dampened, especially for critical applications
like road hazard warning. This can be done with the classi-
�cation and prioritization of messages or applications, where
critical ones have more access to network resources. For this
task, the K-means algorithm can be used to cluster messages
by classes with different access to resources [125]. Another
approach would be to use SL to rank the messages according
to their features, like spatial and temporal features [124], or
to rank nodes to decide the next-hop of such messages [126].

In open-access ITS networking environment, malicious
nodes can insert or modify the exchanged information for
their own advantage. Moreover, attackers can use the interfaces
that enable V2X communication as a means to gain access
to private information or even the control of a transportation
system. This behavior raises security and privacy concerns in
vehicular networks [144], leveraging the detection of safety
hazards as essential in ITS. ML has been exploited to improve
the accuracy and speed of such detection. Some examples
include LSTM for Controller Area Network (CAN) bus
anomaly detection [130], DRL for malicious network traf�c
detection [128], RF for jamming detection [129], and DBN
for intrusion detection in the in-vehicle networks [127].

V. ML-DRIVEN PREDICTION IN ITS
ML approaches have achieved state-of-art performance on

prediction problems in ITS, mainly providing tasks that can be
categorized in prediction of traf�c �ow, travel time, behavior
of vehicles, behavior of users, and road occupancy. The ITS
topics related to prediction tasks are grouped in Table VI,
which also presents the ML approaches and the role performed
by ML in each topic.

A. Prediction of Traf�c
Forecasting traf�c �ows is typically a time-series problem.

Therefore, traditional methods try to capture temporal depen-
dencies in time series data using classical time-series models,
such as the autoregressive moving average [182]. Due to the
stochastic and nonlinear nature of traf�c �ows, traditional
methods have a minimal effect. To improve the performance,
some ML approaches, such as k-NN [145] and SVR [146],
were used to address the traf�c prediction problem. In the last

couple of decades, deep learning has drawn a lot of academic
and industrial interest in this problem, which is driven by
the expressive DNNs. RNN and LSTM [147, 148] were also
exploited to depict temporal dependencies. To improve the
accuracy of prediction, not only the temporal dependencies
but the spatial dependencies should be considered. Generally,
CNN [183] is more suitable for �nding spatial dependencies
from image-like data. However, elementary ANNs, such as
RNNs, LSTMs, and CNNs, fail to obtain spatial and temporal
dependencies simultaneously. To deal with this challenge,
some studies tried to combine the characteristics of RNN or
LSTM with CNN [149, 152, 153, 155]. Besides that, abundant
researches exploited new architectures of neural networks,
such GNN [151], Stack Autoencoders (SAE) [150] and Spatio-
Temporal GNN (STGCN) [154]. Furthermore, in addition
to spatial and temporal data, external features, such as the
weather [155-157], were considered in traf�c �ow prediction.

B. Prediction of Travel Time
Travel time prediction is of great importance for traf�c

control, path planning, vehicle dispatching (e.g, buses and
trains), and so on. However, it is a complex and challenging
problem, which is affected by diverse factors, including spatial
correlations, temporal dependencies, and external conditions
(e.g, weather and traf�c lights). In regard to its implemen-
tation, there are two main approaches: segment-based esti-
mation and path-based estimation. Firstly, the segment-based
estimation method splits a path into several road segments (or
links). The prediction of travel time is based on the estimation
of the travel time for each segment. Some approaches were
proposed to estimate the travel time of road segments, such
as SVR [159], LSTM [158], Restricted Boltzmann Machine
(RBM) and SVM [160], and gradient BRT [161]. Although
these methods can estimate travel time of each segment
accurately, they fail to capture the traf�c conditions of the
entire path, such as road turns, intersections and traf�c lights.
Thus, merely summing up the travel time of each road segment
in the path results in low accuracy of prediction. Secondly,
the path-based estimation method is to estimate the travel
time of the entire path [184] directly. ML approaches, such as
DBN [164], RNN [162] and Deep Extreme Learning Machines
(DELM) [163], showed their strength in solving this problem.
However, it is challenging to �nd a good data set which covers
all possible paths. These problems may reduce con�dence in
the estimation of travel time with incomplete data sets.

To address these issues of segment-based and path-based
methods, some approaches have been proposed. For example,
DeepTTE [165] integrated the segment-based and path-based
approaches, in which a geo-based convolutional layer is used
to transform the raw GPS sequence to a series of feature
maps, and LSTM is used to learn the temporal dependencies
of feature maps.

C. Behavior Prediction of Vehicles and Users
Behavior prediction is a fundamental task for many ITS

applications, such as in the exchange of intentions performed
in co-operative driving. ML offers potential for automatically
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TABLE VI: Researches on ML-based Prediction for ITS

Category Research Topic ML
Approach

Role of ML

Traf�c

[145], [146], [147], [148] Traf�c �ow prediction depicting temporal dependencies. k-NN, SVR,
LSTM

Learning traf�c patterns with a time se-
ries of traf�c data.

[149], [150], [151], [152],
[153], [154]

Traf�c �ow prediction depicting temporal and spatial
dependencies.

CNN & RNN,
GNN, SAE,
STGCN

Learning traf�c patterns with temporal
and spatial data.

[155], [156], [157] Traf�c �ow prediction with investigating of correlation
between weather and traf�c.

DBN Learning traf�c patterns considering the
weather feature.

Travel Time

[158], [159] Predicting the travel time of road segments. SVR, LSTM Learning travel time patterns with tempo-
ral feature.

[160], [161] Predicting the travel time of road segments. RBM & SVM,
BRT

Learning travel time patterns with
temporal-spatial traf�c �ow feature.

[162], [163], [164] Travel time prediction of paths for cars, bus and train. DBN, RNN,
DELM

Extracting features and learning travel
time pattern.

[165] Travel time prediction combine segment-based and path-
based approach.

LSTM & CNN Temporal dependencies learning and fea-
ture transform.

Behavior

[166], [167] Predicting lane change. SVM Classifying the driver’s intention.
[168] Predicting vehicle steering angle. CNN Finding the pattern from vision data.
[169], [170], [171] Vehicle trajectory prediction. RNN, LSTM,

CNN
Inferring future movement of vehicle.

[172], [173], [174], [175] Predicting pedestrian actions. CNN, RNN,
LSTM

Extracting of features and anticipating
actions and trajectory of pedestrian.

Road

[176], [177] Road occupancy prediction for urban region. CNN Modeling long-term motion.
[178], [179], [180] Parking occupancy prediction. SVM & FNN,

BRT, LSTM
Learning parking occupancy patterns
with temporal data.

[181] Parking occupancy prediction in spatio-temporal net-
works.

GCNN, LSTM Learning parking occupancy patterns
with temporal-spatial features.

predicting the behavior and inferring the action intent of
vehicles and users. Vehicle behavior corresponds to actions
of vehicles include braking, steering, lane change and even
moving trajectory. User behavior, in turn, includes motion
trajectory and actions of pedestrians (e.g., running, crossing
the street, interacting with objects) and the vehicles’ actions
induced by drivers considering non-self-driving vehicles.

To offer better performance to ITS automation, the predic-
tion of vehicle behavior is an important issue to tackle. Due
to the complex and dynamic ITS environment, this problem is
not as simple as regular moving object tracking. For example,
the vehicle motion is affected by various latent factors includ-
ing road conditions, traf�c rules, and driver’s driving style.
Traditional approaches use sophisticated models to predict
vehicles behavior with these factors, such as dynamic Bayesian
network [185] and Gaussian mixture models [186]. Although
these methods claim to have good prediction accuracy, the
complexity of training and manual intervention on factor selec-
tion are their drawbacks. ML approaches offer an opportunity
to such issues. For example, SVM [166, 167] showed good
performance in predicting lane changes. On other hand, the
CNN-based approach proposed in [168] was more accurate
in predicting car steering angle. Besides, the trajectory of
vehicles can be considered as time sequence data. Thus,
RNNs [171] and LSTMs [170] were used to improve vehicle
trajectory prediction. Considering some real-time systems have
strict time constraints, CNNs [169] were proposed to estimate
the vehicle trajectory instead of RNNs and LSTMs.

Prediction of actions of pedestrians is a prerequisite for
safe driving, such as for collision avoidance applications.
Traditional model-based methods use hand-crafted factors,
such as the walking speed of pedestrians. Furthermore, it
is challenging to combine all factors (for example, road
conditions, walking styles of pedestrians) into one model,
which limits the task performance in complex and crowded
scenes, such as in an urban environment. Subsequently, the ML

approaches show their strength on this problem, especially in
vision-based prediction of human actions [187]. Similar to the
prediction of vehicles, CNNs can be used for image analysis
of pedestrians, whereas RNNs or LSTMs are convenient to
predict the action and trajectory of pedestrians [172-175].

D. Prediction of Road Occupancy

In addition to traf�c �ows, travel time and behaviors of ITS
users, the prediction of road occupancy and parking space are
also in the scope of prediction tasks in ITS.

Road occupancy prediction is a fundamental task for various
ITS applications and systems, like collision avoidance appli-
cations. The road occupancy task needs to predict the situation
of a set of traf�c participants (such as vehicles, pedestrians and
so on) in a segment or a region. Traditional approaches can
predict the occupancy of a �xed road segment with single-
lane [188] and even road segment with multi-lanes [189].
However, the occupancy prediction for a region like an urban
environment is a complex problem. To tackle it, Hoermann
et al. [176, 177] proposed a CNN-based approach with an
occupancy grid map.

In addition to the road occupancy, the prediction of park-
ing occupancy is also an essential task. With a reliable
parking occupancy prediction, proper recommendations and
navigation of parking location can be made in advance. To
support this strand, a wide range of ML-approaches, such
as SVM, FNN [180], gradient BRT [178], and LSTM [179]
have been used. Besides, multiple metrics can be considered
in occupancy prediction, such as car parking, traf�c speed,
pedestrian, parking meter transactions, nearby facilities, and
weather conditions. Yang et al. [181] leveraged GCNN to
extract the spatial relationships of traf�c �ows and utilized
LSTM to capture their temporal features.
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VI. ML-DRIVEN MANAGEMENT IN ITS
The task of management is to plan the actions and distribute

resources, supporting ITS applications to achieve its objectives
and fair usage of resources (e.g., for communication and
computation). In this section, ML-driven ITS management is
introduced from two aspects: ITS infrastructure management
and ITS resource management. The related work is shown in
Table VII.

A. Infrastructure Management
Among the different parts of the ITS environment, the in-

frastructure is the main vector of interaction between applica-
tions and the ITS environment. Because of this, the objectives
of ITS applications are achieved through the management of
the ITS infrastructure, mainly categorized in (1) management
of traf�c signals and (2) management of vehicles.

1) Traf�c Signal Management: Traf�c signal management
is a way to alleviate traf�c congestion, especially important
in urban areas. In the current ITS deployment stage [2], ad-
vanced traf�c signal management (such as the vehicle actuated
signal control) is mostly implemented based on information
from vehicle-actuated detectors, such as loop detectors. These
approaches have a limitation in coping with the �uctuation
of traf�c demand, especially within short periods. Adaptive
traf�c signal management, which can adjust the traf�c signal
according to the real-time traf�c demand, is a more practical
approach to alleviate traf�c congestion. Among all the ML,
RL is considered as one of the most promising approaches for
adaptive traf�c signal management. This is mainly due to the
convenience of formulating signal management as a sequential
decision-making problem.

Early works of RL used Q-learning for traf�c light man-
agement (green, yellow and red), considering the number
of waiting vehicles or the queue length [190, 191], and the
statistics of traf�c �ow [192, 193]. However, these parameters
are unable to depict the real traf�c situation accurately. With
the popularization of modern sensors, more information on
traf�c is extracted and transmitted via the vehicular network,
such as the traf�c speed and vehicle waiting time. Never-
theless, more information increases the dimension of states,
exponentially growing the complexity of traditional RL. To
deal with this complexity, DNNs have been employed in
RL, forming DRL. DQN [194-196] has been proposed with
information of position and speed. Besides, instead of hand-
crafted features, these studies used CNN to extract machine-
crafted features from raw real-time traf�c data. Given the
growing scale of ITS, some researches investigate promising
approaches [196] in a partially observable environment.

Nowadays, modern speed limit signs can be dynamically
adjusted according to various factors, such as traf�c volume
and weather. Variable speed limit management is a �exible
way to improve road condition, increase driving safety, and
reducing travel time. Some proposals used Q-Learning to
estimate the optimal speed limits so as to reduce the travel
time [198] and decrease traf�c congestion [197, 199]. Besides,
in large-scale networks, Multi-Agent DQN (MA-DQN) under
V2I was used for speed limit control [200].

2) Vehicle Management: The management of vehicles is
one of the most critical tasks in modern ITS, especially for
autonomous driving. It consists of two primary components:
vehicle path (or trajectory) planning and motion control (such
as steering angle and vehicle speed control). The scenario
of vehicle management includes diverse types of events like
parking, lane changing, merging, platooning, and so on.

For path planning, most existing approaches attack this
problem by designing a reference path that a vehicle could
approximately follow. For example, SVM was used in [202]
to provide a safe and feasible path, which has a maximum
clearance from obstacles. However, a good path-planning
approach needs to consider more complex objectives, in-
cluding the path length, smoothness, distance to obstacles,
lane-keeping, maximum curvature, and so on. Abbeel et al.
[201] utilized AL for trajectories planning (called the designed
trajectory) considering a lot of metrics based on a demon-
stration set of realistic parking path trajectories. Because of
dynamic constraints (for example, the limited steering angle
of an autonomous vehicle) and unforeseen modi�cations in
the environment, some deviations exist between the designed
trajectory and the actual trajectory. Liu et al. [203] proposed a
DNN-based method to �nd the best parking path trajectory
by connecting the candidate parking path trajectories and
steering actions. Besides, DDPG was proposed to plan vehicle
trajectory and decide an optimal driving maneuver [204].

Regarding motion control, most previous approaches try to
make a good decision on vehicle motion, where perception
and vehicle control are two individual tasks. Inspired by
the vision-based perception, motion control can be viewed
as an end-to-end task, where CNN can be used to regress
steering angles directly from raw pixels recorded by front
view cameras [205]. As an extension, speed control can also
be used alongside steering angle as a feature [206]. Besides,
some works focused on how to imitate human behavior
on vehicle motion control. Xu et al. [210] imitated human
operations on gas and brake pedals using Partly Connected
Multilayered Perceptron (PCMLP). DMN [209], a Six-layer
Decision-Making Network (SDMN), was proposed to learn
human decision-making behaviors for autonomous vehicles.
GAIL is an excellent method to predict and simulate human
driving behavior, which was used in [208]. In nature, human
driving scenes are composed of several vehicles, which are
inherently multi-agent for imitating multiple human drivers.
Reliable human driver models must be capable of catching the
interaction between different agents. However, GAIL cannot
scale to imitating the behavior of multiple vehicles because of
the problem of covariate-shift caused by multi-agent setting.
Covariate-shift refers to the change in the distribution of the
training data and the production data. To solve this problem,
the multi-agent RAIL method was proposed in [207] to imitate
human driving behavior with emergent properties caused by
multi-agent interactions.

B. Resource Management
ITS leverages ML in infrastructure management to of-

fer services primarily for road safety and ef�ciency. How-
ever, resource-intensive use-cases (e.g., on-demand multimedia
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TABLE VII: Researches on ML-based Management for ITS

Category Research Topic ML Approach Role of ML

Signal

[190], [191],
[192], [193]

Traf�c light management considering the waiting
queue length and statistics of traf�c �ow.

Q-learning Making decisions on traf�c light phases.

[194], [195] Traf�c light management considering position and
speed.

DQN & CNN Making decisions on traf�c light, and traf�c
information extracting.

[196] Traf�c light management in partial detection. DQN Making decisions on traf�c light.
[197], [198],

[199]
Variable speed limit control. Q-learning Making decisions on limited speed.

[200]
Variable speed limit control in large-scale networks. MA-DQN Making decisions on limited speed under

V2I.

Vehicle

[201], [202] Planning vehicle path or trajectory. SVM, AL Finding a driving path (or trajectory), and
relation between speed and �nal state and
control actions.

[203], [204] Planning vehicle trajectory with control motions. DNN , DDPG Offering optimal intelligent driving maneu-
ver for trajectory.

[205], [206] End-to-end vehicle steering and speed control. CNN Regressing steering angles and speed di-
rectly from raw pixels recorded by front-
view cameras.

[207], [208],
[209], [210]

Imitate human driving behavior for autonomous ve-
hicle control.

GAIL, RAIL,
DMN, SDMN

Driving behavior learning.

Networking

[211], [212] Network resource management in core SDN to max-
imize the QoE and network utility.

DDPG Routing paths and bandwidth management.

[213], [214],
[215], [216]

Network resource management in edge and mobile
network, including V2V and V2I.

Q-Learning,
MA-DRL, DQN,
DDQN, A3C

Path �nding and resource allocation algo-
rithm.

Computing
Storage

[217] Resource provisioning in vehicular clouds. DRL, PG Decision making of resource provisioning.
[218], [219] Of�oading of edge computing for the moving vehi-

cles.
A3C Optimization of�oading decision.

[220], [221] Management of the edge caching in base stations. Q-learning, EL Caching resource provisioning policy learn-
ing.

[222], [223],
[224], [225],
[226]

Optimize networking, caching and computing re-
sources in the mobility-aware edge.

DQN Determining an optimal policy in resources
management.

Energy

[227], [228],
[229]

Optimize RSU’s battery usage. Q-learning, DQN Energy-ef�cient adaptive management algo-
rithm.

[230], [231] Vehicle energy management. DQN Adaptive vehicle energy usage algorithm.

video and live traf�c reports) require ef�cient resource alloca-
tion. In support of these use-cases, ef�cient and intelligent
management of local and shared resources is required. In
general, the shared resources are located remotely (cloud
computing), leveraging the use of RSUs as gateways. However,
in ITS, cloud resources are extended to include RSUs and on-
board units (OBUs), which form a vehicular cloud [217].

Resource management needs to take both the resource
availability and the utility of allocation policies into consid-
eration. The previous mainstream approaches of ITS resource
management were formulated as optimization problems with
objectives and constraints, i.e., the search for optimal solu-
tions. However, this approach is not suf�cient in high mobility
networks, such as ITS, given the brevity of optimization
results validity. Therefore, ITS needs a more dynamic and
ef�cient resource provisioning mechanism considering high
mobility environments. On the other hand, it is challenging to
formulate a satisfactory objective function that simultaneously
accounts for the vastly different goals of the heterogeneous
vehicular links. To address these issues, ML were applied to
resource management. Next, ML-based resource management
is introduced considering each resource category - networking,
computing, storage, and energy.

1) Networking Resource Management: The communication
network in ITS is split into core networking, and the edge and
mobile networking. Firstly, the core networking consists of a
set of forwarding equipment with high bandwidth provided by
wired links. Secondly, the edge and mobile networks consist
of a set of edge nodes (e.g., RSUs) and mobile devices (e.g.,
vehicles and smartphones). VANET [232], for example, is a
typical scenario in which edge networks and mobile networks

are deployed. The networking resources in VANETs include
transmission power, sub-bands, connections between mobile
devices and edge nodes, and connections between the mobile
devices.

Concerning core networking, dynamic resource manage-
ment with ML has been studied. Through proactive learning
and interaction, the RL framework can manage and allocate
resources automatically. Using RL, controllers can observe
the changes in demand and resources; thus, they can act
as agents of RL. Different objectives have been researched,
such as maximal Quality of Experience (QoE) in multimedia
traf�c [211] and maximal network utility [212] using DDPG.

How to allocate the resources of edge and mobile networks
has been studied from different context information, such
as communication type (V2I, V2V, unicast and broadcast),
connection-dependency (connection-dependent or connection-
independent), packet payload size and transmission costs.
In [213], Q-learning was used to learn the best routing policy
for the last two-hop communications, and edge nodes work
as agents, where ML-techniques were deployed. Multi-Agent
DRL (MA-DRL) was used in [214] to manage sub-band and
power allocation for V2V and V2I communications. In [215],
DQN was used to optimize data transmission management
with the goal of minimizing transmission costs. In [216],
Dueling Deep Q-Network (DDQN) was proposed to �nd the
most trusted routing path in VANET.

2) Computing and Storage Resource Management: By our
investigation, most of the researches focus on cloud and edge
resource management. Besides the centralized cloud, which
usually consists of data centers, vehicular clouds are also
prominent in ITS. Edge computing, in turn, is an alternative
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to cloud computing, moving the computation and storage to
the edge of the network. The current ITS edge computing en-
vironment usually contains a number of edge nodes, including
computing nodes (located with multiple base stations), cloudlet
edge computing servers (deployed with wireless access points
located at RSUs), and ad hoc vehicular nodes [218].

The mainstream objectives of dynamic computing and
caching resource management are threefold: (1) maximize
Quality of Service (QoS) and/or QoE [220], (2) minimize
overhead and (3) minimize the cost [221] of dynamic resource
provisioning. For resource management in vehicular clouds,
RL was con�rmed to be powerful with these objectives [217].
For edge computing, A3C [218], [219] was used to provide
of�oading policy. Regarding edge caching management, Q-
Learning [221] and Extreme Learning (EL) [220] were used
to improve the performance of caching in base stations.
Furthermore, various studies jointly considered networking,
computing, and caching resource in ITS using DQN [222-
226].

3) Energy Management: The current trend to reduce green-
house gas emissions, due to climate change and air quality
issues [233], leverages the importance of Electric Vehicles
(EV) in the transportation sector. However, managing the
energy ef�ciency in EVs is a problem with a large number of
pertinent factors [234] (e.g., battery charge level and estimated
trip time).

Energy management must consider energy optimization
based on the current route [235] to determine charge/discharge
policies. Such optimization can be done with regression algo-
rithms [236] and RL [237]. On the other hand, management
applications also have to consider energy-ef�cient resource
management. Given that some RSUs in ITS are powered by
battery, ML, such as Q-learning [229] and DQN [227, 228],
can be used to extend the battery lifetime. Moreover, taking
into account the limited power of vehicles, the energy man-
agement of hybrid electric vehicles is an important issue that
involves a trade-off between gasoline and electricity. DQN, for
example, was used in vehicular energy management for both
electrical [231] and hybrid vehicles [230].

VII. FUTURE TRENDS

ML are impacting a multitude of ITS applications. However,
we believe that existing studies do not represent the full
potential of ML-driven ITS due to both limitations of existing
ML approaches and the needs of evolving ITS. In this section,
we discuss some future trends of ITS that deserve further
investigation.

A. Higher Dimension of Perception and Prediction
Most previous works of perception and prediction focused

on 2D. However, in several ITS scenarios like co-operative
navigation, two-dimension (2D) models are not enough to
describe 3D real-world objects. Existing works on three-
dimension (3D) perception mainly rely on LiDAR [238, 239]
and monocular cameras [240, 241]. LiDAR has the following
drawbacks: high cost, relatively short perception range, and
sparse information. On the other hand, monocular images

do not offer depth information. The shortages of LiDAR
and monocular perception lead to low accuracy in 3D object
perception. Currently, modern camera devices in ITS can
generate stereo images that could be used to provide 3D object
perception [242]. Besides that, considering the hybrid ITS
context where different sources of data are available, how to
combine these data to improve the accuracy of 3D perception
represents an exciting and critical research area.

Furthermore, tasks with higher dimension, such as four-
dimension (4D) perception, are still challenging and critical
in ITS, especially for autonomous driving The de�nition
of 4D and 5D may have different de�nition. For example,
work in [243] try to do 4D (3D+temporal) tracking, 5D
(4D+interactive) interactive event recognition and 5D intention
prediction.

B. Fully Cooperative ITS
One of the ITS aims is to automate the interactions among

the infrastructure and vehicles to accomplish cooperative work.
Cooperative ITS [244] covers a wide range of applications, re-
lying on the perception, prediction, and management discussed
in this work. Among all the cooperative applications, cooper-
ative driving is probably the most interesting and challenging
one. The idea of cooperative vehicles, jointly with the wireless
communication advancements in ITS, highlights the value of
interconnected devices and data sharing in vehicular networks
[245].

The existing studies are still insuf�cient to deploy real
cooperation due to the shortages of techniques. For example,
despite being in current standardization process by ETSI, col-
lective data exchange services, like the Collective Perception
Services (CPS), still, leverage the discussion concerning which
message exchange methodology or algorithm should be imple-
mented to improve the service performance [246]. Also, the
dependability requirement between vehicles in C-ITS raises
security concerns, creating a leading �eld of research that
attempts to balance the reliability gains from applied security
techniques with the loss of scalability caused by those [247].
However, traditional ML techniques are centralized, which
requires big data as the basis of learning. Fully cooperative
ITS with ML meets some trouble in data sharing and at
the same time offers privacy protection. Federated learning
[248], an ML technique, �nds a way out of this dilemma, that
trains a model in decentralized edge devices with local data
and without exchanging. Therefore, designing a cooperative
ITS that accounts for �exibility, ef�ciency, security [249],
trust [250] and scalability is a promising trend.

C. Social Transportation
Despite cooperative ITS, social transportation will undoubt-

edly also be a key element of future transportation systems.
Humans cooperate and interact with each other every day
through virtual environments known as social networks en-
abling huge data exchange. In the transportation context, social
networks are generally accessed through mobile personal
devices which, in conjunction with data entered by the users,
provide spatial, temporal and emotional information about



16

users and their environment [251]. From this information,
useful models for ITS applications can be retrieved, such
as models for user emotional behavior, mobility pattern, and
traf�c-related events (e.g., accident, street blocked, scheduled
maintenance in traf�c equipment) [252].

In social transportation, the user acts as a social sensor,
perceiving the environment with a perspective different from
that provided by hardware sensors. Despite being able to
improve ML tasks performance, new types of data sources
need to be fused with the data already in place, an endeavor
that is still in early stage of development for both scienti�c and
engineering �elds [252]. Despite of this, the social approach
for transportation data is being recognized as a �eld with
potential for future researches with a growing number of
related works [253].

VIII. CONCLUSION

ITS is a �eld of research and development of rapidly
evolving technologies folded into different types of platforms
for a myriad of advanced applications. For the deployment and
run-time operation of many applications to be effective, the
timely acquisition, processing, and analysis of large volumes
of data become an essential cornerstone. Therefore, advances
in ML are considered as key enabling technologies to drive
a revolution in ITS. In this survey, we have investigated how
ML has being increasingly proposed to address many of the
ITS challenges. To this end, our comprehensive state of the art
literature survey covers many-fold perspectives grouped into
ITS ML-driven supporting tasks, namely perception, predic-
tion, and management. We also outline some trends that are
likely to contribute to the continuous shaping of the future of
ITS. We expect this survey to provide basic knowledge for
beginners and to encourage new research and insights to the
vibrant �eld of ITS.
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