, F.; and by the São Paulo Research Foundation (FAPESP)

R. Agren, Reconstruction of genome-scale active metabolic networks for 69 human cell types and 16 cancer types using INIT, PLoS Comput. Biol, vol.8, p.1002518, 2012.

M. Akesson, Integration of gene expression data into genome-scale metabolic models, Metab. Eng, vol.6, pp.285-293, 2004.

N. Alcaraz, Keypathwayminer: detecting case-specific biological pathways using expression data, Internet Math, vol.7, pp.299-313, 2011.

N. Alcaraz, Efficient key pathway mining: combining networks and OMICS data, Integr. Biol, vol.4, pp.756-764, 2012.

A. V. Antonov, KEGG spider: interpretation of genomics data in the context of the global gene metabolic network, Genome Biol, vol.9, p.179, 2008.

A. Bandara, Trehalose promotes the survival of Saccharomyces cerevisiae during lethal ethanol stress, but does not influence growth under sublethal ethanol stress, FEMS Yeast Res, vol.9, pp.1208-1216, 2009.

J. Baumbach, Efficient algorithms for extracting biological key pathways with global constraints, Proceedings of the 14th Annual Conference on Genetic and Evolutionary Computation, GECCO '12, pp.169-176, 2012.

S. A. Becker and B. O. Palsson, Context-specific metabolic networks are consistent with experiments, PLoS Comput. Biol, vol.4, p.1000082, 2008.

K. Campbell, Methionine metabolism alters oxidative stress resistance via the pentose phosphate pathway, Antioxid. Redox Signal, vol.24, pp.543-547, 2016.

S. Chandrasekaran and N. D. Price, Probabilistic integrative modeling of genome-scale metabolic and regulatory networks in Escherichia coli and Mycobacterium tuberculosis, Proc. Natl. Acad. Sci. USA, vol.107, pp.17845-17850, 2010.

Y. Cheng, Protective effects of arginine on Saccharomyces cerevisiae against ethanol stress, Sci. Rep, vol.6, p.31311, 2016.

B. L. Clarke, Stoichiometric network analysis, Cell Biophys, vol.12, pp.237-253, 1988.

C. Colijn, Interpreting expression data with metabolic flux models: predicting Mycobacterium tuberculosis mycolic acid production, PLoS Comput. Biol, vol.5, p.1000489, 2009.

S. B. Collins, Temporal expression-based analysis of metabolism, PLoS Comput. Biol, vol.8, p.1002781, 2012.

M. W. Covert and B. O. Palsson, Constraints-based models: regulation of gene expression reduces the steady-state solution space, J. Theor. Biol, vol.221, pp.309-325, 2003.

J. Ding, Tolerance and stress response to ethanol in the yeast Saccharomyces cerevisiae, Appl. Microbiol. Biotechnol, vol.85, pp.253-263, 2009.

X. Fang, Modeling phenotypic metabolic adaptations of Mycobacterium tuberculosis H37Rv under hypoxia, PLoS Comput. Biol, vol.8, p.1002688, 2012.

J. W. Foster, Escherichia coli acid resistance: tales of an amateur acidophile, Nat. Rev. Microbiol, vol.2, pp.898-907, 2004.

L. Heirendt, Creation and analysis of biochemical constraint-based models using the COBRA Toolbox v.3.0, Nat. Protoc, vol.14, pp.639-702, 2019.

B. M. Hersh, A glutamate-dependent acid resistance gene in Escherichia coli, J. Bacteriol, vol.178, pp.3978-3981, 1996.

T. Ideker, Discovering regulatory and signalling circuits in molecular interaction networks, Bioinformatics, vol.18, pp.233-240, 2002.

P. A. Jensen and J. A. Papin, Functional integration of a metabolic network model and expression data without arbitrary thresholding, Bioinformatics, vol.27, pp.541-547, 2011.

L. Jerby, Computational reconstruction of tissue-specific metabolic models: application to human liver metabolism, Mol. Syst. Biol, vol.6, p.401, 2010.

Y. J. Jung and H. D. Park, Antisense-mediated inhibition of acid trehalase (ATH1) gene expression promotes ethanol fermentation and tolerance in Saccharomyces cerevisiae, Biotechnol. Lett, vol.27, pp.1855-1859, 2005.

H. U. Kim, Flux-coupled genes and their use in metabolic flux analysis, Biotechnol. J, vol.8, pp.1035-1042, 2013.

M. K. Kim and D. S. Lun, Methods for integration of transcriptomic data in genome-scale metabolic models, Comput. Struct. Biotechnol. J, vol.11, pp.59-65, 2014.

M. K. Kim, E-Flux2 and SPOT: validated methods for inferring intracellular metabolic flux distributions from transcriptomic data, PLoS One, vol.11, p.157101, 2016.

Z. A. King, BiGG Models: a platform for integrating, standardizing and sharing genome-scale models, Nucleic Acids Res, vol.44, pp.515-522, 2016.

S. Klamt, Hypergraphs and cellular networks, PLoS Comput. Biol, vol.5, p.1000385, 2009.

V. Lacroix, An introduction to metabolic networks and their structural analysis, IEEE/ACM Trans. Comput. Biol. Bioinform, vol.5, pp.594-617, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00355497

S. P. Lavoie and A. O. Summers, Correction to: transcriptional responses of Escherichia coli during recovery from inorganic or organic mercury exposure, BMC Genomics, vol.19, p.268, 2018.

D. Lee, Improving metabolic flux predictions using absolute gene expression data, BMC Syst. Biol, vol.6, p.73, 2012.

N. Leng, EBSeq: an empirical Bayes hierarchical model for inference in RNA-seq experiments, Bioinformatics, vol.29, pp.1035-1043, 2013.

D. Machado and M. Herrgå-rd, Systematic evaluation of methods for integration of transcriptomic data into constraint-based models of metabolism, PLoS Comput. Biol, vol.10, p.1003580, 2014.

M. L. Mo, Connecting extracellular metabolomic measurements to intracellular flux states in yeast, BMC Syst. Biol, vol.3, p.37, 2009.

J. F. Moxley, Linking high-resolution metabolic flux phenotypes and transcriptional regulation in yeast modulated by the global regulator Gcn4p, Proc. Natl. Acad. Sci. USA, vol.106, pp.6477-6482, 2009.

J. Noirel, Automated extraction of meaningful pathways from quantitative proteomics data, Brief. Funct. Genomic Proteomic, vol.7, pp.136-146, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00767067

I. Nookaew, A comprehensive comparison of RNA-Seq-based transcriptome analysis from reads to differential gene expression and cross-comparison with microarrays: a case study in Saccharomyces cerevisiae, Nucleic Acids Res, vol.40, pp.10084-10097, 2012.

S. Opdam, A systematic evaluation of methods for tailoring genome-scale metabolic models, Cell Syst, vol.4, pp.318-329, 2017.

J. D. Orth, What is flux balance analysis?, Nat. Biotechnol, vol.28, pp.245-248, 2010.

J. D. Orth, A comprehensive genome-scale reconstruction of Escherichia coli metabolism-2011, Mol. Syst. Biol, vol.7, p.535, 2011.

R. V. Perez-gallardo, Reactive oxygen species production induced by ethanol in Saccharomyces cerevisiae increases because of a dysfunctional mitochondrial iron-sulfur cluster assembly system, FEMS Yeast Res, vol.13, pp.804-819, 2013.

A. Rezola, Advances in network-based metabolic pathway analysis and gene expression data integration, Brief. Bioinform, vol.16, pp.265-279, 2015.

R. Estevez, S. Nikoloski, and Z. , Context-specific metabolic model extraction based on regularized least squares optimization, PLoS One, vol.10, p.131875, 2015.

S. Rossell, Inferring metabolic states in uncharacterized environments using gene-expression measurements, PLoS Comput. Biol, vol.9, p.1002988, 2013.

R. Saha, Recent advances in the reconstruction of metabolic models and integration of omics data, Curr. Opin. Biotechnol, vol.29, pp.39-45, 2014.

S. S. Samal, Linking metabolic network features to phenotypes using sparse group lasso, Bioinformatics, vol.33, pp.3445-3453, 2017.

M. Sardi, Genotype-by-environment-by-environment interactions in the Saccharomyces cerevisiae transcriptomic response to alcohols and anaerobiosis, G3 (Bethesda), vol.8, pp.3881-3890, 2018.

A. Schultz and A. A. Qutub, Reconstruction of tissue-specific metabolic networks using CORDA, PLoS Comput. Biol, vol.12, p.1004808, 2016.

R. Schwarz, YANA -a software tool for analyzing flux modes, gene-expression and enzyme activities, BMC Bioinformatics, vol.6, p.135, 2005.

E. Segal, Discovering molecular pathways from protein interaction and gene expression data, Bioinformatics, vol.19, pp.264-271, 2003.

T. Shlomi, Network-based prediction of human tissue-specific metabolism, Nat. Biotechnol, vol.26, pp.1003-1010, 2008.

J. M. Thevelein, Regulation of trehalose mobilization in fungi, Microbiol. Rev, vol.48, pp.42-59, 1984.

M. Tian and J. L. Reed, Integrating proteomic or transcriptomic data into metabolic models using linear bound flux balance analysis, Bioinformatics, vol.34, pp.3882-3888, 2018.

J. Van-helden, Representing and analysing molecular and cellular function using the computer, Biol. Chem, vol.381, pp.921-935, 2000.

R. P. Vivek-ananth and A. Samal, Advances in the integration of transcriptional regulatory information into genome-scale metabolic models, Biosystems, vol.147, pp.1-10, 2016.

N. Vlassis, Fast reconstruction of compact context-specific metabolic network models, PLoS Comput. Biol, vol.10, p.1003424, 2014.

Y. Wang, Reconstruction of genome-scale metabolic models for 126 human tissues using mCADRE, BMC Syst. Biol, vol.6, p.153, 2012.

K. Yizhak, Phenotype-based cell-specific metabolic modeling reveals metabolic liabilities of cancer, Elife, vol.3, p.3641, 2014.

S. W. Zhang, Prediction of metabolic fluxes from gene expression data with Huber penalty convex optimization function, Mol. Biosyst, vol.13, pp.901-909, 2017.

L. Zhu, A computational method using differential gene expression to predict altered metabolism of multicellular organisms, Mol. Biosyst, vol.13, pp.2418-2427, 2017.

O. Zitka, Redox status expressed as GSH: GSSG ratio as a marker for oxidative stress in paediatric tumour patients, Oncol. Lett, vol.4, pp.1247-1253, 2012.

H. Zur, iMAT: an integrative metabolic analysis tool, Bioinformatics, vol.26, pp.3140-3142, 2010.