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Abstract—Cloud platforms offer different types of virtual ma-
chines which ensure different guarantees in terms of availability
and volatility, provisioning the same resource through multiple
pricing models. For instance, in Amazon EC2 cloud, the user
pays per hour for on-demand instances while spot instances
are unused resources available for a lower price. Despite the
monetary advantages, a spot instance can be terminated or
hibernated by EC2 at any moment. Using both hibernation-
prone spot instances (for cost sake) and on-demand instances, we
propose in this paper a static scheduling for applications which
are composed of independent tasks (bag-of-task) with deadline
constraints. However, if a spot instance hibernates and it does
not resume within a time which guarantees the application’s
deadline, a temporal failure takes place. Our scheduling, thus,
aims at minimizing monetary costs of bag-of-tasks applications in
EC2 cloud, respecting its deadline and avoiding temporal failures.
Performance results with task execution traces, configuration of
Amazon EC2 virtual machines, and EC2 market history confirms
the effectiveness of our scheduling and that it tolerates temporal
failures.

Index Terms—Clouds, Temporal failures, Scheduling

I. INTRODUCTION

In the past few years, cloud computing has emerged as an
attractive option to run different classes of applications due
to several advantages that it brings when compared with a
dedicated infrastructure. Clouds provide a significant reduction
in operational costs, besides offering a rapid elastic provision-
ing of computing resources like virtual machines (VMs) and
storage. However, in cloud environments, besides the usual
goal of minimizing the execution time of the application, it is
also important to minimize the monetary cost of using cloud
resources, i.e., there exists a trade-off between performance
and monetary cost.

Infrastructure-as-a-Service (IaaS) existing cloud platforms
(e.g., Amazon EC2, Microsoft Azure, Google Cloud, etc.) en-
able users to dynamically acquire resources, usually as virtual
machines (VMs), according to their application requirements
(CPU, memory, I/O, etc,) in a pay-as-you-use price model.
They usually offer different classes of VMs which ensure
different guarantees in terms of availability and volatility, pro-
visioning the same resource through multiple pricing models.
For instance, in Amazon EC2, there are basically three classes:
(i) reserved VM instances, where the user pays an upfront
price, guaranteeing long-term availability; (ii) on-demand VM
instances which are allocated for specific time periods and

incur a fixed cost per unit time of use, ensuring availability of
the instance during this period; (iii) spot VM instances which
are unused instances available for lower price than on-demand
price.

The availability of spot VMs instances fluctuates based on
the spot market’s current demand. If there are not enough
instances to meet clients demands, the VM can be interrupted
by the cloud provider (temporarily or definitively). Despite the
risk of unavailability, the main advantage of spot VMs is that
their cost is much lower than on-demand VMs since the user
requests unused instances at steep discounts, reducing the costs
significantly. With Amazon’s more recent announcement, an
interrupted spot can either terminate or hibernate1. Whenever
a spot instance is hibernated by EC2, its memory and context
are saved to the root of EC2 Block Storage (EBS) volume
and, during the VM’s pause, the user is only charged for
EBS storage. EC2 resumes the hibernated instance, reloading
the saved memory and context, only when there is enough
availability for that type of instance with a spot price which is
lower than the user’s maximum price. Contrarily to terminated
instances whose user is warned two minutes before the inter-
ruption of them, hibernated instances are paused immediately
after noticing the user.

Our proposal in this work is to provide a static cloud
scheduler for Bag-of-Tasks applications using, for cost sake,
hibernate-prone spot instances as much as possible, respecting
the application deadline constraints while also minimizing the
monetary costs of bag-of-tasks applications. However, if a spot
instance hibernates, it might happen that it will not resume
within a time which guarantees the deadline constraints of
the application. In this case, a temporal failure would take
place, i.e., correct computation is performed but too late to
be useful (inability to meet deadlines). Thus, in order to
avoid temporal failure in case of spot instance hibernation,
our scheduler statically computes the time interval that an
hibernated instance can stay in this state without violating the
application’s deadline. If the instance does not resume till the
end of this interval, our scheduler will move the execution
of the current tasks of the spot instance as well as those not
executed yet to on-demand instances, in order to guarantee

1https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-
interruptions.html



the application’s deadline. Note that even after migrating the
remaining task execution to on-demand VMs, the scheduler
continues to look forward to minimizing monetary costs.

II. RELATED WORK

Replication and resubmission of tasks are mechanisms
widely used to tolerate failures [1], [2], [3]. Using replication,
several copies of the same task are executed to support fault
tolerance. Most of the studies use a single primary-backup
scheme considering one primary and one or several backup
(copy) tasks scheduled on different computing instances [2],
[3]. The copies of a task are executed only when the primary
task fails. In order to reduce the response time in case of
failure, overlapping techniques are proposed [2] in a Grid
context where a backup is scheduled for each primary on a
different host. A backup is executed when its primary cannot
complete execution due to a failure but it does not require
fault diagnosis. Zheng et al. [2] propose an algorithm to find
an optimal backup schedule for each independent task. Wang
et al. [3] extend Zheng’s results in a cloud context and using
an elastic resource provisioning.

Despite the use of overlapping techniques, primary-backup
schemes require that the tasks deadlines have enough time for
executing backups in case of failure. Then, several works study
active replication [4], [5], [6] allowing backups to execute
concurrently with its primaries. Al-Omari et al. [4] improve
the primary-backup scheme by proposing the primary-backup-
overloading technique, in which the primary of a task can be
scheduled onto the same or overlapping time interval with
the backup of another task on a processor. In [5], authors
present a comprehensive study of replication schedulers where
all replicas of a task start executing concurrently and the next
task is started as soon as one of the previous task replicas
finishes. Benoit et al. [6] adopt a more conservative approach
where the next task can only start when all the replicas of the
previous task finished.

Contrarily to our approach, the above solutions need to
schedule both the primary and backup tasks and the latter
take the execution control if the former fail. Neither of them
use backup tasks to avoid temporal failure. In addition, in our
case, they are only executed in case of VM’s hibernation and
risk of temporal failures.

Some works take into account Amazon spot VMs instance
features. Authors of [7] propose to switch to on-demand
resources when there is no spot instance available to ensure
the desired performance. Using both on-demand and spot VM
instances, SpotCheck [8] provides the illusion of an IaaS
platform that offers always-available on-demand VMs for a
cost near that of spot VMs. Also claiming performance of on-
demand VMs, but at a cost near that of the spot market, the
authors in [9] present the SpotOn batch service computing,
that uses fault-tolerance mechanism to mitigate the impact of
spot revocations. To our knowledge no work studies the impact
of the new hibernation feature of spot instances on scheduling
algorithms.

III. A STATIC SCHEDULER OF BAG-OF-TASKS
APPLICATIONS IN CLOUDS

Aiming at reducing monetary costs, our proposed schedul-
ing uses hibernate-prone spot instances. However, due to the
possibility of hibernation and also the need to meet the appli-
cation’s deadline, the scheduler might migrate tasks that run
on spot instances to on-demand ones, whenever the duration
of an instance hibernation would induce a temporal failure.
We denote primary tasks those which are allocated on VMs
(spot or on-demand) that guarantee application’s deadline with
minimum monetary cost and we denote backup tasks those
which are allocated on on-demand VMs and were originally
primary tasks allocated on spot VMs. Backup tasks are only
executed in case the hibernation state remains for such a long
period of time that it is impossible to meet the deadline of
the application, thus avoiding temporal failures. Therefore, a
task might have two versions (primary and backup) which are
statically scheduled on two different cores with time exclusion.

Figure 1 shows an example where the hibernation does not
require backup task execution. In this example, a spot instance
starts hibernating in time p and finishes in y, before the time
start bkp, when the backups should be triggered. Then, the
deadline D can be met without executing the backups. On the
other hand, Figure 2 presents a case where it is necessary to
execute the backup tasks in an on-demand virtual machine to
meet the deadline, since the hibernation exceeded start bkp.

A. Problem Formulation

Let M be the set of virtual machines, B the set of tasks that
compose a bag-of-task application, and T = {1, . . . , D} the
set of feasible periods, where D is the deadline defined by the
user. Each vmj ∈M has a memory capacity of mj gigabytes,
ncj virtual cores and can be allocated in one of the markets
(spot or on-demand). Besides that, each task ti ∈ B requires
a know amount of memory rmi and is executed in only one
core of the ncj cores of vmj . Let Queuej ⊂ B be the set
with all tasks scheduled on vmj , when a task ti is scheduled
to a vmj , its start time and end time are given by sti,j ∈ T
and endi,j ∈ T , respectively.

When a VM is allocated for a user, he/she pays for a
full-time interval called slot. That time is usually one hour.
Therefore, if a VM is used for 61 minutes the user will
be charged for two slots (120 minutes). Note that one slot
can correspond to several periods of T . For example, if
each period corresponds to one minute, a slot of one hour
would correspond to 60 periods. It is, thus, in the user’s
best interest to maximize the use of a slot already allocated.
Let stSlotj ∈ T and endSlotj ∈ T be the period when
the first slot was allocated to vmj , and the end time of the
last allocated slot for this same VM respectively, such that
stSlotj < endSlotj . Whenever the end time endi,j of a task
ti allocated to vmj exceeds the endSlotj , the user has to pay
for another full interval. Thus, if part of that interval is not
used by any task, we have a waste of time. To compute the
waste time of a vmj , we define wastej in Equation 1, that is
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Fig. 1: Hibernation without Backup Execution.
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Fig. 2: Hibernation with Backup Execution.

the time interval inside the last contracted slot at which vmj

remains idle after executing all tasks allocated to it.

wastej = endSlotj − max
∀ti∈Queuej

(endi,j) (1)

B. Computing Dspot

Before scheduling the primary tasks, it is necessary to
estimate the Dspot value, that is used to ensure that if a
hibernation occurs, there will be enough time to execute
the backup tasks respecting the deadline D. The Dspot is
estimated using Algorithm 1. As can be seen, in addition to
the deadline D and sets B and M , Algorithm 1 also receives
max spot as input, that is the maximum number of spot VMs
that can be allocated simultaneously. This value is defined by
the cloud provider. In Amazon EC2, for example, by default,
only 20 VMs spots can be allocated simultaneously in the
same region2.

We can assume that, using the proposed primary scheduling
algorithm (Algorithm 2), the number of tasks n allocated to
a VM can be calculated as presented in line 1 of Algorithm
1. After that, a set W ⊂ B containing the n longest tasks
is created (line 2). Since W contains the n longest tasks, we
can consider that the execution of tasks ti ∈ W in a single
VM represents the worst primary makespan case. In line 7,

2https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-spot-
limits.html

that makespan, called mkpw, is estimated by considering the
slowest VM of M . Thus, we calculate the value of Dspot as
the difference between D and mkpw (line 8).

Algorithm 1 Compute Dspot

Input: B,M,max spot,D
1: n = d |B|

max spot
e;

2: W = get longest tasks(n,B);
3: vms = get slowest vm(M);
4: for all ti ∈W do
5: allocate(ti, vms);
6: end for
7: mkpw = get makespan(vms);
8: Dspot = D −mkpw;

C. Primary Task Scheduling

Algorithm 2 shows the primary scheduling heuristic which
is a greedy algorithm that allocates the set of tasks ti ∈ B to a
set of VMs (spot and on-demand VMs). Tables I and II present
the used variables and functions respectively. The algorithm
receives B, M , D, and Dspot as input parameters. Since the
objective is to respect the application deadline (even in the
presence of hibernation) while minimizing monetary costs, all
the choices made by the heuristic are guided by the VMs’
prices, and by the deadline D defined by the user.

Initially, tasks are ordered in descending order by the
memory size they require (line 1). Then, for each task, the
algorithm applies a best fit heuristic that tries to allocate it
to a virtual core of a VM with already allocated slots. The
algorithm first choose the VM with the highest waste o time
(lines 6 to 12), that has enough memory and also ensures that
the task insertion will respect Dspot. If such a VM does not
exist, the heuristic tries to allocate new slots in an already
allocated VM with enough memory to execute the task, but
now with the smallest waste (lines 15 to 22). Similarly to the
previous case, the slot allocation must not violate Dspot (line
18).

Allocating slots in an already allocated VM reduces boot
time overhead in comparison of allocating a new VM. How-
ever, if such an allocation is not possible, the algorithm must
allocate a new VM. In this case, the heuristic defines the best
type of VM in terms of execution time (line 24) and, then,
it chooses the market where this VM shall be acquired: on-
demand or spot, considering the offered prices (lines 25 to
29). Finally, it updates the primary scheduling map (line 34).

D. Backup Task Scheduling

Let Succk,j ⊂ Queuej be a set containing task tk and all its
successors, i.e., all tasks that are allocated to the same core and
where tk is allocated (vmj) and that execute after the end of
tk. Let Paralleli,j ⊂ Queuej be a set containing all tasks that
execute in parallel with ti in vmj . In order to avoid temporal
failures due to vmj’s hibernation while executing ti in one
of its cores, it is necessary to determine which backup tasks
must be executed in this case. To this end, we define RGi,j ⊂
Queuej , as presented in Equation 2. The set RGi,j is obtained



TABLE I: Variables of Scheduling Heuristic

Name Description

Variables used in the Primary Scheduling Heuristics

B Set of tasks
M Set of VMs
D Deadline defined by the user, to be respected even in

presence of VM hibernation
Dspot Parameter that determines the maximum occupation

period of a spot VM
A Set of VMs selected to execute primary tasks

allocated Boolean variable that indicates whether task ti was
successfully scheduled

slot Minimum contracted time for a VM (for example, in
AWS the slot is 1 hour)

n Number of contracted slots
endSlotk End of last contracted slot of vmk

vmmarket
k Market where vmk will be contracted: on-demand or

spot
PM Scheduling map of primary tasks containing VMs and

the corresponding execution queues

Variables used in the Backup Scheduling Heuristics

B VM Set of VMs selected to execute backup tasks
Queuej Set of primary tasks scheduled on a vmj

RGi,j Set of backup tasks to be executed due to hibernation
of vmj along ti execution

S VMi Set of VMs selected to execute backup tasks of the
RGi,j

start bkpi,j Time when the migration of tasks in vmj must start
due to hibernation along ti execution

BM Scheduling map of backup tasks containing VMs and
the starting times of backup tasks

by the union of all Succk,j , such that tk ∈ Paralleli,j or
tk = ti. We also define the set S VMi ⊂ M , that contains
all VMs that will be used to execute backup tasks of RGi,j ,
if a migration occurs. Figure 3 shows an example of Succk,j
and RGk,j sets of task tk allocated to vmj .

RGi,j =
⋃

tk∈(Paralleli,j∪{ti})

Succk,j (2)

We also define the backup start time, start bkpi,k, as
presented in Equation 3. It defines how long the hibernation
state of vmj can be tolerated before any action of migrating
tasks of RGi,j to backup ones is triggered.

start bkpi,j = D − runtime(RGi,j , S V Mi) (3)

Such that runtime(RGi,j , S VMi) is the number of pe-
riods necessary to execute all tasks of RGi,j in the VMs of
S VMi plus the number of periods necessary to boot the VMs
of S VMi.

The proposed backup scheduling algorithm is presented in
Algorithm 3, where Table I shows the used variables and Table
II describes the used procedures and functions. As can be seen
in line 4, RGi,j is created for each task ti ∈ Queuej .

This algorithm employs a scheduling strategy similar to that
presented in Algorithm 2, in which tasks are scheduled on
different VMs using a best-fit heuristic. However, unlike the
Algorithm 2, in Algorithm 3, the VMs selection prioritizes the
on-demand VM with the cheapest monetary cost, resulting

TABLE II: Functions and Procedures of Scheduling Heuristic

Name Description

Functions and Procedures used in Primary Scheduling Heuristic

sort(B) Sorts the set of tasks B in de-
scending order by memory size
demand

sort by max waste(A) Sort the set of VMs A in de-
scending order by the waste size

sort by min waste(A) Sort the set of VMs A in ascend-
ing order by the waste size

check allocation(ti, vmj , Dspot) Checks if vmj has an already
contracted slot with enough idle
time, and if the allocation of ti to
a core of vmj respects the Dspot

limit and if vmj has available
memory to meet the requirement
of the task (rmi)

allocate(ti, vmj) Allocates task ti to a core of vmj

number of slots(ti, vmj) Compute the number of slots nec-
essary to execute task ti in vmj

bestV M time(ti,M) Selects the VM that executes task
ti with the minimum number of
periods of time

allocate slots(vmk, n) Allocate (contract) n slots in
vmk

create primary map(A) Create the scheduling map of pri-
mary tasks

Functions and Procedures used in Backup Scheduling Heuristic

create RG(ti, Queuej) Create RGi,j using Equation 2
bestV M cost(tk, S V Mi) Select a VM of S VMi that exe-

cutes tk with minimum monetary
cost

allocate(tk, vmbkp) Insert backup task tk into the
execution queue of vmbkp

runtime(RGi,j , S V Mi) Calculate the number of periods
necessary to execute all tasks in
RGi,j using VMs of S VMi

update(B VM,S VMi) Include VMs of S VMi into
B VM

create backup map(B VM) Create the scheduling map of
backup tasks

from the product of its price and the execution time of a
backup task on it.

Note that the backup scheduling has to ensure that if a
migration event occurs, the number of periods required to
perform the backup tasks respects the deadline. Thus, the
VMs chosen in the function get best V M (lines 9 and 11)
guarantees that endi+runtime(RGi,j , S VMi) < D, where
endi is the end time of the primary task ti .

After scheduling all backup tasks of RGi,j , the period when
the migration of tasks will have to start to meet the deadline,
start bkpi,j , is computed (line 16).

IV. EXPERIMENTAL RESULTS

This section presents execution times and monetary costs of
accomplished with real BoT applications, using the configura-
tion of Amazon EC2 virtual machines, and considering a real
VMs market history. According to the information on Amazon
Web Server (AWS)3, only the VMs of families C3, C4, C5,

3https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-
interruptions.html



Algorithm 2 Primary Task Scheduling
Input: B, M , D, Dspot

1: sort(B);
2: A← ∅; {set of allocated VMs}
3: for all ti ∈ B do
4: sort by max waste(A); {using Equation 1}
5: allocated ← False; {Check if vmj has sufficient time and

memory in an already allocated slot to execute ti without
violating the limit Dspot}

6: for all vmj ∈ A do
7: if check allocation(ti, vmj , Dspot) then
8: allocate(ti, vmj);
9: allocated← True;

10: stop loop;
11: end if
12: end for

{Check if it will be necessary to allocate a new slot on an
already allocated VM or if it will be necessary to allocate a
new VM}

13: if not allocated then
14: vmk ← ∅;
15: sort by min waste(A);
16: for all vmj ∈ A with enough memory do
17: n ← number of slots(ti, vmj); {Get the number of

slots necessary to execute ti on vmj}
18: if endSlotj + (n ∗ slot) < Dspot then
19: vmk ← vmj ;
20: stop loop;
21: end if
22: end for
23: if vmk is ∅ then
24: vmk ← bestV M time(ti,M);
25: if spotPrice(vmk) < on-demandPrice(vmk) then
26: vmmarket

k ← spot;
27: else
28: vmmarket

k ← on-demand;
29: end if
30: end if
31: n← number of slots(ti, vmk);
32: allocate slots(vmk, n); {allocate the number of slots re-

quired to execute ti in vmk}
33: allocate(ti, vmk) {Update the VMs sets}
34: update(A, vmk);
35: end if
36: end for
37: PM ← create primary map(A);
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Fig. 3: Example of a task tk, its successors and which backup
tasks might be executed to prevent vmj from a temporal
failure while executing task tk (RGk,j).

Algorithm 3 Backup Task Scheduling
Input: A, M , D

1: B VM ← ∅;
2: for all vmj ∈ A such that vmmarket

j = spot do
3: for all ti ∈ Queuej do
4: RGi,j ← create RG(ti, Queuej)

{Schedule each tk ∈ RGi,j on a set of VMs. The VMs
choice is guided by the monetary cost resulting from the
product of price and execution time}

5: S VMi ← ∅;
6: for all tk ∈ RGi,j do
7: vmbkp ← ∅;
8: {Select a VM able to execute tk, without violating the

deadline, with the smallest monetary cost}
9: vmbkp ← bestV M cost(tk, S VMi);

10: if vmbkp is ∅ then
11: vmbkp ← bestV M cost(tk,M);
12: end if
13: allocate(tk, vmbkp);
14: update(S VMti , vmbkp);
15: end for
16: start bkpi,j ← D − runtime(RGi,j , S VMi);
17: update(B VM,S VMi);
18: end for
19: end for
20: BM = create backup map(B VM);

M4, M5, R3, and R4 with memory below 100 GB, running in
the spot market, are able to hibernate if an interrupt occurs.
Therefore, for the purposes of this work, the fourth generation
general purpose VMs (M4) and the third and fourth generation
VMs optimized for computation (C3 and C4) were used. By
choosing the third and fourth generation VMs, it was possible
to compute the VM slowdown using the data from [10]. A
VM slowdown is defined as PB

Pj
, where PB is the processing

capacity of the machine used to calculate the basis time, and
Pj is the processing capacity of the vmj . Thus, the slowdown
represents the processing capacity of a VM when compared
with the machine used to compute the basis time duration.

The workload used in the evaluation were obtained from
[11], a database that contains the execution traces of jobs
submitted to Google’s servers throughout the month of March
2011. Based on these traces, we have defined: (i) the number
of tasks of a job; (ii) the execution time of each task of the job;
and (iii) the average memory footprint. For the experiments,
four BoT-type jobs were chosen from the first 10 days of the
traces. Table III summarizes the main characteristics of these
jobs, followed by the corresponding deadlines considering the
virtual machines used in our tests. We adopted the shortest
deadlines which enable the generation of valid primary and
backup scheduling, for each job. These values were computed
iteratively starting with D = 1(h) in increments of 1 hour,
stopping at the first valid scheduling given by the algorithms
2 and 3.

The execution times were obtained from Google machines
used in 2011. As the hardware information and computational
capacity of these machines are not provided, we assumed that
these times were obtained with the VM with the lowest compu-



tational power, whose memory capacity was sufficient to meet
the requirements of the tasks. As we can observe in Table IV,
among the VMs, the ones containing VCPUs with the lowest
computational power are c3.large and m4.large. Therefore,
they are considered our baseline regarding processing capacity.
Spot and on-demand VM prices were obtained on September
10, 2018, considering us-east-1 region. Table IV shows the
characteristics of these VMs, along with the corresponding
slowdown values of their VCPUs. Based on the latter and
considering, as mentioned above, that the duration of the tasks,
extracted from Google traces, were obtained from execution
them on the slowest VMs (base time duration), the duration of
each task in the other VMs was obtained through the product
of the respective slowdown value by its base duration.

TABLE III: BoT attributes and deadlines

JOB ID #Tasks Memory Execution Time of a Task Deadline
min avg max

J207 31 6.10 GB 7.03 (h) 19.75 (h) 49.31 (h) 17.00 (h)
J402 103 2.90 GB 7.87 (h) 29.83 (h) 94.04 (h) 29.00 (h)
J819 68 3.97 GB 6.42 (h) 18.87 (h) 51.53 (h) 16.00 (h)
J595 97 3.14 GB 7.15 (h) 45.80 (h) 120.39 (h) 40.00 (h)

TABLE IV: VMs attributes

Type #VCPUs Memory On-demand price Spot price slowdown

m4.large 2 8.00 GB 0.1$ 0.0324$ 1.000
c3.large 2 3.75 GB 0.10$ 0.0294$ 1.000
c4.large 2 3.75 GB 0.1$ 0.0308$ 0.655

m4.2xlarge 8 32.0 GB 0.4$ 0.1326$ 0.672
m4.xlarge 4 16.0 GB 0.2$ 0.0648$ 0.477

m4.4xlarge 16 64.0 GB 0.8$ 0.3257$ 0.513
c3.xlarge 4 7.50 GB 0.21$ 0.0588$ 0.323
c4.xlarge 4 7.50 GB 0.199$ 0.0617$ 0.332

c3.2xlarge 8 15.0 GB 0.42$ 0.1175$ 0.475
c4.2xlarge 8 15.0 GB 0.398$ 0.1262$ 0.447
c3.4xlarge 16 30.0 GB 0.84$ 0.2350$ 0.163
c4.4xlarge 16 30.0 GB 0.796$ 0.2535$ 0.162
c4.8xlarge 36 60.0 GB 1.591$ 0.4986$ 0.162
c3.8xlarge 32 60.0 GB 1.68$ 0.4700$ 0.161

A. Experimental results in different hibernation scenarios

In order to evaluate the effectiveness of our scheduling solu-
tion in terms of makespan and monetary cost, we compared it
with a strategy (On-demand) that uses only on-demand virtual
machines, while for evaluating the impact of hibernation,
we compared it with a strategy that migrates tasks as soon
as the VM, where the tasks have been allocated, hibernates
(Immediate Migration), i.e., the latter does not consider the
possibility that the VM might resume. Furthermore, we also
consider two possible scenarios of execution of our scheduling:
(1) no spot VM hibernates (No Hibernation) and (2) a spot
VM hibernates and, in this case, either the tasks need to be
migrated (Hibernation with Migration) or the VM resumes
in time to not violate deadline (Hibernation). In case of
hibernation, the latter initiates two hours after the job starts.
For the Hibernation with Migration execution, the duration of
hibernation is set to 1000 hours, thus forcing task migration;
for Hibernation, hibernation duration is just 3 hours and, there-
fore, task migration is not carried out. Aiming a more accurate

analysis of the results, only one spot VM can hibernate in
Hibernation and Hibernation with Migration executions. In
addition, only one backup migration takes place in Hibernation
with Migration execution. Finally, the experiments randomly
select the spot VM that should hibernate.

1) Hibernation without Migration: Figure 4 presents the
monetary costs in the Hibernation scenario, i.e., our schedul-
ing does not migrate tasks because the hibernated spot VM
instance resumes in time to meet the application’s deadline.
As we can observe in the figure, its monetary cost is similar
to the one without hibernation, represented by the Hibernation
and No Hibernation bars respectively. Such a result is expected
since, according to the new pricing policy defined by AWS in
December 2017, the user only pays for the time the spots are
running, and during hibernation, the user is charged only for
storage, whose price on September 10, 2018 was 0.10$ per GB
per month. As, in the experiments, the maximum hibernation
time is shorter than 30 hours, it is, thus, negligible. When our
solution is compared with the one that migrates tasks as soon
as the hibernation occurs (Immediate Migration), we observe
that the latter is more expensive than the second in 59.97%,
26.74%, 55.15% and 40.51%, for J207, J402, J819 and J595,
respectively. Such a difference in price can be explained since
in the Immediate Migration, the user was charged for the two
hours of execution of the spot VMs as well as for the on-
demand VMs used for migration. On the other hand, it is
worth mentioning that the Immediate Hibernation monetary
cost is, for the four jobs, on average, 57.31% lower than the
(On-demand) one. This happens because part of the tasks were
executed as primary ones in spot VM with high computational
power, and, therefore, fewer slots were needed to complete
execution on the on-demand VMs.

Figure 5 shows that our solution, Hibernation, has a
makespan longer than the Immediate Migration strategy. This
occurs because the former has an additional 3 hours due to
hibernation, while the latter migrates immediately, continuing
running the job’s tasks within this 3 hours.

In contrast, since the VMs usually chosen by the Immediate
Migration strategy are low cost ones, performing poorly, its
makespan can be longer than On-demand and No Hiberna-
tion ones, that allocate VMs with higher computation power.
Moreover, when the virtual machine hibernates, the executing
task is re-started from the beginning in another VM. So, its
execution time can be computed (in the makespan) almost
twice in the worst case.

2) Hibernation with Migration: Figures 6 and 7 respec-
tively show the monetary costs and makespan in the scenario
where our scheduling (Hibernation with Migration) migrates
tasks of a hibernated spot VM.

The monetary cost of Hibernation with Migration strategy
is equal to the Immediate Migration since the backup map
used by both of them are similar. These costs are higher (on
average, 30.74% in our experiments) than the one required
by the primary scheduling alone (No Hibernation), since the
former use spot VMs within the first two hours of execution,
as well as on-demand VMs for backup migration. On the
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Fig. 4: Monetary costs considering that the spot VM resumes.
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Fig. 5: Makespans considering VM the spot VM resumes.

other hand On-demand strategy costs are 136.00% higher
than Hibernation with Migration costs. In terms of makespan,
the Hibernation with Migration makespans is close to the
deadlines defined in the Table III. Such a behaviour is expected
since our approach waits till the start bkp, which is the latest
time that hibernation can be tolerated without exceeding the
deadline. Note that in the case of the Immediate Migration
strategy, the makespan is shorter than the Hibernation with
Migration one. In our experiments, this difference was, on
average, 74.26%.

Note that, although in some cases, the tasks can migrate to
VMs of equivalent processing powers (see the case of J207),
even in Immediate Migration strategy, the makespan increases.
As pointed out in the previous section, it happens because
the execution time of a task, initially started in a VM that
hibernates along its execution, can be computed almost twice,
when it migrates, in the worst case.

When comparing Hibernation with Hibernation with Mi-
gration, the duration of hibernation has an impact in both
makespans due to the duration of the execution itself. However,
in the case of Hibernation, where the hibernated spot VM
resumes in time to respect the deadline, the monetary cost is
lower than Hibernation with Migration, as we can confirm in
Figures 4 and 6.

B. Experimental Results with hibernation based on the vari-
ation of spots price

The results presented in this section are from experiments
that consider spot price variations for regions us-east-1 and
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Fig. 6: Monetary costs with tasks migration.
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Fig. 7: Makespans with tasks migration.

zone us-east-1a between March and April of 2017, defining
hibernation traces for the VMs of Table IV. That history of
price variation predates the changes in AWS pricing policies,
occurred in December 2017, which stabilized the prices of
VMs such that peaks of variation ceased to occur4.

The hibernation traces were generated considering a fixed
threshold of $0.4, which represents the average price value in
the first 24 hours of the history. Thus, the onset of hibernation
is the period in which the VM price is higher than this
value. Analogously, when the price drops to a value below the
threshold, we consider that the VM resumes execution. The
generated traces have two hibernation points: (1) c4.8xlarge
VMs hibernation at 4.21 hours after the start of execution and
lasting 43.51 minutes; (2) c3.4xlarge VMs hibernation at 23.7
minutes after the start of execution and lasted 1.22 hours.

The number of VMs affected by hibernation is not the same
for all evaluated jobs. While in the J207 and J819 jobs only
2 VMs hibernate, in Job J402 there are 8 hibernations of
different VMs. This variation is expected, since different job
tasks are scheduled to VMs of different types.

As can be observed in Figure 8, our solution, Hibernation,
presents the lowest monetary cost, with an average difference
of 167.43 %, relative to the Immediate Migration’s one, and
240.94 % in relation to the On-demand’s one. It is noteworthy
that in Job J402, Immediate Migration has a cost which is
6.73 % higher than the On-demand’s one. The former used
8 on-demand VMs for migration, which raised the monetary

4https://aws.amazon.com/blogs/compute/new-amazon-ec2-spot-pricing/
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Fig. 8: Monetary costs with hibernation based on AWS price
history.
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Fig. 9: Makespans with hibernation based on AWS price
history.

cost, added to the costs of the VMs spots used until the
beginning of their hibernation. On the other hand, for Job
J402, our approach presents a significantly lower cost than
the Immediate Migration’s one (that is 260.26 % higher than
our approach), since the duration of none of the hibernation of
the corresponding spot VMs triggered the migration of their
tasks.

Regarding makespan, shown in Figure 9, our approach is
7.52 % longer than On-demand’s one and 24.92 % shorter
than Immediate Migration’s one. These difference can be
explained since the duration of VMs hibernation is up to
1.22 hours, it is not necessary to start the task migration
process in any of the evaluated jobs. Therefore, this increase
is due only to the hibernation of the VMs. On the other
hand, in Immediate Migration the scheduling of backup tasks
chooses firstly cheaper on-demand VMs, usually with lower
computational power.

Although our approach increases the makespan when com-
pared On-demand’s one, the monetary costs are lower than the
two other approaches. Thus, the results from the experiments
with the hibernation trace confirm those from the previous
experiments.

V. CONCLUDING REMARKS AND FUTURE WORK

This paper proposed a static scheduling for bag-of-task
applications with deadline constraints, using both hibernation-

prone spot VMs (for cost sake) and on-demand VMs. Our
scheduling aims at minimizing monetary costs of bag-of-
tasks, respecting application’s deadline and avoiding temporal
failures. We evaluate the proposed strategy using the informa-
tion of BoT applications from real scenarios, and the results
confirmed the effectiveness of our scheduling and that it
tolerates temporal failures.

As future work, we intend to work in a dynamic version of
the proposed scheduling which periodically takes checkpoints
of the tasks, so that, in the migration case, the tasks can start
their executions from the last checkpoints, instead of being
re-started from the beginning.
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