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1 Introduction

Lambdapi is a new proof assistant based on the λΠ-calculus modulo theory [5], which extends the
simply typed lambda calculus with dependent types and an equivalence relation on types generated
by user-defined rewrite rules. The expressiveness of rewriting allows to formalize proofs that cannot
be done in other proof assistants. However, as Lambdapi is based on the propositions-as-types inter-
pretation, one should verify that the system satisfies the subject reduction property before starting to
construct proofs within it. During my internship, I studied a new algorithm proposed by F. Blanqui
for checking type preservation of rewrite rules and implemented it in Lambdapi. Besides, in order to
improve the unification (modulo rewriting) procedure, I designed an algorithm for checking injectivity
of function symbols.

2 λΠ-calculus modulo

2.1 λΠ-calculus

The λΠ-calculus is an extension of the simply typed lambda calculus (λ→) with dependent types. In
this calculus, we introduce a particular type Type and ”types” in λ→ are just terms of type Type in
the λΠ-calculus. Some terms have the type A→ Type, where A is of type Type, and can be applied
to a term t of type A to build a type depending on t. Besides, a type Kind is introduced as the type
of terms Type, A→ Type, etc. Finally, the usual arrow A→ B is extended to the dependent product
Πx : A.B to handle the possible dependency of the type B on the type A.

We write S for the set of sorts {Type,Kind} and we assume given a set X = {x, y, z, · · · } of variables
and a set F of function symbols.

Then we can define the set T of terms of the λΠ-calculus.

Definition 2.1. (Term) The set of terms in the λΠ-calculus is given by:

t := x | s | f | tt | λx : t.t | Πx : t.t, where x ∈ X , s ∈ S and f ∈ F

We then assume that each function symbol f is equipped with a type τ(f) and a sort s(f). If
τ(f) = Πx1 : T1. · · · .Πxn : Tn.U where U is not a product, then f is said of arity n. In fact, function
symbols can be regarded as variables declared in a global context (”signature”) of the system.

We now present the typing rules of the λΠ-calculus:

Well-formedness of the empty context

[ ] well-formed

Declaration of a variable

Γ ⊢ A : s
s ∈ S

Γ, x : A well-formed

Type is of type Kind

Γ well-formed
Γ ⊢ Type : Kind

Variable

Γ well-formed
x : A ∈ Γ

Γ ⊢ x : A
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Product

Γ ⊢ A : Type Γ, x : A ⊢ B : s
s ∈ S

Γ ⊢ Πx : A.B : s

Abstraction

Γ ⊢ A : Type Γ, x : A ⊢ B : s Γ, x : A ⊢ t : B
s ∈ S

Γ ⊢ λx : A.t : Πx : A.B

Application

Γ ⊢ t : Πx : A.B Γ ⊢ u : A

Γ ⊢ tu : (u/x)B

Function symbols

⊢ τ(f) : s(f)

⊢ f : τ(f)

Conversion

Γ ⊢ t : A Γ ⊢ A : s Γ ⊢ B : s
s ∈ S, A ≡β B

Γ ⊢ t : B

Fig. 1. Typing rules of the λΠ-calculus.

We have the uniqueness (modulo ≡β) of types in λΠ-calculus.

Proposition 2.1. For all Γ, t, A,B, if Γ ⊢ t : A and Γ ⊢ t : B, then A ≡β B.

2.2 λΠ-calculus modulo rewriting

The λΠ-calculus modulo rewriting is an extension of the λΠ-calculus with a set R of rewrite rules. Let
≡ be the minimal congruence that contains R and β-conversion. The typing rules of the λΠ-calculus
modulo R can be obtained from those of the λΠ-calculus by replacing ≡β with ≡ in the conversion
rule.

Notation 2.1. In the following, we denote the smallest congruence containing a relation S by ≡S .

2.3 Lambdapi

2.3.1 Metavariables

In Lambdapi, we extend the λΠ-calculus modulo by introducing metavariables which are used to rep-
resent yet unknown term. We denote byM the set of metavariables.

t := · · · |M where M ∈M

We now define the types of metavariables and the algebraic fragment of Lambdapi.

Each metavariable M is equipped with a type tM , with some contraints explained below.

The type of a yet unknown object-level term is also yet unknown, but the type of this type should be
a sort. We distinguish thus object-level metavariables and type-level metavariables:

Definition 2.2.

• A type-level metavariable is a metavariable M s.t. tM ∈ S.
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• An object-level metavariable is a metavariable M s.t. tM is a type-level metavariable.

• A metavariable is either a type-level metavariable or an object-level metavariable.

• We denote by M0 the set of object-level metavariables and by Meta(t) the set of object-level
metavariables occurring in t.

The algebraic fragment of the terms of Lambdapi corresponds to the terms of first-order rewriting:

Definition 2.3. Let A0 be the smallest set of terms such thatM0 ⊆ A0, and fa1 · · · an ∈ A0 for all f ∈
F , a1, · · · , an ∈ A0. The set A of algebraic terms is defined as A0 −M0

We now define substitutions.

Definition 2.4. (substitutions) A substitution σ is a map assigning to each metavariable M a term.
Its application to a term is defined as follows:

• xσ = x for x ∈ X

• fσ = f for f ∈ F

• (tu)σ = (tσ)(uσ)

• (λx : A.t)σ = λx : Aσ.tσ

• (Πx : A.t)σ = Πx : Aσ.tσ

• Mσ = σ(M)

• We define the domain dom(σ) of a substitution σ as the set {M ∈M |Mσ ̸= M}.

2.3.2 Type inference and type checking

The type inference relation of Lambdapi is the same as that of the λΠ-calculus modulo rewriting.
Note that, if a term contains a metavariable, then it is not typable.

Since metavariables are used to represent unknown terms in a term t, one might want to infer the
constraints on terms replacing the metavariables of t that need to be satisfied to make the term t
typable.

We now present the constraint-generating type inference and type checking algorithm for algebraic
terms, consisting of the following judgement forms.

Γ ⊢ t ↑ A[E] type checking
Γ ⊢ t ↓ A[E] type inference

Note that we add a special field E which contains a set of constraints.

Function applications

τ(f) = Πx1 : A1. · · · .Πxn : An.U ∀i ∈ {1, · · · , n},⊢ ti ↑ Ai[Ei]

⊢ ft1 · · · tn ↓ (t1/x1, · · · , tn/xn)U [
∪

1≤i≤nEi]

Object-level metavariables

⊢M ↑ T [{(tM , T )}]
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Type checking of function applications

⊢ ft1 · · · tn ↓ A[E]

⊢ ft1 · · · tn ↑ B[E ∪ {(A,B)}]

Fig. 2. (Constraint-generating) type inference and type checking algorithm for algebraic terms.

Proposition 2.2.

1. If t is an algebraic term, then there exists at most one (E,A) such that ⊢ t ↓ A[E].

2. If t is an algebraic term or an object-level metavariable, then for all term A, there exists at most
one E such that ⊢ t ↑ A[E].

Remark 2.1. The proposition above guarantees the existence of two algorithms InferType and
CheckType that correspond to the type inference and the type checking respectively.

Definition 2.5. We say that a substitution σ satisfies a set E of equations, written σ |= E, if for all
(a, b) ∈ E, aσ ≡ bσ.

Definition 2.6. We say that a substitution σ′ is a type-level extension of another substitution σ if
Mσ′ = Mσ for all M ∈ dom(σ) and dom(σ′)− dom(σ) ⊆ {tM |M ∈M0 ∩ dom(σ)}.

Theorem 2.1. Suppose that ⊢ t ↑ T [E] (or ⊢ t ↓ T [E]). Let σ be a substitution. Then we have:

1. (σ |= E and ∀M ∈Meta(t),Γ ⊢Mσ : tMσ)⇒ Γ ⊢ tσ : Tσ.

2. Γ ⊢ tσ : V ⇒ there exists a type-level extension σ′ of σ s.t. V ≡ Tσ′, σ′ |= E and ∀M ∈
Meta(t),Γ ⊢Mσ′ : tMσ′).

Proof. By induction on the derivation of ⊢ t ↓ T [E] (or ⊢ t ↑ T [E])

• (Function applications)

1. Suppose that σ |=
∪

1≤i≤nEi and ∀M ∈ Meta(ft1 · · · tn),Γ ⊢ Mσ : tMσ. We have,
∀1 ≤ i ≤ n, σ |= Ei and ∀M ∈Meta(ti),Γ ⊢Mσ : tMσ. By I.H., ∀i ∈ {1, · · · , n},Γ ⊢ tiσ :
Aiσ = Ai (the Ai’s and U contain no metavariable since function symbols are declared in
the global context). Hence, Γ ⊢ (ft1 · · · tn)σ = f(t1σ) · · · (tnσ) : (t1σ/x1, · · · , tnσ/xn)U =
((t1/x1, · · · , tn/xn)U)σ.

2. Suppose that Γ ⊢ f(t1σ) · · · (tnσ) : V . We have ∀i,Γ ⊢ tiσ : Ai. Thus by I.H., we have, for
all i, there exists a type-level extension σ′i of σ s.t. σ′i |= Ei and ∀M ∈Meta(ti),Γ ⊢Mσ′ :
tMσ′. Let σ′ be the substitution defined by dom(σ′) =

∪
1≤i≤n dom(σ′i) and Mσ′ = Mσ′i.

Note that, if an object-level metavariable M occurs in the domains of σ′i and σ′j , we have,
by I.H., Γ ⊢ Mσ′i : tMσ′i and Γ ⊢ Mσ′j : tMσ′j . σ′i (resp. σ′j) is a type-level extension of
σ, we have thus Mσ′i = Mσ = Mσ′j . Hence, tMσ′i ≡ tMσ′j by uniqueness of types. We
choose thus the value of tMσ′ to be either tMσ′i or tMσ′j . By doing so, σ′ |=

∪
1≤i≤nEi and

∀M ∈ Meta(ft1 · · · tn),Γ ⊢ Mσ′ : tMσ′. To finish, we have V = (t1σ/x1, · · · , tnσ/xn)U =
((t1/x1, · · · , tn/xn)U)σ = ((t1/x1, · · · , tn/xn)U)σ′.

• (Object-level metavariables)

1. Suppose that σ |= {(tM , T )}, i.e., tMσ ≡ Tσ and Γ ⊢ Mσ : tMσ. By the conversion rule,
we have thus Γ ⊢Mσ : Tσ.

2. Suppose that Γ ⊢Mσ : V . By defining σ′ as Nσ′ = Mσ if N ̸= tM and tMσ′ = V , we have
the required properties.

• (Type checking of function applications) Trivial.
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2.3.3 Rewrite rules

We only consider algebraic rewrite rules in the algorithm proposed in the next section.

Definition 2.7. (Algebraic rewrite rules) An algebraic rewrite rule is a pair (l, r) of terms, written
as l→ r, such that:

1. l is algebraic;

2. r is either an object-level metavariable or an algebraic term;

3. Meta(r) ⊆Meta(l);

Now we can define the rewrite relation induced by the rewrite system.

Definition 2.8. (Rewrites and rewrite steps)

• Let l→ r be an algebraic rewrite rule and σ be a substitution. Then lσ → rσ is called a rewrite
and lσ is called a redex.

• Let C be a context and lσ → rσ be a rewrite. Then C[lσ] → C[rσ] is a rewrite step. This
defines the rewrite relation →R generated by the rewrite system R.

3 Subject reduction in λΠ-calculus modulo

We first give the notion of product compatibility.

Definition 3.1. (Product compatibility) We say the product compatibility property is satisfied if
Πx : A.B ≡ Πx : A′.B′ implies A ≡ A′ and B ≡ B′.

Then we give a sufficient condition for the product compatibility.

Proposition 3.1. (Product compatibility from confluence) If → is confluent, then the product com-
patibility property holds.

Now we introduce the type preservation of rewrite rules, one of the main points we investigate in this
work.

Definition 3.2. (Type preservation of rewrite rules) A rule l → r is type-preserving if for any well-
formed context Γ, any substitution σ and any term T , Γ ⊢ lσ : T implies Γ ⊢ rσ : T .

In [4], F. Barbanera, M. Fernández, and H. Geuvers give the following theorem:

Theorem 3.1. (Subject reduction for →β) The subject reduction for →β, expressed below, is a
consequence of the product compatibility.
SR→β

: ∀Γ, t1, t2, T, (Γ ⊢ t1 : T and t1 →β t2)⇒ Γ ⊢ t2 : T .

Theorem 3.2. (Subject reduction for →R) The subject reduction for →R, expressed below, is equiv-
alent to the type preservation of all the rewrite rules in R.
SR→R : ∀Γ, t1, t2, T, (Γ ⊢ t1 : T and t1 →R t2)⇒ Γ ⊢ t2 : T .

This result remains valid in Lambdapi. Since we assume always the confluence in Lambdapi, the
subject reduction for →R is equivalent to the type preservation of the rewrite system.
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3.1 Type preservation of rewrite rules

In this section, we present an algorithm for checking type preservation of algebraic rewrite rules.

We first give an example to show the idea of the algorithm briefly.

Example 3.1. Consider the rule l = tail n (cons x p v) → v = r with N : Type, s : N ⇒ N,A :
Type, V : N ⇒ Type, cons : Πx : A.Πn : N.V n⇒ V (s n), and tail : Πn : N.V (s n)⇒ V n.

The idea is to retrieve some information about σ from the typability of lσ and then use this information
to prove the typability of rσ. For example, to make tail (nσ) (cons (xσ)(pσ)(vσ)) typable, we should
ask the type of nσ to be (convertible to) N .

We first infer the type of the LHS:
⊢ tail n (cons x p v) ↓ V n[{(tn, N), (tp, N), (tv, V p), (V (s p), V (s n))}]. We now check if the RHS
has the same type V n: ⊢ v ↑ V n[{(tv, V n)}] (recall: tM represents the type of the object-level
metavariable M).
By using the equation (tv, V p), we can tranform the equation (tv, V n) to solve into the equation
(V p, V n). Since V and s are constants, it is possible to get the constraint (p, n) from the constraint
(V (s p), V (s n)), and the equation (V p, V n) can be thus solved by the constraint (p, n). This ob-
servation also shows that a refinement of constraints should be done before dealing with the equations
to solve.

As the type inference and type checking algorithm is ”constraint-generating”, our main goal is to prove
that the set E of constraints generated by the LHS of a rule is ”stronger” than the one generated by
the RHS (Eto_solve). More precisely, we want to prove that every substitution σ satisfying E satisfies
Eto_solve as well. The problem is hard and might be undecidable. Here, we propose a partial solution
using a completion procedure that gives a rewrite system R′ equivalent to E′, obtained from E by
replacing each metavariable M with a fresh symbol cM .

Algorithm 1: CheckSR
input : an algebraic rule l→ r
output: a boolean value b

1 res← true
2 (U,E)← InferType(l)
3 Eto_solve ← CheckType(U, r)
4 E′ ← Eρ

/* ρ replaces every metavariable M with a fresh (constant) symbol cM */
5 (E′fo, E

′
not_fo)← FO(E′)

/* split the equations into one first-order part and the rest */
6 R′ ← Completion(E′fo)

7 E′to_solve ← Eto_solveρ

8 for (t, u) ∈ E′to_solve do
9 res← res ∧ (t ↓R∪R′∪β u ∨ Eqconstr(E

′
not_fo, R

′, t, u))

10 end
11 return res

Here, InferType(l) returns (U,E) if and only if ⊢ l ↓ U [E] and CheckType(U, r) returns Eto_solve if
and only if ⊢ r ↑ U [Eto_solve].

We now describe the completion procedure employed in the form of a rewrite system.
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S ∪ {g → d, l[g]→ r} ↪→


S ∪ {g → d, l[d]→ r}) if l[d] > r

S ∪ {g → d, r → l[d]}) if l[d] < r

S ∪ {g → d} if l[d] = r

where > is a total reduction order on terms

Note that only closed first-order term rewrite systems are considered here.

Lemma 3.1. The system above is terminating.

By considering the multiset ordering >mul, the sum of the sizes of all the terms (LHS’s and RHS’s)
strictly decreases after applying a rewrite step.

Proposition 3.2. Let S be a normal term in the system above. Then S has no critical pair.

Proof. First note that any critical pair between two ”closed” rules g → d and l → r is of the form
(d, c[r]) or (c[d], r) where c is a context. In both cases, one of the LHS’s is a subterm of the other.
Hence, if S has a critical pair, then S is not in normal form, which leads to a contradiction.

Theorem 3.3. Let S be a rewrite system included in the reduction order >. Then the normal form
nf(S) of S is a confluent and terminating rewrite system. Moreover, ≡nf(S)= ≡S .

Proof. By Proposition 3.2, the normal form nf(S) of S is locally confluent. It is not difficult to prove
that it is also included in >, which implies its termination. By Newman’s lemma, nf(S) is confluent.
To prove the equivalence of the systems, it suffices to prove that S ↪→ S′ ⇒ ↔∗S= ↔∗S′ .

The completion procedure takes a set E of equations as input, orients it following the reduction order
>:

S = {max>(a, b),min>(a, b) | (a, b) ∈ E, a ̸= b}
and returns the normal form of S.

A problem of modularity arises when we consider the union of the user-defined system, the beta-
conversion, and the one generated by completion. To guarantee the conversion is decidable in the
union , we want the latter to be confluent and terminating. In general, there is no guarantee that
this property is verified. It might be interesting to restrict to some special cases. For instance, if the
user-defined system is left-linear, confluent and there is no critical pair between the two systems, then
the union is confluent. There are some works about the modularity of termination in first-order term
rewriting, but it is still unknown whether these results can be generalized to higher-order cases.

Since the union might not be complete, we propose a simple function that strengthens the power of
the algorithm using higher-order constraints.

Algorithm 2: Eqconstr
input : a set E of constraints, a rewrite system R′, two terms t and u
output: a boolean value b

1 b← false
2 for (v, w) ∈ E do
3 b← b ∨ (t ↓R∪R′∪β v ∧ u ↓R∪R′ w) ∨ (t ↓R∪R′∪β w ∧ u ↓R∪R′ v)
4 end
5 return b

We now give the main theorem of this section:

Theorem 3.4. If CheckSR(l→ r) returns true, then the rule l→ r is type-preserving.
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Proof. Suppose that Γ ⊢ lσ : T . We have ⊢ l ↓ U [E] and by Theorem 2.1, there exists a type-level
extension σ′ of σ s.t. T ≡ Uσ′, for all (A,B) ∈ E, Aσ′ ≡ Bσ′, and ∀M ∈ Meta(l),Γ ⊢ Mσ′ : tMσ′.
Note that, for all (t, u) ∈ Eto_solve, tρ ≡R∪Eρ uρ (*) since ≡R′ = ≡E′

fo
and E′not_fo ⊆ Eρ. Let ρ−1 be

the inverse of ρ.

The essential point of the proof is the following: for all term a containing no metavariable, (aρ−1σ′) ↓
= ((a ↓)ρ−1σ′) ↓.
We proceed by structural induction on a. The only non-trivial case is the base case a = cM where M
is a metavariable. (cMρ−1σ′) ↓ = (Mσ′) ↓= ((cM ↓)ρ−1σ′) ↓ since cM ↓ = cM .

From the property above, we have: a ≡ b⇒ aρ−1σ′ ≡ bρ−1σ′.
Moreover, Eρρ−1σ′ = Eσ′ ⊆ ≡ and thus for all (a, b), a ≡R∪Eρ b ⇒ aρ−1σ′ ≡ bρ−1σ′. Hence, by (*),
for all (t, u) ∈ E′to_solve, tσ

′ ≡ uσ′ and ∀M ∈ Meta(r),Γ ⊢ Mσ′ : tMσ′ since Meta(r) ⊆ Meta(l).
Hence, Γ ⊢ rσ = rσ′ : Uσ′ ≡ T . The rule l→ r is thus type-preserving.

The theorem above guarantees the correctness of the algorithm but in practice, we want to retrieve
more information from the constraints E in order to generate a ”better” rewrite system R′ that allows
us to solve more equations in E′to_solve. First note that we only consider the substitutions satisfying E,
i.e., σ s.t. ∀(a, b) ∈ E, aσ ≡ bσ. Imagine that we now have a unification modulo rewriting algorithm
that generates a most general unifier ρ when applied to E. We have, for all x ∈ dom(ρ), xρ ≡ xσ since
ρ, which gives a common property of all these substitutions satisfying E. Here, unification is used as
refinement of constraints and a possible approach is presented in the next section.

4 Unification modulo rewriting and injectivity of function symbols

In this section, we study the unification modulo rewriting procedure and the injectivity of function
symbols. Our study here focuses on first-order term rewrite systems. We first describe a naive
unification modulo procedure and give an example to show its limit, which justifies the study of
injectivity of symbols. Next, we give an algorithm for checking the (partial) injectivity of symbols.

In the following, we assume given a complete (i.e. terminating and confluent) first-order term rewrite
system R. Let → be the rewrite relation induced by R and ≡ the reflexive, symmetric, and transitive
closure of →.

4.1 Unification modulo rewriting

The unification algorithm presented later takes a unification problem as an input.

Definition 4.1. (Unification problems) A unification problem is a record with four fields: subst,
to_solve, unsolved and recheck, where

• subst is a substitution obtained previously,

• to_solve is a set of equations to solve,

• unsolved is a set of equations that cannot be solved, and

• recheck is a boolean value that indicates if the unification procedure has to recheck the unsolved
equations when there is no equation in to_solve.

We denote by eq(P ) the set of all the equations in P , that is, the union of P.to_solve and P.unsolved.

Definition 4.2. Two sets of equations P and Q are said to be equivalent if for all substitution σ, we
have the equivalence: ∀(t, u) ∈ P, tσ ≡ uσ ⇔ ∀(v, w) ∈ Q, vσ ≡ wσ
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Algorithm 3: Unification
input : a unification problem P
output: a substitution and a set of unsolved equations

1 if P.to_solve = [ ] then
2 if P.recheck = false then
3 return (P.subst, P.unsolved)
4 else
5 P.to_solve← P.unsolved
6 P.unsolved← [ ]
7 P.recheck ← false
8 return Unification(P )

9 else
10 (t, u)← P.to_solve.pop()
11 Unificaion_aux((t, u), P )

We now present an algorithm for unification modulo rewriting:

Algorithm 4: Unification_aux
input : an equation (t, u) on terms and a unification problem P
output: a substitution and a set of unsolved equations

1 t← t ↓
2 u← u ↓
3 if t = u then
4 return Unification(P )
5 else if t = gt1 · · · tn and u = hu1 · · ·um with g, h two symbols then
6 if g and h are distinct constants then
7 raise Unsolvable
8 else if g = h and g is constant then
9 for i = 1 to n do

10 P.to_solve.insert((ti, ui))
11 end
12 return Unification(P )

13 else
14 P.unsolved.insert((t, u))
15 return Unification(P )

16 else if (t, u) = (x, s) or (s, x) with x ∈ V − V ar(s) then
17 P ← P [x← s] /* replace all occurrences of x in P with s */
18 P.subst.insert((x, s))
19 P.recheck ← true
20 return Unification(P )

21 else
22 P.unsolved.insert((t, u))
23 return Unification(P )

Proposition 4.1.

• If the call Unification_aux((t, u), P ) raises the exception Unsolvable, then t and u are not
unifiable.

• If in the call Unification_aux((t, u), P ) we make the call Unification(P ′), then {(t, u)}∪eq(P )
and eq(P ′) are equivalent.

• If in the call Unification(P ) we make the call Unification(P ′) then eq(P ) and eq(P ′) are
equivalent.
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• If in the call Unification(P ) we make the call Unification_aux((t, u), P ′), then eq(P ) and
{(t, u)} ∪ eq(P ′) are equivalent.

• If the call Unification(P ) returns (ρ,Q) without any other call, then eq(P ) and the union of ρ
(a substitution {x1 7→ t1, · · · , xn 7→ tn} is identified with the set {(x1, t1), · · · (xn, tn)} and eq(Q)
are equivalent.

Theorem 4.1.

• Suppose that Unification(P ) raises an error. Then eq(P ) is not unifiable.

• Suppose that Unification(P ) returns (ρ,Q). Then eq(P ) is equivalent to the union of ρ and
eq(Q).

In a syntactic unification, unifying two terms of the form ft1 · · · tn and fu1 · · ·un is equivalent to
unifying the pairs (t1, u1), · · · , (tn, un). However, this is no longer true in our setting with congruence.
This observation gives rise to the study of the injectivity of symbols, given in detail in the next section.

The study of injectivity can be useful for checking the subject reduction property. For example, we can
encode in Lambdapi/Dedukti [1] some logical systems using a type T for representing propositions and
a function symbol ϵ : T ⇒ Type for interpreting the Curry-Howard correspondence. The injectivity
of ϵ is sometimes needed when checking the subject reduction for certain rules.

4.2 Injectivity of function symbols

Assume that the symbols of R are defined in a certain order, i.e., there exists an order >symb on the
set S of symbols such that f >symb g iff f is defined after g (the rules defining g do not contain any
symbol f s.t. f >symb g).

Alternatively, we can reformulate this by saying the dependency graph between symbols is a DAG:

Definition 4.3. We say that f depends on g if there exists a rule fl → r such that g appears in
l or r. The dependency graph between symbols is a directed graph (V,E) defined by V = S and
E = {(f, g) | f depends on g}.

Moreover, we assume that each symbol has a fixed arity.

Consider the following example:

Example 4.1. Let o and s be two constant symbols.

The following rules define the symbol id:
R1 : id o→ o
R2 : id (s x)→ s (id x)

Since the rewrite system is assumed to be terminating and confluent, the relation> := (▷ ∪ →)+ is well-
defined and well-founded. The relation >id defined by (t, u) >id (t′, u′)⇔ (id t ≥ id t′ and id u > id u′)
or (id t > id t′ and id u ≥ id u′) is also well-founded.

We now prove id t ≡ id u⇒ t ≡ u by induction on (t, u) using the relation >id.

• If id t and id u are in normal form, then id t = id u by confluence and thus t = u.

• If id t is in normal form and there exists v s.t. id u→ v. We distinguish two cases:

1. u is in normal form: we have id u→R1 v or id u→R2 v.
If id u→R1 v, then u = v = o. We have thus id t = id t ↓ = id u ↓ = o, which is impossible.
If id u →R2 v, then there exists w such that u = s w and v = s (id w). Since s is a
constant, the normal form of v is also headed by s, which leads to a contradiction since
v ↓ = id u ↓ = id t ↓ = id t.
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2. there exists u′ such that u→ u′. We have (t, u) >id (t, u′) and id u′ ≡ id u ≡ id t. Thus by
I.H., we have u′ ≡ t, which gives u ≡ t.

• If id u is in normal form and there exists w s.t. id t → w, then we proceed as in the previous
case.

• If id t and id u are not in normal form, then we distinguish two cases:

1. If one of the terms t and u is not in normal form, then we can conclude by simply applying
the I.H..

2. If t and u are in normal form, then there exist i, j ∈ {1, 2} and two terms v and w s.t.
id t→Ri v and id u→Rj w.
If (i, j) = (1, 1), then it is clear that t = u = o.
If (i, j) = (1, 2) (resp. (2, 1)), then it is contradictory since v is headed by the constant o
(resp. s) while w is headed by the constant s (resp. o).
If (i, j) = (2, 2), then there exist t′ and u′ such that t = s t′, v = s (id t′), u = s u′ and
w = s (id u′). We have v ≡ id t ≡ id u ≡ w, which implies id t′ ≡ id u′ since s is constant.
We have (t, u) >id (t′, u′) since id t→ s (id t′) ▷ id t and id u > id u′ for the same reason.
Thus, by I.H., t′ ≡ u′, which gives t ≡ u.

Intuitively, we want to design an algorithm that checks the injectivity of a given symbol ”by induction”
following the structure of the proof above. The second point in the proof by induction above gives rise
to a function (CheckSingleRule) that checks if the structure of each rule verifies certain properties
while the fourth point leads to a function (CheckTwoRules) that compares the structure of each rule
with another (and itself).

Definition 4.4. Let n be the arity of f . We say that f is I-injective (modulo) if
(ft1 · · · tn ≡ fu1 · · ·un ∧ ∀i ∈ I, ti ≡ ui)⇒ ∀i /∈ I, ti ≡ ui.

In the following, we propose an algorithm for checking I-injectivity.

Algorithm 5: CheckInjectivity
input : f , I
output: a boolean value b

1 res← true
2 for fl→ r ∈ R do
3 res← res ∧ CheckSingleRule(f, I, f l→ r)
4 end
5 for fl→ r ∈ R do
6 for fg → d ∈ R do
7 res← res ∧ CheckTwoRules(f, I, f l→ r, fg → d)
8 end
9 end

10 return res

Note that, if fl→ r is the same as fg → d, the metavariables in the latter are renamed before calling
to CheckTwoRules.

The call CheckSingleRule(f, I, f l → r) corresponds to the case where exactly one of the terms ft
and fu is in normal form, and the other can be reduced at the top-level using the rule fl → r.
The idea is quite straightforward: we attempt to use the conditions ft ≡ fu and ti ≡ ui(i ∈ I)
to solve the equations ti ≡ ui(i /∈ I). The most delicate part is that we proceed in an abstract
level: we consider rules and metavariables instead of actual terms. Thus, it is appropriate to adapt
the approach ”Unification as refinement of constraints” taken in checkSR to this case, by using a
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hypothetical unification procedure, instead of the one presented previously.

Algorithm 6: CheckSingleRule
input : f , I and a rule fl→ r
output: a boolean value b

1 if ∃i ∈ I, li = r then
2 return true
3 else if r is of the form gl′ with g ̸= f then
4 if NoErasing_rec(g) then
5 return true
6 else
7 return false

8 else
9 P ← {(fx1 · · ·xn, r)} ∪ {(xi, li) | i ∈ I} /* xi are fresh variables */

10 Q← {(xi, li) | i /∈ I}
11 return InferFromConstraints(f, I, P,Q)

As observed in Example 4.1, if we can prove that the normal form of a term cannot be headed by f
after applying the rule fl → r, then the case where exactly one of the terms ft and fu is in normal
form and the other can be reduced at the top-level using the rule fl → r can be eliminated. The
following function NoErasing_rec gives one sufficient condition for having this property.

Proposition 4.2. If NoErasing_rec(f) returns true, then the normal form of a term headed by f
is headed by f or a symbol defined previously.

Proof. By induction on >symb. Trivial.

Algorithm 7: NoErasing_rec
input : a symbol f
output: a boolean value b

1 if f has erasing rules, i.e., rules of the form fl→ x then
2 return false
3 else
4 res← true
5 for fl→ gl′ ∈ Rules with f ̸= g do
6 res← res ∧NoErasing_rec(g)
7 end
8 return res

The call CheckTwoRules(f, I, f l → r, fg → d) corresponds to the case where ft (resp. fu) can be
reduced at the top-level using the rule fl→ r (resp. fg → d). The idea is almost the same as that of
CheckSingleRule.

Algorithm 8: CheckTwoRules
input : f , I, two rules fl→ r and fg → d
output: a boolean value b

1 P ← {(r, d)} ∪ {(li, gi) | i ∈ I}
2 Q← {(li, gi) | i /∈ I}
3 return InferFromConstraints(f, I, P,Q)
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Algorithm 9: InferFromConstraints
input : f , I, two sets of constraints P and Q
output: a boolean value b

1 try:
2 P ← {subst = {}, unsolved = {}, to_solve = P, recheck = false}
3 (ρ, constr)← Hypo_Unification(f, I, P )
4 Q′ ← Qρ[x← cx] /* cx are fresh variables */
5 res← true
6 for (t, u) ∈ Q′ do
7 res← res ∧ (t ≡R∪constr[x←cx] u)

8 end
9 return res

10 catch Unsolvable :
11 return true
12 end

Intuitively, InferFromConstraints(f, I, P,Q) attempts to solve the constraints Q by using the con-
straints generated from Hypo_Unification(f, I, P ).

We now describe a first-order hypothetical unification (modulo rewriting) algorithm.

Algorithm 10: Hypo_Unification
input : f , I and a unification problem P
output: a substitution and a set of unsolved equations

1 if P.to_solve = [ ] then
2 if P.recheck = false then
3 return unmarked(P.subst, P.unsolved)

/* erase all the marks # */
4 else
5 P.to_solve← P.unsolved
6 P.unsolved← [ ]
7 P.recheck ← false
8 return Hypo_Unification(f, I, P )

9 else
10 (t, u)← P.to_solve.pop()
11 Hypo_Unificaion_aux(f, I, (t, u), P )
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Algorithm 11: Hypo_Unification_aux
input : f , I, an equation (t, u) on terms and a unification problem P
output: a substitution and a set of unsolved equations

1 t← t ↓
2 u← u ↓
3 if t = u then
4 return Hypo_Unification(f, I, P )
5 else if t = gt1 · · · tn and u = hu1 · · ·um with g, h two symbols then
6 if g = f# or h = f# then
7 P.unsolved.insert((t, u))
8 return Hypo_Unification(f, I, P )

9 else if g ̸= h then
10 if g and h are constants then
11 raise Unsolvable
12 else
13 P.unsolved.insert((t, u))
14 return Hypo_Unification(f, I, P )

15 else
16 J ← {i | ti ≡ ui}
17 if (g = f and I ⊆ J) or CheckInjectivity(g, J) then
18 for i /∈ J do
19 P.to_solve.insert((ti, ui))
20 end
21 return Hypo_Unification(f, I, P )

22 else
23 P.unsolved.insert((t, u))
24 return Hypo_Unification(f, I, P )

25 else if (t, u) = (x, s) or (s, x) with x ∈ V − V ar(s) then
26 P ← P [x← sf# ] /* replace all occurrences of x in P with sf# */
27 P.subst.insert((x, s))
28 P.recheck ← true
29 return Hypo_Unification(f, I, P )

30 else
31 P.unsolved.insert((t, u))
32 return Hypo_Unification(f, I, P )

Here, f# is a special symbol introduced to guarantee that the induction hypothesis in our proof by
induction is applied ”correctly”. It is considered exactly the same as f except when unifying a term
headed by f# with another term. When we consider a f which is not marked with #, we use fo to
avoid the confusion. We denote by sf# the term obtained from s by replacing all occurrences of f
with f#. If we admit that CheckInjectivity(f, I) = true⇒ f is I-injective, then Hypo_Unification
implements the first-order unification (modulo rewriting) under the hypothesis that f is I-injective
(on some set of terms).

The following theorem gives a sufficient condition for I-injectivity.

Theorem 4.2. Let f be a symbol and I ⊆ {1, · · · , arity(f)}. If CheckInjectivity(f, I) returns true,
then f is I-injective.

Proof. We first define a relation S on the set E = {(f, I) | CheckInjectivity(f, I) terminates}
such that (f, I) S (g, J) if the call CheckInjectivity(g, J) appears in the recursion tree of the call
CheckInjectivity(f, I). S is well-founded since for all (f, I) ∈ E, CheckInjectivity(f, I) terminates.

We prove H0(f, I) : CheckInjectivity(f, I) returns true⇒ f is I-injective by induction on E using
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the well-founded relation S.

Now, fix f and I and suppose that H0(g, J) holds for all (f, I) S (g, J).

Since the rewrite system R is assumed to be terminating and confluent, the relation >:= (▷ ∪ →)+ is
well-founded. Let >prod_f be the well-founded relation defined by (t, u) >prod_f (t′, u′) ⇔ (ft > ft′

and fu ≥ fu′) or (ft ≥ ft′ and fu > fu′). Note that t, u, t′, and u′ are n-tuples of terms, where
n = arity(f). In the following, we write t→ t′ if there exists i s.t. ti → t′i and tj = t′j ∀j ̸= i.

Suppose that CheckInjectivity(f, I) returns true.
We now prove H1((t, u)) : (ft ≡ fu ∧ ∀i ∈ I, ti ≡ ui)⇒ ∀i /∈ I, ti ≡ ui by induction on (t, u) using
>prod_f .

• Suppose that ft and fu are in normal form. Then ft = ft ↓ = fu ↓ = fu and ∀i, ti = ui.

• Suppose that ft is in normal form and that there exists v s.t. fu→ v. We distinguish two cases:

1. ui are all in normal form. There exist thus a rule fl → r and a substitution σ such
that fu = flσ and v = rσ. Since CheckSingleRule(f, I, f l → r) returns true, we can
distinguish three cases:

– there exists i ∈ I s.t. li = r. In this case v = rσ = liσ = ui ≡ ti, but we also have
v ≡ fu ≡ ft, which leads to a contradiction since ft and ti are both in normal form.

– r is of the form gl′ with g ̸= f and NoErasing_rec(g) returns true. This case is
impossible since v = rσ = gl′σ and by Proposition 1.2., v ↓ cannot be headed by f .

– InferFromConstraints(f, I, P,Q) returns true where P = {(fx1 · · ·xn, r)}∪{(xi, li) |
i ∈ I} and Q = {(xi, li) | i /∈ I}. Let σ′ be the substitution that extends σ with
xiσ
′ = ti.

Consider the call to Hypo_Unification in InferFromConstraints(f, I, P,Q) and let
Hypo_Unification(f, I, P0), · · · ,Hypo_Unification(f, I, Pk) be the sequence of the
recursive calls to Hypo_Unification in this call (in particular, eq(P0) = P ).
We now prove H2(i) : ∀(a, b) ∈ eq(Pi), aσ

′ ≡ bσ′ and

H3(i) : ∀(a, b) ∈ eq(Pi),∀fot′◁ a,∀fou′◁ b, (t, u) >prod_f (t′σ′ ↓, u′σ′ ↓) by induction on
i (fo denotes the unmarked symbol f).
H2(0) holds since rσ′ = rσ = v ≡ fu ≡ ft = (fx1 · · ·xn)σ′ and for all i ∈ I,
liσ
′ = liσ = ui ≡ ti = xiσ

′.
Let (a, b) ∈ eq(P0) = P . If (a, b) = (fx1 · · ·xn, r), then for all fot′◁ a, fou′◁ b,
fot′σ′◁ (fx1 · · ·xn)σ′ = ft and fou′σ′◁ rσ′ = v ← fu which proves (t, u) >prod_f

(t′σ′ ↓, u′σ′ ↓) since fc ≥ f(c ↓) for all c. Thus H3(0) holds.
Now suppose that H2(i) and H3(i) hold and prove that H2(i + 1) and H3(i + 1)
hold. Note that we only need to check these properties for the equations inserted
into Pi. The only non-trivial inductive steps are (consider the equation treated in the
call to Hypo_Unification_aux between the calls Hypo_Unification(f, I, Pi) and
Hypo_Unification(f, I, Pi+1)):
(a) (fo t′1 · · · t′n︸ ︷︷ ︸

t′

, fo u′1 · · ·u′n︸ ︷︷ ︸
u′

) and I ⊆ J where J = {j | t′j ≡ u′j} (case 1 in the line 17):

(H2): By I.H. (H3), (t, u) >prod_f (t′σ′ ↓, u′σ′ ↓). By I.H. (H2), fo(t′σ′ ↓) ≡
fot′σ′ ≡ fou′σ′ ≡ fo(u′σ′ ↓) and thus by I.H. (H1), t′jσ′ ≡ t′jσ

′ ↓ ≡ u′jσ
′ ↓ ≡

u′jσ
′ ∀j /∈ I ⊆ J .

(H3): Trivial.
(b) (gt′1 · · · t′m, gu′1 · · ·u′m) such that g ̸= f and that CheckInjectivity(g, J) returns

true where J = {j | t′j ≡ u′j} (case 2 in the line 17):
(H2): By I.H. (H2), g(t′1σ′) · · · (t′mσ′) ≡ g(u′1σ

′) · · · (u′mσ′) and by I.H. (H0), g is
J-injective Thus t′jσ′ ≡ u′jσ

′ ∀j /∈ J .
(H3): Trivial.

15



(c) (x, s) where x ∈ V (line 25):
(H2): By I.H. (H2), xσ′ ≡ sσ′ (we have even sσ′ ↓ = xσ′ since there exists i
s.t. xσ′ ◁ ti (or ui) which is in normal form). For all (a, b) ∈ eq(Pi+1), there
exists (c, d) ∈ eq(Pi) such that a = c[x ← s] and b = d[x ← s]. We have thus
aσ′ = c[x ← s]σ′ = cσ′[xσ′ ← sσ′] ≡ cσ′ and bσ′ ≡ dσ′. Note that the notation
cσ′[xσ′ ← sσ′] here is not standard and it simply denotes the substitution of all
subterms xσ′ corresponding to an occurrence of x in c with sσ′.
(H3): Let (a, b) ∈ eq(Pi+1) and fot′ (resp. fou′) be a subterm of a (resp. b). Since
the substitution [x← sf# ] does not introduce any occurrence of fo (unmarked f)
in Pi+1, there exist (c, d) ∈ eq(Pi), fot′′◁ c and fou′′◁ d such that fot′ = fot′′[x← s]
and fou′ = fou′′[x ← s]. We have thus t′σ′ ↓ = t′′σ′[xσ′ ← sσ′] ↓ = t′′σ′ ↓ and
u′σ′ ↓ = u′′σ′ ↓ since xσ′ ≡ sσ′ by I.H. (H2).
By I.H. (H3), we have (t, u) >prod_f (t′′σ′ ↓, u′′σ′ ↓) = (t′σ′ ↓, u′σ′ ↓).

It is clear that ∀(x, s) ∈ Pi.subst, xσ
′ ≡ sσ′. By (H2), we have:

– If Hypo_Unification(f, I, P0) raises the exception Unsolvable, then there does not
exist a substitution ρ s.t. ∀(a, b) ∈ P0, aρ ≡ bρ, which is impossible, since σ′ verifies
this property.

– If Hypo_Unification(f, I, P0) returns (ρ, constr), then ∀(x, xρ) ∈ ρ, xσ′ ≡ xρσ′ and
∀(a, b) ∈ constr, aσ′ = bσ′(∗). By induction, we have further aσ′ ≡ aρσ′ for all term
a. In this case, since InferFromConstrs(f, I, P,Q) returns true, we have, for all
(c, d) ∈ Q, cρ[x ← cx] ≡R∪constr[x←cx] dρ[x ← cx]. Thus, by replacing cx with xσ′,
cρσ′ ≡R∪constrσ′ dρσ′ and cρσ′ ≡ dρσ′ by (∗). Hence, cσ′ ≡ dσ′ for all (c, d) ∈ Q.

2. there exists v = fu′ with u→ u′. We have (t, u) >prod_f (t, u′) and ∀i ∈ I u′i ≡ ui ≡ ti. By
I.H., ∀i /∈ I ti ≡ u′i ≡ ui.

• there exist v and w such that ft→ v and fu→ w. We assume that ti and ui are all in normal
form (if not, then the assertion can be proved by simply applying the I.H. (H1)). There exist
thus two rules fl→ r, fg → d and a substitution σ s.t. ft = flσ, v = rσ, fu = fgσ and w = dσ
(we can assume V ar(l) ∩ V ar(g) = ∅ by renaming). By hypothesis, CheckTwoRules(f, I, f l→
r, fg → d) returns true, which means that InferFromConstraints(f, I, P,Q) returns true where
P = {(r, d} ∪ {(li, gi) | i ∈ I} and Q = {(li, gi) | i /∈ I}.
We can proceed as in the first point in the previous case by replacing σ′ with σ, P and Q with
their counterparts here.

Example 4.2. Let s and o be two constant symbols.
R1 : f o y → y
R2 : f (s x) y → s (f x y)

We can prove that f is {1}-injective by applying the algorithm above:

• In the call CheckSingleRule(f, {1}, R1), the branch chosen is that of the line 8. Thus we first
make a call to Hypo_Unification to unify the equations (fx1x2, y) and (x1, o). The sequence of
unification problems considered in the recursive calls to Hypo_Unification is presented below:
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subst

to_solve

unsolved

recheck

{}
{(fx1x2, y), (x1, o)}

{}
false

{y 7→ fx1x2}
{(x1, o)}
{}
true

f o x2 ↓
= x2

{y 7→ x2, x1 7→ o}
{}
{}
true

subst

to_solve

unsolved

recheck

{y 7→ x2, x1 7→ o}
{}
{}

false

return ({y 7→ x2, x1 7→ o}, {})

We now apply the substitution obtained to the equation (x2, y) to solve and the equation obtained
is an equality. Hence, CheckSingleRule(f, {1}, R1) returns true.

• In the call CheckSingleRule(f, {1}, R2), the branch chosen is that of the line 3. Since s is
constant, NoErasing_rec(s) returns true. Hence, CheckSingleRule(f, {1}, R2) returns true.

• In the call CheckTwoRules(f, {1}, R1, R1), we make the call InferFromContraints(f, {1}, P,Q)
with P = {(y, y′), (o, o)} and Q = {(y, y′)}. The call Hypo_Unification(f, {1}, P ) returns
({y 7→ y′}, {}) and the application of the substitution to Q produces an equality. Hence,
CheckTwoRules(f, {1}, R1, R1) returns true.

• In the call CheckTwoRules(f, {1}, R2, R2), we make the call InferFromConstraints(f, {1}, P,Q)
with P = {(s (f x y), s (f x′ y′)), (s x, s x′)} andQ = {(y, y′)}. The callHypo_Unification(f, {1}, P )
returns ({x 7→ x′, y 7→ y′}, {}).

subst

to_solve

unsolved

recheck

{}
{(s(fxy), s(fx′y′)), (x, x′)}

{}
false

{}
{(fxy, fx′y′), (x, x′)}

{}
false

{}
{(x, x′)}

{(fxy, fx′y′)}
false

subst

to_solve

unsolved

recheck

{x 7→ x′}
{}

{(fx′y, fx′y′)}
true

{x 7→ x′}
{(fx′y, fx′y′)}

{}
true

{x 7→ x′}
{(y, y′)}
{}
true

{x 7→ x′, y 7→ y′}
{}
{}
true

subst

to_solve

unsolved

recheck

{x 7→ x′, y 7→ y′}
{}
{}

false

return ({x 7→ x′, y 7→ y′}, {})

The application of the substitution obtained to Q produces an equality.
Hence CheckTwoRules(f, {1}, R2, R2) returns true.

• In the call CheckTwoRules(f, {1}, R1, R2), we make the call InferFromConstraints(f, {1}, P,Q)
with P = {(y, s (f x y′)), (o, s x)} andQ = {(y, y′)}. Within this call, the callHypo_Unification(P )
raises the error Unsolvable since s and o are both constant. Thus CheckTwoRules(f, {1}, R1, R2)
returns true.

Thus, CheckInjectivity(f, {1}) returns true.

However, the algorithm does not allow us to prove that f is {2}-injective. In fact, in the call
CheckTwoRules(f, {2}, R1, R2), we make the call InferFromConstraints(f, {2}, P,Q) with P =
{(y, y′), (y, s (f x y′))} and Q = {(o, s x)}. The call Hypo_Unification(P,Q) returns ({y 7→
y′}, {(y′, s (f xy′))}), but we do not have o ≡R∪(cy ,s(fcxcy′ )) scx
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Remark 4.1. The algorithm might not terminate in some cases: when we call CheckInjectivity(f, I),
there might be a call CheckInjectivity(f, J) and when we call CheckInjectivity(f, J), there might
be a call CheckInjectivity(f, I) with I ̸⊆ J and J ̸⊆ I. A possible solution is to pass as argument
a list of pairs (f, J) that should be avoided when making a recursive call to CheckInjectivity. For
example, when calling CheckInjectivity(f, J), we pass an extra argument (f, I) to make sure that
the call CheckInjectivity(f, I) will not be made in this call.

This approach can be extended to the case where there does not exist an order on symbols that is
compatible with their dependency, however, it does not allow us to deal with the following example:

Example 4.3. Let s be a constant symbol.
R1 : f x→ g x
R2 : g (s x)→ s(f x)

In this example, to prove the injectivity of f , we need to have the injectivity of g, and vice versa.
What we need here is therefore a proof by mutual induction for the injectivity of f and g.

This observation leads to the generalization obtained from the original algorithm by replacing (f, I)
with a list (fk, Ik) of injective conditions to check.

5 Related work

The subject reduction is a well-known property for the simply typed λ-calculus, but it becomes a diffi-
cult problem in presence of dependent types and rewriting. In [4], Barbanera, Fernández, and Geuvers
proved that for the algebraic-λ-cube, which extends Barendregt’s λ-cube with algebraic rewriting, the
product compatibility (PC) implies the subject reduction property for β-reduction. In [3], Blanqui
worked on the case of the calculus of algebraic constructions, an extension of the calculus of construc-
tions with object-level and type-level rewrite rules. In [8], Saillard proved the equivalence between the
subject reduction for β-reduction and the product compatibility property in the λΠ-calculus modulo
rewriting.

The injectivity of function symbols is a new topic but some works on program inversion using term
rewriting systems have been done in the last few decades. For example, in [7], Nishida, Sakai, and Sak-
abe proposed a partial-inversion compiler of constructor term rewriting systems and in [2], Almendros-
Jiménez and Vidal worked on systems expressing functional input-output relations.

6 Conclusion and future work

In this report, we propose an algorithm for checking the well-typedness of rewrite rules. The completion
procedure allows to retrieve more information from constraints and makes it more possible to solve
the equations that need to be satisfied to guarantee that the RHS has the same type as the LHS.
However, since higher-order completion is difficult in general, our approach here considers the union
of the user-defined rewrite system and the rewrite system obtained by (first-order) completion. Thus,
a problem of modularity arises. Until now, we cannot guarantee that the union obtained is confluent
and terminating, which makes the conversion decidable, and this is definitely to be improved in the
future.

I also propose an algorithm for checking the injectivity of symbols. The use of marked symbols is the
most delicate part of this algorithm but this might be improved in the future by choosing a special
well-founded relation instead of the one chosen here. Moreover, as mentioned in the last paragraph
of the previous section, there exists a generalization of the algorithm that allows to prove several
injectivity conditions at the same time. However, it is still not yet known whether there exists an
efficient way of determining the injectivity conditions that need to be proved simultaneously from a
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single condition. If there exists such a way, then the algorithm proposed can be significantly improved
and generalized.

Both algorithms have been implemented in Lambdapi and the code is now available on
https://github.com/wujuihsuan2016/lambdapi/tree/sr/src.
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