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Direct visual servoing in the frequency domain
Eric Marchand

Abstract—In this paper, we propose an original approach to
extend direct visual servoing to the frequency domain. Whereas
most of visual servoing approaches relied on the geometric
features, recent works have highlighted the importance of taking
into account the photometric information of the entire images.
This leads to direct visual servoing (DVS) approaches. In this
paper we propose no longer to consider the image itself in the
spatial domain but its transformation in the frequency domain.
The idea is to consider the Discrete Cosine Transform (DCT)
which allows to represent the image in the frequency domain
in terms of a sum of cosine functions that oscillate at various
frequencies. This leads to a new set of coordinates in a new
precomputed orthogonal basis, the coefficients of the DCT. We
propose to use these coefficients as the visual features that are
then considered in a visual servoing control law. We then exhibit
the analytical formulation of the interaction matrix related to
these coefficients. Experimental results validate our approach.

Index Terms—Visual servoing, Sensor-based control

I. INTRODUCTION

V ISUAL servoing uses the information provided by a
vision sensor to control the movements of a dynamic

system [5]. This approach requires the extraction of visual
information (usually geometric features) from the image in
order to design the control law.

While there has been progress in extracting and tracking
relevant features, a new approach called direct visual servoing
(DVS) has been emerging for almost 10 years now [14],
[7], [6], [9], [8]. It has been demonstrated that only the
pixel intensities of the images can be taken into account to
control the robot’s motion and that conventional tracking and
matching processes can be avoided. Nevertheless, it feature a
small convergence domain compared to classical techniques.
Various schemes have been proposed in order to improve the
robustness of DVS by considering various descriptors (image
intensity, gradient, color, etc.) or cost functions (mutual infor-
mation [9], histogram distances [3], mixture of Gaussians [8].
Another solution to increase the convergence domain would
be to extract from the image a set of coefficients that could
then be used as control input. The idea is not to extract geo-
metric features from the image but to ”compress” the original
image information in order to get a compact representation
(dimensionality reduction problem). This is what has been
done with photometric moments which allows the preservation
of geometric information [2]. It was shown that it provides a
better behavior than a classical control based on points [5] and
extends significantly the convergence of the photometric visual
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servoing approach [6]. In [19], [10], [16] the image is projected
on a new basis thanks to a Principal Component Analysis
(PCA) process (also known as Karhunen-Loève expansion).
The control is then performed on the image coordinates in
the eigenspace (an orthogonal basis). This process requires
the off-line computation of this eigenspace and then, for each
new frame, the projection of the image on this subspace in
order to compute the set of coordinates (coefficients) in the
new basis that will be used in the control law. With respect
to [19], [10] where the interaction matrix is estimated on-
line, [16] exhibit an explicit and analytical formulation of the
interaction matrix. Recently, it has been proposed to consider
convolutional neural network to bypass the modelling step [4].

In this paper we propose no longer to consider the image
itself (the spatial domain) but its transformation in the fre-
quency domain. The idea is to consider the Discrete Cosine
Transform (DCT [1]) which allows to represent the image in
the frequency domain in terms of a sum of cosine functions
that oscillate at various frequencies: the coefficients of the
DCT. The coefficients with large amplitude (high energy) are
associated with the lower frequencies of the image. The DCT
is very useful for image compression (eg, in the JPEG stan-
dard [21]) since it has a strong ”energy compaction” property
meaning that most of the image information is concentrated
in a few low-frequency components [1]. Our goal is then to
transform, thanks to the DCT, the image from the spatial to
the frequency domain and then use the coefficients of the DCT
to build a new control law. Our contributions are:
• we show how the coefficients of the DCT can be consid-

ered within a visual servoing control law;
• we exhibit an explicit and analytical formulation of the

related interaction matrix;
• we propose a method to drastically reduce the dimen-

sionality of the problem by considering only the low
frequencies. This allows to reduce the noise and have a
smoother cost function thus improving the performance
and enhance the convergence area;

• we show on various experiments including real 6 DoF
positioning tasks, that these approaches allow large dis-
placements and a satisfactory decrease of the error norm
thanks to a well modelled interaction matrix.

Few visual servoing schemes consider the frequency domain.
Let us note however that the magnitude of the Fourrier trans-
form has been considered to control translation and rotation
along and around the optical axis [14] and Fourier shift
property has been used to estimated 2D translation (from
which a classical control law is built) in [18]. More closely
related to our approach [20], [11] consider the coefficients
of wavelets or shearlets which is a transform in the time-
frequency domain. Nevertheless, dimensionality reduction was
not sought (although, as in our case, a wise selection of the
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wavelets coefficient should improve the control law behavior).
As far as this later point is concerned, this approach is
closely related to PCA-based visual servoing [16]. It achieves
similar results although with the proposed new approach, the
transform that allows a change in coordinates is not learnt but
precomputed.

In the reminder of this paper, Section II gives an overview of
the DVS scheme. Section III gives an overview of the Discrete
Cosine Transform. Section IV gives the details of the control
laws including the derivation of the related interaction matrix.
Finally, Section V illustrates the effectiveness of the approach
with experiments carried out in simulation and on a 6 DoF
robot.

II. DIRECT VISUAL SERVOING

A. Positioning task by visual servoing

The aim of a positioning task is to reach a desired pose
of the camera r∗, starting from an arbitrary initial pose. To
achieve that goal, one needs to define a cost function that
reflects, in the image space, this error. Most of the time this
cost function is an error measure which needs to be minimized.
Considering the actual pose of the camera r the problem can
therefore be written as an optimization process:

r̂ = argmin
r

e(r). (1)

which consists in minimizing an error e(r) = s(r)−s∗, usually
expressed in the image space, between what the camera sees
(a set of features s(r)) and what it wants to see (i.e., the
desired configuration of the visual features s∗).

This visual servoing task is achieved by iteratively applying
a velocity to the camera. This requires the knowledge of the
interaction matrix Ls related to s(r) that links the variation of
ṡ to the camera velocity v and which is defined as [12], [5]:

ṡ(r) = Lsv. (2)

The control law is classically given by [5]:

v = −λL+
s e(r) (3)

where λ is a positive scalar and L+
s is the pseudo inverse of

Ls.

B. Photometric visual servoing

Recent works propose to directly use the information pro-
vided by the entire image [7], [6]. In [6], a control law was
proposed that minimizes the error between the current image
and the desired one. In that case the vector of visual features
in nothing but the image itself and the error to be regulated is
the sum of squared differences (the SSD).

In that case, the feature s becomes the image itself (s(r) =
vec(I(r))). vec(I) denotes the vectorization [13] of image ma-
trix I. This means that the optimization process becomes [6]:

r̂ = argmin
r

(vec(I(r))− vec(I∗)) (4)

where I(r) and I∗ are respectively the image seen at the
position r and the template image (both of N2 pixels assuming

squared N ×N images). The control law (Photo-VS) is given
by:

v = −λL+
I (vec(I(r))− vec(I∗)) (5)

where λ is a positive scalars and LI is the interaction matrix
related to the luminance [15]. If we introduce the interaction
matrices Lx and Ly related to the coordinates x and y of a
pixel x, the 1× 6 interaction matrix LI(x) for each pixel x is
given by [15], [6]:

LI(x) = − (∇IxLx +∇IyLy) (6)

where ∇Ix and ∇Iy are the components along x and y of the
image gradient ∇I . The complete N2 × 6 interaction matrix
LI is obtained by stacking the LI(x) for all the pixel x of the
image I. This approach features many advantages: first, it does
not require any matching or tracking process; second, since
the image measurements are nothing but the pixel intensity,
there are no error in the feature extraction process leading to
a very precise realization of the task. Nevertheless, the main
drawback of DVS is its small convergence domain compared
to classical techniques, which is due to the high non-linearities
of the cost function to be minimized.

III. BACKGROUND ON THE DCT

The DCT allows to transform an image from the spatial
domain to the frequency domain. It uses the property that the
intensity of two neighbor pixels are usually highly correlated.
The transformation (change of coordinates) attempts to decor-
relate the image data. A few coefficients contain most of the
information (corresponding to the image low frequencies).

A. The Discrete Cosine Transform

The discrete cosine transform [1] is a linear function that
expresses a 1D signal I(x) in the frequency domain in terms of
a sum of cosine functions that oscillate at various frequencies.
There are variant of the DCT, let us consider here one of the
most common: the DCT-II. For a Signal I(x) the coefficient
are given by:

f(u) =
1√
2

N−1∑
x=0

I(x) cos
(u(2x+ 1)π

2N

)
, u = 0..N − 1 (7)

Multidimensional variants exist and if an image I(x, y) (that
is nothing but a 2D signal) whose size in N×N is considered,
we have:

F(u, v) = α

N−1∑
y=0

N−1∑
x=0

I(x, y) cos
(u(2x+ 1)π

2N

)
cos
(v(2y + 1)π

2N

)
(8)

with
α =

2

N
C(u)C(v) (9)

where C(u) and C(v) are normalization constants given by:

C(u) = 1/
√
2 if u = 0, 1 otherwise (10)

The magnitude of the coefficients F(u, v) drops very rapidly
as u and v increases (see Figure 1a-b).
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Figure 1. DCT computation and IDCT: (a) original image I(x, y) (b)
Coefficients F(u, v) after the DCT (c) Image reconstruction using the IDCT.

B. The DCT matrix transform

For a 1D DCT, one can see that, from equation (7), f(u) =
C I(x) where C is a matrix defined by:

Cij =

{
1/
√
N if i = 0√

2/N cos
( i(2j+1)π

2N

)
otherwise

(11)

Note that the columns of C form an orthogonal basis (C is
thus orthogonal). C I is an N × N matrix whose columns
contain the one-dimensional DCT of the columns of I. The
two-dimensional DCT of I can be computed as:

F = C I C> (12)

which is equivalent to equation (8). Since C is orthogonal, and
thus that C−1 = C>, equation (12) is nothing but a change
of coordinates in a new basis. This computation is faster than
using (8) because C needs to be computed only once. We will
also see that this formulation is very suitable for our visual
servoing purpose.

C. Inverse DCT

From equation (12), it is easy to see that the DCT is
invertible leading to the IDCT (Inverse DCT, see Figure1c):

I = C>F C (13)

Indeed, from equation (12), multiplying by C> from the left
and then by C on the right, we have C>FC = C>CIC>C =
I considering that C is orthogonal. We will see in the experi-
ments section that the use of IDCT is useful for visualization
since we can recover the original image (up to some artifacts
if all the coefficients in F are not considered, see Figure 2c).

IV. DCT AND VISUAL SERVOING

We now present how the DCT can be used within a visual
servoing control law.

A. DCT coefficients as visual features and their interaction
matrix

The main idea is to consider the coefficients of the DCT as
the visual features in our visual servoing problem. A basic
solution to our problem would be to consider all the N2

coefficients as the visual features. When the camera pose is r,
the DCT matrix F(r) related to image I(r) is given by

F(r) = C I(r)C> (14)

and the vector f(r) of visual feature will be then defined by:

f(r) = vec(F(r)) (15)

The error to be minimized is then given by:

e(r) = f(r)− f∗ (16)

where f∗ is obtained from equation (14) and (15) for the
desired image I∗. We will see in the next paragraph, that
most of the coefficients within F(r) are almost null and that
a feature selection process can be considered.

Having defined the cost function to be minimized, one has
to compute the interaction matrix Lf = ∂f(r)

∂r that links the
variation of f(r) to the camera motion. Lf can be efficiently
computed by deriving equation (14) for each element of vector
r. Let us denote ri the i-th component (i = 1..6) of the pose
r. Since ri is a scalar, it is easy to note that:

∂F(r)

∂ri
=
∂C I(r)C>

∂ri
= C

∂I(r)

∂ri
C> (17)

where ∂I(r)
∂ri

is a N×N matrix that, in practice, contains the i-
th column of matrix LI:

∂I(r)
∂ri

= vec−1(LI•i). The interaction
matrix Lf can the be built as:

Lf =

(
vec(

∂F(r)

∂r1
) . . . vec(

∂F(r)

∂r6
)

)
(18)

leading to the desired N2 × 6 interaction matrix.

B. Control law

The complete control law (DCT-VS) is then given by:

v = −λLf
+
(
f(r)− f∗

)
. (19)

From a practical point of view we considered a Levenberg-
Marquardt-like control law given by:

v = −λ
(
H + µ diag(H)

)−1
L>f
(
f(r)− f∗

)
. (20)

with H = L>f Lf is an approximation of the Hessian. More
precisely, each component of the gradient is scaled accord-
ing to the diagonal of the Hessian, which leads to larger
displacements along the direction where the gradient is low.
Such a control law has proven its effectiveness in a context of
DVS [6], [9], [16]. Note that, as in [16], beside gains λ and µ
in equation (20) and, obviously K, no parameters are involved
in these experiment. In all the experiments described below,
we set λ = 1 and µ = 0.01. µ decreases by a factor 0.99 at
each iteration. Therefore, the control law tends to the classical
visual servoing control law that is similar to a Gauss-Newton
minimization process (see equation (19)).

C. A formal comparison between Photo-VS and DCT-VS con-
trol laws

In fact, if all the coefficient of the DCT are considered,
it can be proved that, despite the fact that the cost functions
and the Jacobians are different, the pure photometric control
law (Photo-VS) and the DCT-based control law (DCT-VS) are
equivalent.

Indeed, considering that Y = A X B is equivalent to
vec(Y) = (B> ⊗A)vec(X) (where ⊗ denotes the Kronecker
product), equation (14) can be rewritten as [13]:

f(r) = vec(F(r)) = (C⊗C)vec(I(r)) (21)
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since C⊗C is a constant this is leading to:

Lf = (C⊗C)LI (22)

Lf and LI are N2 × 6 matrices. Equations (18) and (22) are
equivalent, but, unfortunately, C⊗C is a N2 × N2 matrix
which makes the computation of equation (22) prohibitive in
practice with respect to (18). Using this formulation of the
interaction matrix, the DCT-VS control law (19) is given by:

v = −λ ((C⊗C)LI)
+ vec(CI(r)C> −CI∗C>)

Considering that for any orthogonal matrix C, it can be proved
that:

((C⊗C)LI)
+ vec(CI(r)C> −CI∗C>) = L+

I vec(I(r)− I∗)

demonstrating that the two control laws (19) and (5) are
equivalent.

Working in the frequency domain is thus equivalent as
working in the spatial domain. This appears to be a disap-
pointing result. Nevertheless, let us point out that this result is
valid only if all the coefficients of the DCT are considered
in the vector of visual features f(r). The main interest of
considering the frequency domain is that only a few (well
selected) coefficients can be considered. In that case, the DCT
transform is no longer bijective and this equivalence is no
longer valid. This coefficients selection process is the purpose
of the next paragraph.

D. Dimensionality reduction and coefficients selection

Working in the spatial domain, it is obvious that two
neighbour pixels (but a few) are highly correlated in term
of intensity (there is a high covariance). Keeping all the
pixels is then redundant (but a selection process followed
by a matching process would be a tedious task). We just
demonstrated that working in the spatial domain or in the
frequency domain while considering all the frequencies is
equivalent. Nevertheless, the main advantage of working in the
frequency domain, is that considering all the coefficients of the
DCT are not necessary and selecting the optimal frequencies
(features) is quite simple.

The original image can be seen as a linear combination of
these coefficients with cosine basis functions. Thus, as stated
in the section II, the DCT has achieved a change of coordinates
and sorted the coefficients in increasing order of frequency.
One can easily see on Figure 2a that the coefficients with high
amplitude are associated with the lower frequencies (upper
left of the DCT image). Let us recall that low frequencies
correspond to slow varying information (continuous surface)
whereas high frequencies correspond to quickly varying infor-
mation (edges).

We thus propose to consider K coefficients corresponding
to the lower frequencies of the image (see Figure 2b). For
a direct visual servoing problem, this has many advantages:
first discarding high frequencies (low pass filtering) allows to
suppress the noise in the image; second, this also allows to
have a smoother cost function thus improving the convergence
of the control law. Furthermore, considering only the low
frequencies allows to increase the overlapping between large

scale structures which also increases the convergence area.
This can be seen on Figure 3. When considering all the 40000
coefficients (-in that case DCT-VS (Figures 3b) is equivalent
to Photo-VS (Figures 3a)), the cost function features local
minima for large displacements. As can be seen on Figures 3a
and 3b), it also features a narrow minimum at the middle of
a slope plateau with low gradient (leading to a prohibitive
number of iterations to reach convergence). Nevertheless, as
soon as we reduce the dimensionality of the problem (from
K = 40000 to K = 50), one can see on Figure 3c that the
cost function is smoother with a larger convergence area and
higher gradient allowing a faster convergence of the control
law.

Figure 2. Coefficients selection (a) Coefficients F(u, v) after the DCT (see
Fig 1) (b) Low-pass filtering, Selection of the coefficients using the zig-zag
algorithm (c) Image reconstruction using the IDCT.

Figure 3. Cost function of various DVS methods (a) pure photometric
method [7], (b) DCT-VS with K = 40000, (c) DCT-VS with K = 50,
(d) PCA-VS [16] with K = 50. Planes below correspond to the projection
of the cost functions (color is a linear mapping of the cost function value).

The coefficients are thus ordered according to the zig-zag
sequence [21] (see Figure 4). This ordering places low fre-
quency coefficients before high frequency coefficients which
are likely to be zero. When the camera pose is r, the vector
f(r) of visual feature is then the coefficients of the DCT of
I(r) according the zig-zag pattern (see Figure 4). Considering
only the K first coefficients along the zig-zag path (ie, f(r) is
a size K vector) is equivalent to achieve a low pass filtering
on the image (the IDCT using only few coefficients is shown
on Figure 2c). The interaction matrix Lf (a K × 6 matrix)
is built as in equation (18) but it is restricted to the same K
coefficients obtained following the very same zig-zag pattern.

A comparison with the PCA-based VS. In [16], for the same
reasons, we also proposed to reduce the dimensionality of the
image. We proposed to project the image on an orthogonal
basis using a principal component analysis (PCA) approach.
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Figure 4. DCT coefficients extraction techniques from the F matrix: the
zigzag method and the definition of our visual feature f(r).

The PCA is a linear transform where the basis functions are
taken from the statistical properties of the image data, and
can thus be adaptive. In fact, this basis has to be learnt for
each considered scene (which is a tedious task). Nevertheless,
it is optimal in the sense of energy compaction. Indeed, it
places as much energy as possible in as few coefficients as
possible. An interest of such approach is that, when projecting
an incoming image on this basis, the greatest variance comes
to lie on the first coefficient, the second greatest variance lies
on the second coefficient, etc. A control law (PCA-VS) based
on this coefficient was also proposed. The control laws PCA-
VS and DCT-VS are very similar, only the orthogonal basis is
modified. Wrt. PCA-VS, DCT-VS features many advantages
but mainly, it is faster to compute and does not require
any learning step since the basis is precomputed; thus it is
scene agnostic which is an important advantage of the new
proposed method. Furthermore, DCT performs closely wrt.
the PCA in term of energy compaction [1]. A similar number
of coefficients can be considered in both approaches (that is
typically K = 50). As can be expected the shape of the cost
functions and the convergence areas for DCT-VS and PCA-VS
are very close (see second row of Figure 3cd). leading to a
close behavior as will be seen in the next section.

V. EXPERIMENTAL RESULTS

Experiments have been carried out in simulation and on
a 6-DOF anthropomorphic robotic arm (a Viper 850 from
Adept Company) equipped with a camera mounted on the
end-effector. The camera calibration as well as the hand-eye
calibration have been done in an off-line step. The image
processing and the control law computation are performed
on a PC equipped with a 8-cores 3.7 Ghz Intel Xeon. The
code has been written in C++ using the ViSP library [17].
The time required for an iteration of the VS closed loop is
constant whatever the number of considered coefficients K. In
our experiments, an iteration corresponds to 60ms (including
image acquisition, DCT, interaction matrix and control law
computations). Images size are 220× 220.

Finally, let us point out that all the reported experiments
feature a positioning task. The desired image I∗ (and then f∗)
is computed. The robot is moved toward the initial position.

The control law intends then to minimize the error e = f(r)−
f∗. Six degrees of freedom (DoF) are considered in all the
experiments.

Figure 5. Experimental setup: camera mounted on a Viper 850 from ADEPT

A. Simulation results

Simulations have first been carried out in order to
validate the proposed control laws while allowing a
fair comparison of different direct visual servoing ap-
proaches (Photo-VS [6], PCA-VS [16]). The error between
the initial and desired pose is, in all the cases, ∆r =
−0.11m,−0.31m,−0.01m,−25.00, 5.00, 25.00)1. This is a
very large initial error for a direct VS scheme. The initial
and desired images are shown in Figure 6a and 6b. The initial
image reconstructed with the IDCT are shown on Figure 6c
and 6d for K = 20 and K=50 respectively. The reconstructed
image using the PCA is shown on Figure 6e. With small value
of K it can be seen that only the low frequencies of the image
remain.

a b

c d e

Figure 6. Simulated experiment: (a) initial image, (b) desired image, IDCT
of the initial image for (c) K = 20 (d) K = 50, (e) reconstructed image
with the PCA with K = 50

In the first experiment (Figure 7), we report both the
photometric visual servoing approach (Photo-VS) and the

1The following notations has been used: ∆r = (t, θu), where t describes
the translation part of the homogeneous matrix related to the transformation
from the current to the desired frame, while its rotation part is expressed
under the form θu, where u represents the unit rotation-axis vector and θ the
rotation angle around this axis. This representation is also considered in the
plots reporting the positioning errors.
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new DCT-VS approach considering all the 48400 coefficients.
Let us recall, that when all the coefficients are considered,
the control laws are equivalent. Although the control law
allows the camera to converge toward the desired position,
the cost function is highly non-linear which leads to large
perturbation in the velocity plots and a complex 3D trajectory
(see Figure 10, blue trajectory). Figure 8 and 9 show the results
of the new DCT-VS approach with respectively K = 20
and K = 50. With respect to Photo-VS, the velocities are
smoother, convergence is much faster (600 iterations vs 1200),
and the 3D trajectory closer to the geodesic. This is mainly
due to the fact that the cost function is far less non-linear.
A comparison with PCA-VS [16] with K = 50 is also
proposed (see Figure 11), the control law behavior is very
similar to the DCT-VS method. In Figure 10, the 3D camera
trajectories are plotted for Photo-VS, DCT-VS with various
number of coefficients, and PCA-VS. As expected reducing
the dimensionality of the problem greatly improves the general
behavior of the system.

a b c

Figure 7. Experiment with Photo-VS or DCT-VS with K = 48400. (a)
‖ I(r) − I∗ ‖ or ‖ f(r) − f∗ ‖ (b) camera velocity (in m/s and rad/s) (c)
positioning error (in m and rad).

a b

c d

Figure 8. Experiment with DCT-VS with K = 20 (a) ‖ f(r) − f∗ ‖, (b)
error fi(r)− f∗i , (c) camera velocity (in m/s and rad/s), (c) positioning error
(in m and rad).

B. Experimental results on a 6 DoF robot

We first consider a positioning task with respect to a
planar scene. The displacement to be achieved is ∆r =
(0.04m, 0.27m, 0.04m, 22.3o, 8o, 26.3o). The transformation
between the initial and desired poses (and particularly the
rotation around the x and z axes) is very large and

a b

c d

Figure 9. Experiment with DCT-VS with K = 50 (a) ‖ f(r) − f∗ ‖, (b)
error fi(r)− f∗i , (c) camera velocity (in m/s and rad/s), (c) positioning error
(in m and rad).

Figure 10. 3D camera trajectories: Photo-VS or DCT-VS with K = 48400
in blue, DCT-VS with K = 10000 in green, DCT-VS with K = 50 in cyan,
DCT-VS with K = 20 in red, PCA-VS with K = 50 in purple.

makes this experiment very challenging. This is also illus-
trated by the initial and desired images depicted in Fig-
ure 13(a-c). We considered only K = 50 coefficients.
The norm of the cost function ‖ f(r) − f∗ ‖ decreases
monotonously (Figure 13.f). The decrease in errors (Fig-
ure 13.g) is also highly satisfactory considering the fact
that only the interaction matrix at the desired position and
an approximated depth were employed. The final error is
∆r = (0.0016m, 0.0004m, 0.00033m, 0.09o,−0.11o, 0.01o)
which shows the accuracy of the proposed approach. After
iteration 150, µ (equation (20)) gradually decreases leading to
a small and temporary augmentation of the cost function (Fig-
ure 13f). What can be observed is that the control law mainly
achieves a motion along and around the z axes (see Figure 13h,
iterations 0-150). Actually, motions along z translation and
rotation are the motions that introduce the main difference in
the image leading to higher gradients of the cost function.
x (resp. y) translation coupled with y (resp. x) rotation are
far less observable in the image leading to smaller gradients.
Thus, the optimization process tends to drive (mainly but not
only) the camera along z translation and rotation axes faster
than on the other axes. Then, it compensates for the other
axes. In this ”second step” the error in the image is quite
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Figure 11. Experiment with PCA-VS [16] with K = 50 (a) ‖ w(r)−w∗ ‖,
(b) error wi(r)−w∗

i , (c) camera velocity (in m/s and rad/s), (c) positioning
error (in m and rad).

small although the 3D motion remains large (this can easily
be seen comparing Figure 13f and 13i). This pattern can be
found in all the reported experiments (see Figure 14). Finaly,
note that it is possible to gradually include high-frequency
coefficients at later stages of convergence and tend towards a
Photo-VS control law. Nevertheless, experiments show that
it does not improve significantly the positioning accuracy
(indeed, although it adds more details it also adds noise).

a b

Figure 12. 3D camera trajectories (a) with various number of DCT coefficients
(green: K = 10 ; red : K = 20 ; blue : K = 50 (b) comparison with PCA-
based visual servoing [16] (green: PCA-VS, blue : DCT-VS)

We experimented with various values of K. Figure 12 shows
the camera trajectories for K = 10 (blue), K = 20 (green)
and K = 50 (red). In all the cases, the visual servoing control
law converges although final precision is slightly better with
K = 50. The camera trajectory is also better with K = 50.
Considering more coefficients does not improve either the
trajectory or the precision.

We also compare our new DCT based visual servoing (DCT-
VS) approach with other DVS method: photometric VS [7]
and PCA-VS [16]. Photometric VS failed since the motion is
too large wrt. to the small convergence area of the method.
As far as PCA-VS is concerned, we use the same number of
coefficients to reduce the dimensionality of the image: K =
50 in both approaches. Although, the trajectory obtained with

PCA-VS is slightly closer to the geodesic (see Figure 12b), the
precision is better with DCT-VS (in translation: 1.7mm with
DCT-VS versus 3.1mm as well as in rotation: 0.14o versus
0.44o). Furthermore let us recall that for DCT-VS, no learning
step was necessary.

Finally, we also consider various non planar scenes (see
Figure 14) with an electronic board, a large electric plug,
and a piece of foam with a very repetitiv 3D pattern. The
height of the object with respect to the underlying plane is,
respectively 5cm, 15cm and 5cm. We consider K = 50 for
the former and K = 100 for the two later since the scenes
feature high frequencies patterns (selecting the optimal value
of K depending on the scene aspects is a perspective of
this work). For all these experiments, the camera converges
precisely toward the desired position.

VI. CONCLUSION

In this paper we demonstrated that direct visual servoing
can be achieved in the frequency domain. The image is
transformed thanks to the DCT and the control law is built
from a few coefficients of the DCT that correspond to the low
frequencies of the image. It was also shown that the interaction
matrix related to these coefficients can be explicitly and
analytically calculated. We also demonstrated that reducing
the dimensionality of the problem by adequately selecting the
coefficients greatly improves the behavior of the control law.
Results show the effectiveness of this approach on various
examples.

REFERENCES

[1] N. Ahmed, T. Natarajan, and K. R. Rao. Discrete cosine transform.
IEEE Transactions on Computers, C-23(1):90–93, Jan 1974.

[2] M. Bakthavatchalam, O. Tahri, and F. Chaumette. A Direct Dense
Visual Servoing Approach using Photometric Moments. IEEE Trans.
on Robotics, 34(5):1226–1239, October 2018.

[3] Q. Bateux and E. Marchand. Histograms-based visual servoing. IEEE
Robotics and Automation Letters, 2(1):80–87, January 2017.

[4] Q. Bateux, E. Marchand, J. Leitner, F. Chaumette, and P. Corke. Training
deep neural networks for visual servoing. In IEEE Int. Conf. on Robotics
and Automation, ICRA’18, pages 3307–3314, Brisbane, Australia, May
2018.

[5] F. Chaumette and S. Hutchinson. Visual servo control, Part I: Basic
approaches. IEEE Robotics and Automation Magazine, 13(4):82–90,
December 2006.

[6] C. Collewet and E. Marchand. Photometric visual servoing. IEEE Trans.
on Robotics, 27(4):828–834, August 2011.

[7] C. Collewet, E. Marchand, and F. Chaumette. Visual servoing set free
from image processing. In IEEE Int. Conf. on Robotics and Automation,
ICRA’08, pages 81–86, Pasadena, CA, May 2008.

[8] N. Crombez, E.M. Mouaddib, and G. Caron. Photometric Gaussian
mixtures based visual servoing. In IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems, IROS’15, pages 5486–5491, Hamburg, Germany,
September 2015.

[9] A. Dame and E. Marchand. Entropy-based visual servoing. In IEEE
Int. Conf. on Robotics and Automation, ICRA’09, pages 707–713, Kobe,
Japan, May 2009.

[10] K. Deguchi. A direct interpretation of dynamic images with camera and
object motions for vision guided robot control. Int. Journal of Computer
Vision, 37(1):7–20, June 2000.

[11] L.-A. Duflot, R. Reisenhofer, B. Tamadazte, N. Andreff, and A. Krupa.
Wavelet and Shearlet-based Image Representations for Visual Servoing.
The Int. Journal of Robotics Research, 38(4):422–450, April 2019.

[12] B. Espiau, F. Chaumette, and P. Rives. A new approach to visual servo-
ing in robotics. IEEE Trans. on Robotics and Automation, 8(3):313–326,
June 1992.

[13] G. Golub and C. Van Loan. Matrix Computations. The Johns Hopkins
University Press, third edition, 1996.



8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY 1ST, 2020.

a b c d e

f g h i

Figure 13. Experiment with real planar scene : we consider K = 50 coefficients (a) initial image acquired by the camera I(r), (b) reconstructed image
IDCT (I(r)) with K = 50 acquired from the desired position, (c) desired image I∗ (d,e) error IDCT (F(r))− IDCT (F∗) between reconstructed image
for initial and desired position (a,b,c,d,e) are used for visualization but are not used in the algorithm. Only the error f(r)− f∗ plotted in (f-g) is considered,
(f) ‖ f(r)− f∗ ‖ (g) fi(r)− f∗i (h) camera velocity (in m/s and rad/s) (i) positioning error (in m and rad).

Figure 14. Experiment with real non planar scene (Column 1) initial image acquired by the camera I(r), (Column 2) desired image I∗, (Column 3)
reconstructed image IDCT (I(r)) (Column 4) camera velocity (in m/s and rad/s) (Column 5) positioning error (in m and rad)

[14] V. Kallem, M. Dewan, J.P. Swensen, G.D. Hager, and N.J. Cowan.
Kernel-based visual servoing. In IEEE/RSJ Int. Conf. on Intelligent
Robots and System, IROS’07, pages 1975–1980, San Diego, USA,
October 2007.

[15] E. Marchand. Control camera and light source positions using image
gradient information. In IEEE Int. Conf. on Robotics and Automation,
ICRA’07, pages 417–422, Roma, Italia, April 2007.

[16] E. Marchand. Subspace-based visual servoing. IEEE Robotics and
Automation Letters, 4(3):2699–2706, July 2019.

[17] E. Marchand, F. Spindler, and F. Chaumette. ViSP for visual servoing:
a generic software platform with a wide class of robot control skills.
IEEE Robotics and Automation Magazine, 12(4):40–52, December 2005.
Special Issue on ”Software Packages for Vision-Based Control of

Motion”, P. Oh, D. Burschka (Eds.).
[18] N. Marturi, B. Tamadazte, S. Dembélé, and N. Piat. Visual servoing
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