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Direct visual servoing in the frequency domain

Eric Marchand

Abstract—In this paper, we propose an original approach to servoing approach[6]. In[19], [10], [16] the image is projected
extend direct visual servoing to the frequency domain. Whereas on a new basis thanks to a Principal Component Analysis
most of visual servoing approaches relied on the geometric (PCA) process (also known as Karhunereke expansion).

features, recent works have highlighted the importance of taking Th trol is th f d the i dinates |
into account the photometric information of the entire images. € control Is then performed on the image coordinates In

This leads to direct visual servoing (DVS) approaches. In this the eigenspace (an orthogonal basis). This process requires
paper we propose no longer to consider the image itself in the the off-line computation of this eigenspace and then, for each
spatial domain but its transformation in the frequency domain. new frame, the projection of the image on this subspace in
The idea is to consider the Discrete Cosine Transform (DCT) qrqer to compute the set of coordinates (coef cients) in the
which allows to represent the image in the frequency domain . . . :
in terms of a sum of cosine functions that oscillate at various "W basis that will be u?’ed n t_he C°””9' l_aW' W'th respect
frequencies. This leads to a new set of coordinates in a newt0 [19], [10] where the interaction matrix is estimated on-
precomputed orthogonal basis, the coef cients of the DCT. We line, [16] exhibit an explicit and analytical formulation of the
propose to use these coefcients as the visual features that areinteraction matrix. Recently, it has been proposed to consider
then considered in a visual servoing control law. We then exhibit ., |utional neural network to bypass the modelling stép [4].
the analytical formulation of the interaction matrix related to . . .
these coef cients. Experimental results validate our approach. | In this paper. we propose no.Ionger to Conglder the image
itself (the spatial domain) but its transformation in the fre-
guency domain. The idea is to consider the Discrete Cosine
Transform (DCT [[1]) which allows to represent the image in
I. INTRODUCTION the frequency domain in terms of a sum of cosine functions

ISUAL servoing uses the information provided by 4hat oscillate at various frequencies: the coef cients of the
vision sensor to control the movements of a dynamf@CT. The coef cients with large amplitude (high energy) are
system [5]. This approach requires the extraction of visugpsociated with the lower frequencies of the image. The DCT
information (usually geometric features) from the image it§ very useful for image compression (eg, in the JPEG stan-
order to design the control law. dard [21]) since it has a strong "energy compaction” property
While there has been progress in extracting and trackifgganing that most of the image information is concentrated
relevant features, a new approach called direct visual servoifg2 few low-frequency components|[1]. Our goal is then to
(DVS) has been emerging for almost 10 years now [141]:anSf0rm, thanks to the DCT, the image from the Spatial to
[7], 6], [O], [B]. It has been demonstrated that only thdhe frequency domain and then use the coef cients of the DCT
pixel intensities of the images can be taken into account i@ build a new control law. Our contributions are:
control the robot's motion and that conventional tracking and we show how the coef cients of the DCT can be consid-
matching processes can be avoided. Nevertheless, it feature a ered within a visual servoing control law;
small convergence domain compared to classical techniques. we exhibit an explicit and analytical formulation of the
Various schemes have been proposed in order to improve the related interaction matrix;
robustness of DVS by considering various descriptors (image we propose a method to drastically reduce the dimen-
intensity, gradient, color, etc.) or cost functions (mutual infor-  sionality of the problem by considering only the low
mation [9], histogram distancels| [3], mixture of Gaussians [8]. frequencies. This allows to reduce the noise and have a
Another solution to increase the convergence domain would smoother cost function thus improving the performance
be to extract from the image a set of coef cients that could and enhance the convergence area;
then be used as control input. The idea is not to extract geo- we show on various experiments including real 6 DoF
metric features from the image but to "compress” the original  positioning tasks, that these approaches allow large dis-
image information in order to get a compact representation placements and a satisfactory decrease of the error norm
(dimensionality reduction problem). This is what has been thanks to a well modelled interaction matrix.
done with photometric moments which allows the preservatigew visual servoing schemes consider the frequency domain.
of geometric information_]2]. It was shown that it provides &et us note however that the magnitude of the Fourrier trans-
better behavior than a classical control based on points [5] afaim has been considered to control translation and rotation
extends signi cantly the convergence of the photometric visualong and around the optical axis_[14] and Fourier shift

, . _ Qroperty has been used to estimated 2D translation (from
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wavelets coef cient should improve the control law behaviorsquaredN N images). The control law (Photo-VS) is given
As far as this later point is concerned, this approach Ixy:
closely related to PCA-based visual servoingl [16]. It achieves

_ +

similar results although with the proposed new approach, the V= Ly (vedl(r))  vedl ) ®)
transform that allows a change in coordinates is not learnt Byhere is a positive scalars anld; is the interaction matrix
precomputed. related to the luminancé [15]. If we introduce the interaction

In the reminder of this paper, Sectioh Il gives an overview @hatricesL, and L, related to the coordinates andy of a

the DVS scheme. SeCUl” giveS an overview of the Discretﬁxe| X, thel 6 interaction matrixl_l(x) for each pixe|x is
Cosine Transform. Sectidn |V gives the details of the contrglven by [15], [6]:

laws including the derivation of the related interaction matrix.

Finally, Sectiorf] V illustrates the effectiveness of the approach Licgy = (rIxLx+rlyLy) (6)
with experiments carried out in simulation and on a 6 Dofierer I, andr 1, are the components alongandy of the
robot. image gradient | . The completeN? 6 interaction matrix
L, is obtained by stacking thie, (x for all the pixelx of the

[I. DIRECT VISUAL SERVOING imagel . This approach features many advantages: rst, it does

A. Positioning task by visual servoing not require any matching or tracking process; second, since

The ai f itioning task is t h a desired the image measurements are nothing but the pixel intensity,
of thz (?;rrnneoraa ps(i:rtl'?] nlnf?orﬁsanlsart?'ti?c'n'at'al es(;rsee _'T_gﬁ?ere are no error in the feature extraction process leading to
’ 'ng ltrary initial pose. 10, very precise realization of the task. Nevertheless, the main

achieve that goal, one needs 1o dene a cost function thﬁﬂlawback of DVS is its small convergence domain compared

re ects, n th? Image space, this error. Most of the t|.m'e .th classical techniques, which is due to the high non-linearities
cost function is an error measure which needs to be minimize

o of'the cost function to be minimized.
Considering the actual pose of the camerhe problem can

therefore be written as an optimization process:
[1l. BACKGROUND ON THEDCT

b=argmin e(r): @) The DCT allows to transform an image from the spatial

which consists in minimizing an erre(r) = s(r) s , usuall domain to the frequency domain. It uses the property that the
9 - ’ y intensity of two neighbor pixels are usually highly correlated.

expressed in the image space, between what the camera TH& transformation (change of coordinates) attempts to decor-

((j?assireet doéofﬁztﬁrr:t}sé;)gf?ﬂg \‘/’;lgfatl ':egi?é‘z)to see (i.e., therelate the image data. A few coef cients contain most of the

This visual servoing task is achieved by iteratively applyinlg?formatlon (corresponding to the image low frequencies).

a velocity to the camera. This requires the knowledge of the

interaction matrix_ related tos(r) that links the variation of A. The Discrete Cosine Transform

sto the camera velocity and which is de ned as [12]/[5]:  The discrete cosine transforml [1] is a linear function that
expresses a 1D signi{x) in the frequency domain in terms of

S(r) = Lsv: (2) a sum of cosine functions that oscillate at various frequencies.
The control law is classically given byl[5]: There are variant of the DCT, let us consider here one of the
. most common: the DCT-II. For a Signa(x) the coef cient
v= Lse(r) (3) are given by:
where is a positive scalar and? is the pseudo inverse of 1 X1 u@2x + 1)
Ls. f(u)= p= I (x)cos ———— ;u=0:N 1 (7)
2 .2 2N
B. Photometric visual servoing Multidimensional variants exist and if an imaggx;y) (that

. . . is nothing but a 2D signal) whose sizeNh N is considered,
Recent works propose to directly use the information Prove haveg gnal)

vided by the entire image [7].[6]. In_[6], a control law was

proposed that minimizes the error between the current im L KXt ) u(2x +1) v(2y + 1)
and the desired one. In that case the vector of visual featligé V) = 1(x;y)cos 2N cos 2N
in nothing but the image itself and the error to be regulated is y=0 x=0 @)
the sum of squared differences (the SSD). with

In that case, the featurebecomes the image itsel(¢) = _ EC(u)C(v) ©)
vedl (r))). vedl) denotes the vectorization [13] of image ma- N

trix 1. This means that the optimization process becomes [W'hereC(u) and C(v) are normalization constants given by:
b= argmin (ved(I(r))  veq(l )) @) C)=1="2 if u=0: 1 otherwise  (10)

where I (r) and | are respectively the image seen at th&he magnitude of the coef cients (u; v) drops very rapidly
positionr and the template image (both Nif? pixels assuming asu andv increases (see Figufé la-b).
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The error to be minimized is then given by:
e(r)= f(r) f (16)

wheref is obtained from equatior{ (14) anfl {15) for the

desired image . We will see in the next paragraph, that

most of the coef cients withinF (r) are almost null and that

Figure 1. DCT computation and IDCT: (a) original imagéx;y) (b) a feature selection process can be considered.

Coefcients F (u; v) after the DCT (c) Image reconstruction using the IDCT. Having de ned the cost function to be minimized, one has
to compute the interaction matrixs = % that links the

B. The DCT matrix transform variation off(r) to the camera motiorl.; can be ef ciently

computed by deriving equatiop (14) for each element of vector

r. Let us denote; thei-th componenti(=1::6) of the pose

r. Sincer; is a scalar, it is easy to note that:

For a 1D DCT, one can see that, from equat{dn {7y) =
C I (x) whereC is a matrix de ned by:

Ej—pﬁ if i=0

Ci= P, . - 11 @) _@i(rnc> _ . @)

! 2=Ncos '@ otherwise (11) ar - ar C @r c” 17
Note that the columns o€ form an orth.ogonal basis{( s where@) s aN N matrix that, in practice, contains the
thus orthogonal)CIl is anN N matrix whose columns @

th column of matrixL : % = vec (L, ;). The interaction
matrix Lt can the be built as:

AN ()
@1 @&

which is equivalent to equatiop|(8). Sin€eis orthogonal, and : : 2 . . .

thus thatC ® = C>, equatio) is nothing but a changeleadmg to the desirell 6 interaction matrix.

of coordinates in a new basis. This computation is faster than

using [8) becaus€ needs to be computed only once. We wilP- Control law

also see that this formulation is very suitable for our visual The complete control law (DCT-VS) is then given by:

servoing purpose. v= Lit f(r) f (19)

contain the one-dimensional DCT of the columnslofThe
two-dimensional DCT of can be computed as:

F=cCIC” (12) Li = veq

) (18)

C. Inverse DCT From a practical point of view we considered a Levenberg-

From equation[(J]2), it is easy to see that the DCT Il\élarquardt—llke control law given by:

invertible leading to the IDCT (Inverse DCT, see Figurelc): Vv = H + diag (H) l|_f> f(r)y f : (20)

I=C”FC (13) with H = L7 Ly is an approximation of the Hessian. More
precisely, each component of the gradient is scaled accord-
ing to the diagonal of the Hessian, which leads to larger

| considering thaC is orthogonal. We will see in the eXperi_d|splacements along the direction where the gradient is low.

ments section that the use of IDCT is useful for visualizatic:BUCh a control law has proven its effectiveness in a context of

since we can recover the original image (up to some artifa %ls 16]’. []. [16]. Note th_at, as in [16], beside gamsgnd
In equation[(2P) and, obviousk¢ , no parameters are involved

itall the coefcients inF are not considered, see Figfife 2c in these experiment. In all the experiments described below,
we set =1 and =0:0L decreases by a fact@99 at

each iteration. Therefore, the control law tends to the classical
We now present how the DCT can be used within a visuglsual servoing control law that is similar to a Gauss-Newton

servoing control law. minimization process (see equatin](19)).

Indeed, from equatior] (12), multiplying b§> from the left
and then byC on the right, we hav€” FC = C>CIC > C =

IV. DCT AND VISUAL SERVOING

A. DCT coefcients as visual features and their interactiot. A formal comparison between Photo-VS and DCT-VS con-
matrix trol laws

The main idea is to consider the coef cients of the DCT as |n fact, if all the coefcient of the DCT are considered,
the visual features in our visual servoing problem. A basij¢can be proved that, despite the fact that the cost functions
solution to our problem would be to consider all the? and the Jacobians are different, the pure photometric control
coef cients as the visual features. When the camera posg iSaw (Photo-VS) and the DCT-based control law (DCT-VS) are
the DCT matrixF (r) related to image(r) is given by equivalent.

_ > Indeed, considering that = AXB is equivalent to
Fn=clnc (14) veqY)=(B~ A)vng) (where denotes tﬂe Kronecker

and the vectof (r) of visual feature will be then de ned by: product), equatior{ (14) can be rewritten as| [13]:

f(r) = vedF(r)) (15) f(r)= veqF(r))=(C C)vedl(r)) (21)
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sinceC C is a constant this is leading to: scale structures which also increases the convergence area.
_ This can be seen on Figyrg 3. When considering all the 40000
Ly =(C C)Ly (22) coef cients (-in that case DCT-VS (Figuré$ 3b) is equivalent
L; andL, areN2 6 matrices. Equation@LS) an@ZZ) ardo Photo-VS (Figure§]3a)), the cost function features local
equivalent, but, unfortunatellg C is aN? N2 matrix minima for large displacements. As can be seen on Figures 3a
which makes the computation of equatifn](22) prohibitive iAnd[3b), it also features a narrow minimum at the middle of
practice with respect td (18). Using this formulation of th@ slope plateau with low gradient (leading to a prohibitive

interaction matrix, the DCT-VS control laf (119) is given by:number of iterations to reach convergence). Nevertheless, as
soon as we reduce the dimensionality of the problem (from

v o= ((C C)L))" veqClI(r)C> CI C*) K = 40000 to K = 50), one can see on Figufé 3c that the
Considering that for any orthogonal mat it can be proved cost function is smoother with a larger convergence area and
that: higher gradient allowing a faster convergence of the control

law.
((C C)L)"vedCI(r)C> CI C”)=L/vedI(r) 1)

demonstrating that the two control laws (19) afd (5) are Low-pass

equivalent. fiitering __
Working in the frequency domain is thus equivalent as

working in the spatial domain. This appears to be a disap @

pointing result. Nevertheless, let us point out that this result is

valid only if all the coefcients of the DCT are consideredrigure 2. Coef cients selection (a) Coef cients(u; v) after the DCT (see
in the vector of visual featuref(r). The main interest of Fig[l) (b) Low-pass ltering, Selection of the coef cients using the zig-zag
considering the frequency domain is that only a few (weff9°onthm (¢) Image reconstruction using the IDCT.

selected) coef cients can be considered. In that case, the DCT

transform is no longer bijective and this equivalence is nc
longer valid. This coef cients selection process is the purpose
of the next paragraph.

(a) Photometric VS wmeneucs (b) DCT-VS, k=40000 ocr occ ot

D. Dimensionality reduction and coef cients selection

Working in the spatial domain, it is obvious that two
neighbour pixels (but a few) are highly correlated in term
of intensity (there is a high covariance). Keeping all the
pixels is then redundant (but a selection process followec s
by a matching process would be a tedious task). We jus§1§§§§
demonstrated that working in the spatial domain or in the
frequency domain while considering all the frequencies is
equivalent. Nevertheless, the main advantage of working in th
frequency domain, is that considering all the coef cients of the

DCT are not necessary and selecting the optimal frequencfézslhred& ] Cig)st f(t;nctign c_th variouso 0%\65 (m)ethgds g) pﬁre Dhotgmetric
. : : method [[7], DCT-VS withK = 4 , (c) DCT-VS withK = 50,

(features) I_S qu_lte S|mple. . . . (d) PCA-VS [16] withK = 50. Planes below correspond to the projection

The original image can be seen as a linear combination éfne cost functions (color is a linear mapping of the cost function value).

these coef cients with cosine basis functions. Thus, as stated

in the section Il, the DCT has achieved a change of coordinatesThe coef cients are thus ordered according to the zig-zag

and sorted the coef cients in increasing order of frequencgequencel[21] (see Figufé 4). This ordering places low fre-

One can easily see on Figyre 2a that the coef cients with higiuency coef cients before high frequency coef cients which

amplitude are associated with the lower frequencies (uppee likely to be zero. When the camera pose,ishe vector

left of the DCT image). Let us recall that low frequencie§(r) of visual feature is then the coef cients of the DCT of

correspond to slow varying information (continuous surfacér) according the zig-zag pattern (see Fire 4). Considering

whereas high frequencies correspond to quickly varying infoonly theK rst coef cients along the zig-zag path (ié(r) is

mation (edges). a sizeK vector) is equivalent to achieve a low pass Itering
We thus propose to consid&r coef cients corresponding on the image (the IDCT using only few coef cients is shown

to the lower frequencies of the image (see Figure 2b). Fon Figure[2c). The interaction matrix; (a K 6 matrix)

a direct visual servoing problem, this has many advantagésbuilt as in equation (18) but it is restricted to the sakhe

rst discarding high frequencies (low pass ltering) allows tocoef cients obtained following the very same zig-zag pattern.

suppress the noise in the image; second, this also allows t&\ comparison with the PCA-based V8 [16], for the same

have a smoother cost function thus improving the convergenmeasons, we also proposed to reduce the dimensionality of the

of the control law. Furthermore, considering only the lovimage. We proposed to project the image on an orthogonal

frequencies allows to increase the overlapping between latggsis using a principal component analysis (PCA) approach.

(c) DCT-VS, k=50 DeT S0 contcions —— (d) PCA-VS, k=50  rorsoccctiions

30000
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The control law intends then to minimize the ereor f(r)

fol A f . Six degrees of freedom (DoF) are considered in all the
f experiments.
/2 J4 fo
f1
I3 -— f(r) = :
fx
F(u,v) matrix —— Zigzag pattern Visual features

Figure 4. DCT coefcients extraction techniques from thematrix: the
zigzag method and the de nition of our visual featdrg ).
Figure 5. Experimental setup: camera mounted on a Viper 850 from ADEPT

The PCA is a linear transform where the basis functions are
taken from the statistical properties of the image data, aAd Simulation results
can thus be adaptive. In fact, this basis has to be learnt forgjnylations have rst been carried out in order to

each considered scene (which is a tedious task). Neverthelgggdate the proposed control laws while allowing a
it is optimal in the sense of energy compaction. Indeed, ifjr comparison of different direct visual servoing ap-
places as much energy as possible in as few coef cients f®aches (Photo-VS 6], PCA-VS [16]). The error between
possible. An interest of such approach is that, when projectifih initial and desired pose is in all the cases. =

an incoming image on this basis, the greatest variance come$11m: 0:31m: 0:01m; 25:00; 5:00 25:00ﬂ This is a

to lie on the rst coef cient, the second greatest variance liegery |arge initial error for a direct VS scheme. The initial
on the second coef cient, etc. A control law (PCA-VS) basednq gesired images are shown in Figire 6a[@nd 6b. The initial
on this coef cient was also proposed. The control laws PCAmage reconstructed with the IDCT are shown on Figre 6¢
VS and DCT-VS are very similar, only the orthogonal basis ignqgd fork = 20 and K=50 respectively. The reconstructed
modi ed. Wrt. PCA-VS, DCT-VS features many advantagefnage using the PCA is shown on Figiife 6e. With small value

but mainly, it is faster to compute and does not requifg K it can be seen that only the low frequencies of the image
any learning step since the basis is precomputed; thus it is,ain.

scene agnostic which is an important advantage of the new

proposed method. Furthermore, DCT performs closely wrt.

the PCA in term of energy compactidnl [1]. A similar number

of coef cients can be considered in both approaches (that is

typically K =50). As can be expected the shape of the cost

functions and the convergence areas for DCT-VS and PCA-VS

are very close (see second row of Fighfe 3cd). leading to a

close behavior as will be seen in the next section. a b

V. EXPERIMENTAL RESULTS

Experiments have been carried out in simulation and on
a 6-DOF anthropomorphic robotic arm (a Viper 850 from
Adept Company) equipped with a camera mounted on the
end-effector. The camera calibration as well as the hand-eye c d e
calibration have been done in an off-line step. The image
processing and the control law computation are performe%ure 6. Simulated experiment: (a) initial image, (b) desired image, IDCT
on a PC equipped with a 8-cores 3.7 Ghz Intel Xeon. The the initial image for (c)K = 20 (d) K = 50, (e) reconstructed image
code has been written in C++ using the ViSP library] [17}vith the PCA withK = 50
The time required for an iteration of the VS closed loop is . .
constant whatever the number of considered coef ciéntdn In the .rst .expenment. (Figure ]7), we report both the
our experiments, an iteration corresponds tméQincluding photometric visual servoing approach (Photo-VS) and the
image vaUiSitionv DCT, interaction matrix and control law 1The following notations has been used: = (t; u), wheret describes
computations). Images size a280 220 the translation part of the homogeneous matrix related to the transformation
Finally, let us point out that all the reported experimentféom the current to the desired frame, while its rotation part is expressed
feature a positioning task. The desired imagdand therf ) under the form u, whereu represents the unit rotation-axis vector anthe

i ) N / rotation angle around this axis. This representation is also considered in the
is computed. The robot is moved toward the initial positiomlots reporting the positioning errors.
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new DCT-VS approach considering all the 48400 coef cients.

Let us recall, that when all the coef cients are considered,

the control laws are equivalent. Although the control law

allows the camera to converge toward the desired position,

the cost function is highly non-linear which leads to large

perturbation in the velocity plots and a complex 3D trajectory

(see Figurg 70, blue trajectory). Figlije 8 &hd 9 show the results a b
of the new DCT-VS approach with respectively = 20

and K = 50. With respect to Photo-VS, the velocities are

smoother, convergence is much faster (600 iterations vs 1200),

and the 3D trajectory closer to the geodesic. This is mainly

due to the fact that the cost function is far less non-linear.

A comparison with PCA-VS[[16] withK = 50 is also

proposed (see Figufe [11), the control law behavior is very

similar to the DCT-VS method. In Figufe 10, the 3D camera c d
trajectories are plotted for Photo-VS, DCT-VS with various

number of coefcients, and PCA-VS. As expected reducingigure 9. Experiment with DCT-VS witk =50 (@) k f(r) f k, (b)
the dimensionality of the problem greatly improves the geneeiforfi(r) f; , (c) camera velocity (in m/s and rad/s), (c) positioning error
behavior of the system. (inm and rad).

a b c

Figure 7. Experiment with Photo-VS or DCT-VS witd = 48400. (a)
ki(r) 1 korkf(r) f Kk (b)camera velocity (in m/s and rad/s) (c)
positioning error (in m and rad).

Figure 10. 3D camera trajectories: Photo-VS or DCT-VS with= 48400
in blue, DCT-VS withK =10000 in green, DCT-VS wittK =50 in cyan,
DCT-VS with K =20 in red, PCA-VS withK =50 in purple.

makes this experiment very challenging. This is also illus-

trated by the initial and desired images depicted in Fig-
a b ure [I3(a-c). We considered onlik = 50 coefcients.
The norm of the cost functiokk f(r) f k decreases
monotonously (Figurg 13.f). The decrease in errors (Fig-
ure [I3.g) is also highly satisfactory considering the fact
that only the interaction matrix at the desired position and
an approximated depth were employed. The nal error is
r = (0:0016m; 0:0004m; 0:00033n; 0:09°; 0:11°;0:01°)
which shows the accuracy of the proposed approach. After
iteration 150, (equation|[(2D)) gradually decreases leading to
Figure 8. Experiment with DCT-VS witk = 20 )k f(r) f k. (b) a small and temporary augmentqtion of the cost function (I_:ig—
er?orfi(r.) f?, (c) camera velocity (in m/s and rad/s), (c) positioni’ng erropre@f)' What _Can be observed is that the contro_l law mainly
(in m and rad). achieves a motion along and around thexes (see Figufe [L3h,
iterations 0-150). Actually, motions alorg translation and
rotation are the motions that introduce the main difference in
the image leading to higher gradients of the cost function.
x (resp.y) translation coupled witty (resp.x) rotation are

We rst consider a positioning task with respect to dar less observable in the image leading to smaller gradients.

planar scene. The displacement to be achievedr is = Thus, the optimization process tends to drive (mainly but not
(0:04m; 0:27m; 0:04m; 22:3°; 8°; 26:3°). The transformation only) the camera along translation and rotation axes faster
between the initial and desired poses (and particularly ttiean on the other axes. Then, it compensates for the other
rotation around thex and z axes) is very large and axes. In this "second step” the error in the image is quite

c d

B. Experimental results on a 6 DoF robot
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PCA-VS is slightly closer to the geodesic (see Figure 12b), the
precision is better with DCT-VS (in translation: 1.7mm with
DCT-VS versus 3.1mm as well as in rotation: @ 1versus
0.44#). Furthermore let us recall that for DCT-VS, no learning
step was necessary.

Finally, we also consider various non planar scenes (see
Figure[I4) with an electronic board, a large electric plug,
and a piece of foam with a very repetitiv 3D pattern. The
height of the object with respect to the underlying plane is,
respectively 5cm, 15cm and 5cm. We consi#ler= 50 for
the former andK = 100 for the two later since the scenes
feature high frequencies patterns (selecting the optimal value
of K depending on the scene aspects is a perspective of
this work). For all these experiments, the camera converges

Figure 11. Experiment with PCA-VS [16] witk =50 (a)kw(r) w K,
(b) errorwi(r) w;, (c) camera velocity (in m/s and rad/s), (c) positioning
error (in m and rad).

precisely toward the desired position.

VI. CONCLUSION

In this paper we demonstrated that direct visual servoing
can be achieved in the frequency domain. The image is

transformed thanks to the DCT and the control law is built

small although the 3D motion remains large (this can easi
be seen comparing Figure ]13f gnd 13i). This pattern can
found in all the reported experiments (see Fidurg 14). Fina
note that it is possible to gradually include high-frequen
coef cients at later stages of convergence and tend toward
Photo-VS control law. Nevertheless, experiments show t
it does not improve signi cantly the positioning accuracyR
(indeed, although it adds more details it also adds noise).

(1]
(2]

(3]
(4]

a b [

Figure 12. 3D camera trajectories (a) with various number of DCT coef cientd6]
(green:K =10 ; red :K =20 ; blue : K =50 (b) comparison with PCA-
based visual servoin@ [1L6] (green: PCA-VS, blue : DCT-VS) [7]

We experimented with various valueskf Figurg 12 shows 8]
the camera trajectories fa¢ = 10 (blue), K = 20 (green)
andK =50 (red). In all the cases, the visual servoing control
law converges although nal precision is slightly better with [9]
K = 50. The camera trajectory is also better wkh = 50.
Considering more coef cients does not improve either the
trajectory or the precision. [10

We also compare our new DCT based visual servoing (DCT-
VS) approach with other DVS method: photometric VS [7it1]
and PCA-VS|[16]. Photometric VS failed since the motion is
too large wrt. to the small convergence area of the methaqtk]
As far as PCA-VS is concerned, we use the same number of
coef cients to reduce the dimensionality of the image:= |13
50 in both approaches. Although, the trajectory obtained with

from a few coef cients of the DCT that correspond to the low
{Eéquencies of the image. It was also shown that the interaction
atrix related to these coefcients can be explicitly and
nalytically calculated. We also demonstrated that reducing
2 dimensionality of the problem by adequately selecting the
h%ﬂef cients greatly improves the behavior of the control law.
esults show the effectiveness of this approach on various
examples.
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