
HAL Id: hal-02292545
https://inria.hal.science/hal-02292545v2

Submitted on 1 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Comparing distributions: l1 geometry improves kernel
two-sample testing

Meyer Scetbon, Gaël Varoquaux

To cite this version:
Meyer Scetbon, Gaël Varoquaux. Comparing distributions: l1 geometry improves kernel two-sample
testing. NeurIPS 2019 - 33th Conference on Neural Information Processing Systems, Dec 2019, Van-
couver, Canada. �hal-02292545v2�

https://inria.hal.science/hal-02292545v2
https://hal.archives-ouvertes.fr


Comparing distributions: `1 geometry improves
kernel two-sample testing

Meyer Scetbon
CREST, ENSAE & Inria, Université Paris-Saclay

Gaël Varoquaux
Inria, Université Paris-Saclay

Abstract

Are two sets of observations drawn from the same distribution? This problem is
a two-sample test. Kernel methods lead to many appealing properties. Indeed
state-of-the-art approaches use the L2 distance between kernel-based distribution
representatives to derive their test statistics. Here, we show that Lp distances
(with p ≥ 1) between these distribution representatives give metrics on the space
of distributions that are well-behaved to detect differences between distributions
as they metrize the weak convergence. Moreover, for analytic kernels, we show
that the L1 geometry gives improved testing power for scalable computational
procedures. Specifically, we derive a finite dimensional approximation of the
metric given as the `1 norm of a vector which captures differences of expectations
of analytic functions evaluated at spatial locations or frequencies (i.e, features).
The features can be chosen to maximize the differences of the distributions and
give interpretable indications of how they differs. Using an `1 norm gives better
detection because differences between representatives are dense as we use analytic
kernels (non-zero almost everywhere). The tests are consistent, while much faster
than state-of-the-art quadratic-time kernel-based tests. Experiments on artificial
and real-world problems demonstrate improved power/time tradeoff than the state
of the art, based on `2 norms, and in some cases, better outright power than even
the most expensive quadratic-time tests.

We consider two sample tests: testing whether two random variables are identically distributed without
assumption on their distributions. This problem has many applications such as data integration [4] or
automated model checking [22]. Distances between distributions underlie progress in unsupervised
learning with generative adversarial networks [20, 1]. A kernel on the sample space can be used to
build the Maximum Mean Discrepancy (MMD) [11, 12, 13, 26], a metric on distribution which has the
strong propriety of metrizing the weak convergence of probability measures. It leads to non-parametric
two-sample tests using the reproducing kernel Hilbert space (RKHS) distance [15, 9], or energy
distance [32, 3]. The MMD has a quadratic computational cost, which may force to use of subsampled
estimates [33, 14]. [5] approximate the L2 distance between distribution representatives in the RKHS,
to compute in linear time a pseudo metric over the space of distributions. Such approximations are
related to random (Fourier) features, used in kernels algorithms [24, 19]. Distribution representatives
can be mean embeddings [29, 30] or smooth characteristic functions [5, 17].

We first introduce the state of the art on Kernel-based two-sample testing built from the L2 distance
between mean embeddings in the RKHS. In fact, a wider family of distance is well suited for the
two-sample problem: we show that for any p ≥ 1, the Lp distance between these distribution repre-
sentatives is a metric on the space of Borel probability measures that metrizes their weak convergence.
We then define our `1-based statistic derived from the L1 geometry and study its asymptotic behavior.
We consider the general case where the number of samples of the two distributions may differ. We
show that using the `1 norm provides a better testing power. Indeed, test statistics approximate such
metrics and are defined as the norm of a J-dimensional vector which is the difference between the
two distribution representatives at J locations. Under the alternative hypothesis H1: P 6= Q, the
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analyticity of the kernel ensures that all the features of this vector are non zero almost surely. We
show that the `1 norm captures this dense difference better than the `2 norm and leads to better tests.
We show also that improvements of Kernel two-sample tests established with the `2 norm [17] hold in
the `1 case: optimizing features and the choice of kernel. We adapt the construction in the frequency
domain as in [5]. Finally, we show that on 4 synthetic and 3 real-life problems, our new `1-based
tests outperform the state of the art.

1 Prior art: kernel embeddings for two-sample tests

Given two samples X := {xi}ni=1, Y := {yi}ni=1 ⊂ X independently and identically distributed
(i.i.d.) according to two probability measures P and Q on a metric space (X , d) respectively, the goal
of a two-sample test is to decide whether P is different from Q on the basis of the samples. Kernel
methods arise naturally in two-sample testing as they provide Euclidean norms over the space of
probability measures that metrize the convergence in law. To define such a metric, we need first to
introduce the notion of Integral Probability Metric (IPM):

IPM[F, P,Q] := sup
f∈F

(
Ex∼P [f(x)]− Ey∼Q [f(y)]

)
(1)

where F is an arbitrary class of functions. When F is the unit ball Bk in the RKHS Hk associated
with a positive definite bounded kernel k : X × X → R, the IPM is known as the Maximum Mean
Discrepancy (MMD) [11], and it can be shown that the MMD is equal to the RKHS distance between
so called mean embeddings [13],

MMD[P,Q] = ‖µP − µQ‖Hk (2)

where µP is an embedding of the probability measure P to Hk,

µP (t) :=

∫
Rd
k(x, t)dP (x) (3)

and ‖.‖Hk denotes the norm in the RKHS Hk. Moreover for kernels said to be characteristic [10],
eg Gaussian kernels, MMD[P,Q] = 0 if and only if P = Q [11]. In addition, when the kernel
is bounded, and X is a compact Hausdorff space, [28] show that the MMD metrizes the weak
convergence. Tests between distributions can be designed using an empirical estimation of the MMD.

A drawback of the MMD is the computation cost of empirical estimates, these being the sum of two
U-statistics and an empirical average, with a quadratic cost in the sample size.

[5] study a related expression defined as the L2 distance between mean embeddings of Borel
probability measures:

d2
L2,µ(P,Q) :=

∫
t∈Rd

∣∣∣µP (t)− µQ(t)
∣∣∣2dΓ(t) (4)

where Γ is a Borel probability measure. They estimate the integral (4) with the random variable,

d2
`2,µ,J(P,Q) :=

1

J

J∑
j=1

∣∣∣µP (Tj)− µQ(Tj)
∣∣∣2 (5)

where {Tj}Jj=1 are sampled i.i.d. from the distribution Γ. This expression still has desirable metric-
like properties, provided that the kernel is analytic:
Definition 1.1 (Analytic kernel). A positive definite kernel k : Rd × Rd → R is analytic on its
domain if for all x ∈ Rd, the feature map k(x, .) is an analytic function on Rd.

Indeed, for k a definite positive, characteristic, analytic, and bounded kernel on Rd, [5] show that
d`2,µ,J is a random metric1 from which consistent two-sample test can be derived. By denoting µX
and µY respectively the empirical mean embeddings of P and Q,

µX(T ) :=
1

n

n∑
i=1

k(xi, T ), µY (T ) :=
1

n

n∑
i=1

k(yi, T )

1A random metric is a random process which satisfies all the conditions for a metric ‘almost surely’ [5].
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[5] show that for {Tj}Jj=1 sampled from the distribution Γ, under the null hypothesis H0 : P = Q,
as n→∞, the following test statistic:

d̂2
`2,µ,J [X,Y ] := n

J∑
j=1

∣∣∣µX(Tj)− µY (Tj)
∣∣∣2 (6)

converges in distribution to a sum of correlated chi-squared variables. Moreover, under the alternative
hypothesis H1 : P 6= Q, d̂2

`2,µ,J
[X,Y ] can be arbitrarly large as n → ∞, allowing the test to

correctly reject H0. For a fixed level α, the test rejects H0 if d̂2
`2,µ,J

[X,Y ] exceeds a predetermined
test threshold, which is given by the (1 − α)-quantile of its asymptotic null distribution. As it is
very computationally costly to obtain quantiles of this distribution, [5] normalize the differences
between mean embeddings, and consider instead the test statistic ME[X,Y]:=‖

√
nΣ
−1/2
n Sn‖22 where

Sn := 1
n

∑n
i=1 zi, Σn := 1

n−1

∑n
i=1(zi − Sn)(zi − Sn)T , and zi := (k(xi, Tj)− k(yi, Tj))

J
j=1 ∈

RJ . Under the null hypothesis H0, asymptotically the ME statistic follows χ2(J), a chi-squared
distribution with J degrees of freedom. Moreover, for k a translation-invariant kernel, [5] derive
another statistical test, called the SCF test (for Smooth Characteristic Function), where its statistic
SCF[X,Y ] is of the same form as the ME test statistic with a modified zi := [f(xi) sin(xTi Tj) −
f(yi) sin(yTi Tj), f(xi) cos(xTi Tj) − f(yi) cos(yTi Tj)]

J
j=1 ∈ R2J where f is the inverse Fourier

transform of k, and show that under H0, SCF[X,Y ] follows asymptotically χ2(2J).

2 A family of metrics that metrize of the weak convergence

[5] build their ME statistic by estimating the L2 distance between mean embeddings. This metric can
be generalized using any Lp distance with p ≥ 1. These metrics are well suited for the two-sample
problem as they metrize the weak convergence (see proof in supp. mat. A.1):
Theorem 2.1. Given p ≥ 1, k a definite positive, characteristic, continuous, and bounded kernel on
Rd, µP and µQ the mean embeddings of the Borel probability measures P and Q respectively, the
function defined onM1

+(Rd)×M1
+(Rd):

dLp,µ(P,Q) :=

(∫
t∈Rd

∣∣∣µP (t)− µQ(t)
∣∣∣pdΓ(t)

)1/p

(7)

is a metric on the space of Borel probability measures, for Γ a Borel probability measure absolutely
continuous with respect to Lebesgue measure. Moreover a sequence (αn)n≥0 of Borel probability
measures converges weakly towards α if and only if dLp,µ(αn, α)→ 0.

Therefore, as the MMD, these metrics take into account the geometry of the underlying space and
metrize the convergence in law. If we assume in addition that the kernel is analytic, we will show that
deriving test statistics from the L1 distance instead of the L2 distance improves the test power for
two-sample testing.

3 Two-sample testing using the `1 norm

3.1 A test statistic with simple asymptotic distribution

From now, we assume that k is a positive definite, characteristic, analytic, and bounded kernel.

The statistic presented in eq. 6 is based on the `2 norm of a vector that capture differences between
distributions in the RKHS at J locations. We will show that using an `1 norm instead of an `2 norm
improves the test power (Proposition 3.1). It captures better the geometry of the problem. Indeed,
when P 6= Q, the differences between distributions are dense which allow the `1 norm to reject better
the null hypothesis H0: P = Q.

We now build a consistent statistical test based on an empirical estimation of the L1 metric introduced
in eq. 7:

d̂`1,µ,J [X,Y ] :=
√
n

J∑
j=1

∣∣∣µX(Tj)− µY (Tj)
∣∣∣ (8)
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where {Tj}Jj=1 are sampled from the distribution Γ. We show that underH0, d̂`1,µ,J [X,Y ] converges
in distribution to a sum of correlated Nakagami variables2 and under H1, d̂`1,µ,J [X,Y ] can be
arbitrary large as n→∞ (see supp. mat. C.1). For a fixed level α, the test rejectsH0 if d̂`1,µ,J [X,Y ]
exceeds the (1− α)-quantile of its asymptotic null distribution. We now compare the power of the
statistics based respectively on the `2 norm (eq. 6) and the `1 norm (eq. 8) at the same level α > 0
and we show that the power of the test using the `1 norm is better with high probability (see supp.
mat. C.2):

Proposition 3.1. Let α ∈]0, 1[, γ > 0 and J ≥ 2. Let {Tj}Jj=1 sampled i.i.d. from the distribution Γ
and let X := {xi}ni=1 and Y := {yi}ni=1 i.i.d. samples from P and Q respectively. Let us denote δ
the (1− α)-quantile of the asymptotic null distribution of d̂`1,µ,J [X,Y ] and β the (1− α)-quantile
of the asymptotic null distribution of d̂2

`2,µ,J
[X,Y ]. Under the alternative hypothesis, almost surely,

there exists N ≥ 1 such that for all n ≥ N , with a probability of at least 1− γ we have:

d̂2
`2,µ,J [X,Y ] > β ⇒ d̂`1,µ,J [X,Y ] > δ (9)

Therefore, for a fixed level α, under the alternative hypothesis, when the number of samples is large
enough, with high probability, the `1-based test rejects better the null hypothesis. However, even
for fixed {Tj}Jj=1, computing the quantiles of these distributions requires a computationally-costly
bootstrap or permutation procedure. Thus we follow a different approach where we allow the number
of samples to differ. Let X := {xi}N1

i=1 and Y := {yi}N2
i=1 i.i.d according to respectively P and Q.

We define for any sequence of {Tj}Jj=1 in Rd:

SN1,N2 :=
(
µX(T1)− µY (T1), ..., µX(TJ)− µY (TJ)

)
(10)

ZiX := (k(xi, T1), ..., k(xi, TJ)) ∈ RJ ZjY := (k(yj , T1), ..., k(yj , TJ)) ∈ RJ

And by denoting:

ΣN1
:=

1

N1 − 1

N1∑
i=1

(ZiX − ZX)(ZiX − ZX)T ΣN2 :=
1

N2 − 1

N2∑
j=1

(ZjY − ZY )(ZjY − ZY )T

ΣN1,N2
:=

ΣN1

ρ
+

ΣN2

1− ρ

We can define our new statistic as:

L1-ME[X,Y ] :=
∥∥∥√tΣ− 1

2

N1,N2
SN1,N2

∥∥∥
1

(11)

We assume that the number of samples of the distributions P and Q are of the same order, i.e: let
t = N1 + N2, we have: N1

t → ρ and therefore N2

t → 1 − ρ with ρ ∈]0, 1[. The computation of
the statistic requires inverting a J × J matrix ΣN1,N2

, but this is fast and numerically stable: J is
typically be small, eg less than 10. The next proposition demonstrates the use of this statistic as a
consistent two-sample test (see supp. mat. C.3 for the proof).

Proposition 3.2. Let {Tj}Jj=1 sampled i.i.d. from the distribution Γ and X := {xi}N1
i=1 and Y :=

{yi}N2
i=1 be i.i.d. samples from P and Q respectively. Under H0, the statistic L1-ME[X,Y ] is almost

surely asymptotically distributed as Naka( 1
2 , 1, J), a sum of J random variables i.i.d which follow a

Nakagami distribution of parameter m = 1
2 and ω = 1. Finally under H1, almost surely the statistic

can be arbitrarily large as t→∞, enabling the test to correctly reject H0.

Statistical test of level α: Compute ‖
√
tΣ
− 1

2

N1,N2
SN1,N2

‖1, choose the threshold δ corresponding to

the (1− α)-quantile of Naka( 1
2 , 1, J), and reject the null hypothesis whenever ‖

√
tΣ
− 1

2

N1,N2
SN1,N2‖1

is larger than δ.

2the pdf of the Nakagami distribution of parameters m ≥ 1
2

and ω > 0 is ∀x ≥ 0,
f(x,m, ω) = 2mm

Γ(m)ωm
x2m−1 exp(−m

ω
x2) where Γ is the Gamma function.
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3.2 Optimizing test locations to improve power

As in [17], we can optimize the test locations V and kernel parameters (jointly referred to as θ)
by maximizing a lower bound on the test power which offers a simple objective function for fast
parameter tuning. We make the same regularization as in [17] of the test statistic for stability of the
matrix inverse, by adding a regularization parameter γN1,N2 > 0 which goes to 0 as t goes to infinity,
giving L1-ME[X,Y ] := ‖

√
t(ΣN1,N2

+ γN1,N2
I)−

1
2 SN1,N2

‖1 (see proof in supp. mat. D.1).

Proposition 3.3. Let K be a uniformly bounded family of k : Rd×Rd → R measurable kernels (i.e.,
∃K <∞ such that sup

k∈K
sup

(x,y)∈(Rd)2

|k(x, y)|≤ K). Let V be a collection in which each element is a

set of J test locations. Assume that c := sup
V ∈V,k∈K

‖Σ−1/2‖<∞. Then the test power P
(
λ̂t ≥ δ

)
of

the L1-ME test satisfies P
(
λ̂t ≥ δ

)
≥ L(λt) where:

L(λt) =1− 2

J∑
k=1

exp

(
−
(
λt − δ
J2 + J

)2
γN1,N2N1N2

(N1 +N2)2

)

− 2

J∑
k,q=1

exp

−2

(
γN1,N2

K3J2
λt−δ

(J2+J)
√
t
− J3K2√

γN1,N2
− J4K1

)2
K2
λ(N1 +N2) max

(
8
ρN1

, 8
(1−ρ)N2

)2


and K1,K2, K3 and Kλ, are positive constants depending on only K, J and c. The parameter
λt := ‖

√
tΣ−

1
2 S‖1 is the population counterpart of λ̂t := ‖

√
t(ΣN1,N2 + γN1,N2I)−

1
2 SN1,N2‖1

where S = Ex,y(SN1,N2) and Σ = Ex,y(ΣN1,N2). Moreover for large t, L(λt) is increasing in λt.

Proposition 3.3 suggests that it is sufficient to maximize λt to maximize a lower bound on the L1-ME
test power. The statistic λt for this test depends on a set of test locations V and a kernel parameter σ.
We set θ∗ := {V, σ} = arg max

θ
λt = arg max

θ
‖
√
tΣ−

1
2 S‖1. As proposed in [14], we can maximize

a proxy test power to optimize θ: it does not affect H0 and H1 as long as the data used for parameter
tuning and for testing are disjoint.

3.3 Using smooth characteristic functions (SCF)

As the ME statistic, the SCF statistic estimates the L2 distance between well chosen distribution
representatives. Here, the representatives of the distributions are the convolution of their characteristic
functions and the kernel k, assumed translation-invariant. [5] use them to detect differences between
distributions in the frequency domain. We show that the L1 version (denoted dL1,Φ) is a metric on the
space of Borel probability measures with integrable characteristic functions such that if αn converge
weakly towards α, then dL1,Φ(αn, α)→ 0 (see supp. mat. A.2). Let us introduce the test statistics in
the frequency domain respectively based on the `2 norm and on the `1 norm which lead to consistent
tests:

d̂2
`2,Φ,J [X,Y ] := ‖

√
nSn‖22 and d̂`1,Φ,J [X,Y ] := ‖

√
nSn‖1 (12)

where Sn := 1
n

∑n
i=1 zi, zi := [f(xi) sin(xTi Tj) − f(yi) sin(yTi Tj), f(xi) cos(xTi Tj) −

f(yi) cos(yTi Tj)]
J
j=1 ∈ R2J and f is the inverse Fourier transform of k. We show that, at the

same level α, using the `1 norm in the frequency domain provides a better power with high probabil-
ity (see supp. mat. E.1):

Proposition 3.4. Let α ∈]0, 1[, γ > 0 and J ≥ 2. Let {Tj}Jj=1 sampled i.i.d. from the distribution Γ
and let X := {xi}ni=1 and Y := {yi}ni=1 i.i.d. samples from P and Q respectively. Let us denote δ
the (1− α)-quantile of the asymptotic null distribution of d̂`1,Φ,J [X,Y ] and β the (1− α)-quantile
of the asymptotic null distribution of d̂2

`2,Φ,J
[X,Y ]. Under the alternative hypothesis, almost surely,

there exists N ≥ 1 such that for all n ≥ N , with a probability of at least 1− γ we have:

d̂2
`2,Φ,J [X,Y ] > β ⇒ d̂`1,Φ,J [X,Y ] > δ (13)
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We now adapt the construction of the L1-ME test to the frequency domain to avoid computational
issues of the quantiles of the asymptotic null distribution:

L1-SCF[X,Y ] := ‖
√
tΣ
− 1

2

N1,N2
SN1,N2

‖1 (14)

with ΣN1,N2
, and SN1,N2

defined as in the L1-ME statistic with new expression for ZiX (and ZjY ):

ZiX =
(
cos
(
TT1 xi

)
f(xi), ..., sin

(
TTJ xi

)
f(xi)

)
∈ R2J

From this statistic, we build a consistent test. Indeed, an analogue proof of the Proposition 3.2 gives
that under H0, L1-SCF[X,Y ] is a.s. asymptotically distributed as Naka( 1

2 , 1, 2J), and under H1, the
test statistic can be arbitrarily large as t goes to infinity. Finally an analogue proof of Proposition 3.3
shows that we can optimize the test locations and the kernel parameter to improve the power as well.

4 Experimental study

We now run empirical comparisons of our `1-based tests to their `2 counterparts, state-of-the-
art Kernel-based two-sample tests. We study both toy and real problems. We use the isotropic
Gaussian kernel class Kg. We call L1-opt-ME and L1-opt-SCF the tests based respectively on
mean embeddings and smooth characteristic functions proposed in this paper when optimizing test
locations and the Gaussian width σ on a separate training set of the same size as the test set. We
denote also L1-grid-ME and L1-grid-SCF where only the Gaussian width is optimized by a grid
search, and locations are randomly drawn from a multivariate normal distribution. We write ME-full
and SCF-full for the tests of [17], also fully optimized according to their criteria. MMD-quad
(quadratic-time) and MMD-lin (linear-time) refer to the MMD-based tests of [11], where, to ensure
a fair comparison, the kernel width is also set to maximize the test power following [14]. For MMD-
quad, as its null distribution is an infinite sum of weighted chi-squared variables (no closed-form
quantiles), we approximate the null distribution with 200 random permutations in each trial.

In all the following experiments, we repeat each problem 500 times. For synthetic problems, we
generate new samples from the specified P , Q distributions in each trial. For the first real problem
(Higgs dataset), as the dataset is big enough we use new samples from the two distributions for each
trial. For the second and third real problem (Fast food and text datasets), samples are split randomly
into train and test sets in each trial. In all the simulations we report an empirical estimate of the
Type-I error when H0 hold and of the Type-II error when H1 hold. We set α = 0.01. The code is
available at https://github.com/meyerscetbon/l1_two_sample_test.

How to realize `1-based tests ? The asymptotic distributions of the statistics is a sum of i.i.d.
Nakagami distribution. [8] give a closed form for the probability density function. As the formula is
not simple, we can also derive an estimate of the CDF (see supp. mat. F.1).

Optimization For a fair comparison between our tests and those of [17], we use the same initialization
of the test locations3. For the ME-based tests, we initialize the test locations with realizations from
two multivariate normal distributions fitted to samples from P and Q and for the for initialization of
the SCF-based tests, we use the standard normal distribution. The regularization parameter is set to
γN1,N2 = 10−5. The computation costs for our proposed tests are the same as that of [17]: with t
samples, optimization is O(J3 + dJt) per gradient ascent iteration and testing O(J3 + Jt+ dJt)
(see supp. mat. Table 3).

The experiments on synthetic problems mirror those of [17] to make a fair comparison between the
prior art and the proposed methods.

Data P Q
SG N (0, Id) N (0, Id)
GMD N (0, Id) N ((1, 0, .., 0)T , Id)
GVD N (0, Id) N (0, diag(2, 1, .., 1))
Blobs Mixture of 16 Gaussians in R2 as [17]

Table 1: Synthetic problems.
H0 holds only in SG.

Test power vs. sample size We consider four syn-
thetic problems: Same Gaussian (SG, dim= 50),
Gaussian mean difference (GMD, dim= 100), Gaus-
sian variance difference (GVD, dim= 30), and Blobs.
Table 1 summarizes the specifications of P and Q. In
the Blobs problem, P and Q are a mixture of Gaus-
sian distributions on a 4×4 grid in R2. This problem
is challenging as the difference of P and Q is en-
coded at a much smaller length scale compared to the
global structure as explained in [14]. We set J = 5 in this experiment.

3[17]: github.com/wittawatj/interpretable-test
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Figure 1: Plots of type-I/type-II errors against the test sample size nte in the four synthetic problems.

Figure 1 shows type-I error (for SG problem), and test power (for GMD, GVD and Blobs problem)
as a function of test sample size. In the SG problem, the type-I error roughly stays at the specified
level α for all tests except the L1-ME tests, which reject the null at a rate below the specified level α.
Therefore, here these tests are more conservative.

GMD with 100 dimensions is an easy problem for L1-opt-ME, L1-opt-SCF, ME-full MMD-quad,
while the SCF-full test requires many samples to achieve optimal test power. In the GMD, GVD and
Blobs cases, L1-opt-ME and L1-opt-SCF achieve substantially higher test power than L1-grid-ME
and L1-grid-SCF, respectively: optimizing the test locations brings a clear benefit. Remarkably
L1-opt-SCF consistently outperforms the quadratic-time MMD-quad up to 2 500 samples in the
GVD case. SCF variants perform significantly better than ME variants on the Blobs problem, as the
difference in P and Q is localized in the frequency domain. For the same reason, L1-opt-SCF does
much better than the quadratic-time MMD up to 3 000 samples, as the latter represents a weighted
distance between characteristic functions integrated across the frequency domain as explained in [29].

We also perform a more difficult GMD problem to distinguish the power of the proposed tests with
the ME-full as all reach maximal power. L1-opt-ME then performs better than ME-full, its `2
counterpart, as it needs less data to achieve good control (see mat. supp. F.3).

Test power vs. dimension d On fig 2, we study how the dimension of the problem affects type-I error
and test power of our tests. We consider the same synthetic problems: SG, GMD and GVD, we fix the
test sample size to 10000, set J = 5, and vary the dimension. Given that these experiments explore
large dimensions and a large number of samples, computing the MMD-quad was too expensive.

In the SG problem, we observe the L1-ME tests are more conservative as dimension increases, and
the others tests can maintain type-I error at roughly the specified significance level α = 0.01. In the
GMD problem, we note that the tests proposed achieve the maximum test power without making
error of type-II whatever the dimension is, while the SCF-full loses power as dimension increases.
However, this is true only with optimization of the test locations as it is shown by the test power of
L1-grid-ME and L1-grid-SCF which drops as dimension increases. Moreover the performance of
MMD-lin degrades quickly with increasing dimension, as expected from [25]. Finally in the GVD
problem, all tests failed to keep a good test power as the dimension increases, except the L1-opt-SCF,
which has a very low type-II for all dimensions. These results echo those obtained by [34]. Indeed
[34] study a class of two sample test statistics based on inter-point distances and they show benefits
of using the `1 norm over the Euclidean distance and the Maximum Mean Discrepancy (MMD) when
the dimensionality goes to infinity. For this class of test statistics, they characterize asymptotic power

Figure 2: Plots of type-
I/type-II error against
the dimension in three
synthetic problems:
SG (Same Gaussian),
GMD (Gaussian Mean
Difference), and GVD
(Gaussian Variance
Difference).
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loss w.r.t the dimension and show that the `1 norm is beneficial compared to the `2 norm provided
that the summation of discrepancies between marginal univariate distributions is large enough.

13.5

15.0

16.5

18.0

19.5

21.0

Figure 3: Illustrating interpretable fea-
tures, replicating in the `1 case the figure
of [17]. A contour plot of λ̂trt (T1, T2) as a
function of T2, when J = 2, and T1 is fixed.
The red and black dots represent the samples
from the P and Q distributions, and the big
black triangle the position of T1 –complete
figure in supp. mat. F.4.

Informative features Figure 3 we replicate the ex-
periment of [17], showing that the selected locations
capture multiple modes in the `1 case, as in the `2
case. (details in supp. mat. F.4). The figure shows
that the objective function λ̂trt (T1, T2) used to posi-
tion the second test location T2 has a maximum far
from the chosen position for the first test location T1.

Real Data 1, Higgs: The first real problem is the
Higgs dataset [21] described in [2]: distinguishing
signatures of Higgs bosons from the background. We
use a two-sample test on 4 derived features as in [5].
We compare for various sample sizes the performance
of the proposed tests with those of [17]. We do not
study the MMD-quad test as its computation is too
expensive with 10 000 samples. To make the problem
harder, we only consider J = 3 locations. Fig. 4
shows a clear benefit of the optimized `1-based tests,
in particular for SCF (L1-opt-SCF) compared to its
`2 counterpart (SCF-full). Optimizing the location
is important, as L1-opt-SCF and L1-opt-ME per-
form much better than their grid versions (which are
comparable to the tests of [5]).

Real Data 2, Fastfood: We use a Kaggle dataset listing locations of over 10,000 fast food restaurants
across America4. We consider the 6 most frequent brands in mainland USA: Mc Donald’s, Burger
King, Taco Bell, Wendy’s, Arby’s and KFC. We benchmark the various two-sample tests to test
whether the spatial distribution (in R2) of restaurants differs across brand. This is a non trivial
question, as it depends on marketing strategy of the brand. We compare the distribution of Mc
Donald’s restaurants with others. We also compare the distribution of Mc Donald’s restaurants with
itself to evaluate the level of the tests (see supp. mat. Table 5). The number of samples differ across
the distributions; hence to perform the tests from [17], we randomly subsample the largest distribution.
We use J = 3 as the number of locations.

4www.kaggle.com/datafiniti/fast-food-restaurants

Figure 4: Higgs dataset: Plots of type-II errors against
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Problem L1-opt-M
E

L1-grid-M
E

L1-opt-SCF

L1-grid-SCF

ME-full
SCF-full

MMD-quad

McDo vs Burger King (1141) 0.112 0.426 0.428 0.960 0.170 0.094 0.184
McDo vs Taco Bell (877) 0.554 0.624 0.710 0.834 0.684 0.638 0.666
McDo vs Wendy’s (733) 0.156 0.246 0.752 0.942 0.416 0.624 0.208
McDo vs Arby’s (517) 0.000 0.004 0.006 0.468 0.004 0.012 0.004
McDo vs KFC (429) 0.912 0.990 1.00 0.998 0.996 0.856 0.980

Table 2: Fast food dataset: Type-II errors for distinguishing the distribution of fast food restaurants.
α = 0.01. J = 3. The number in brackets denotes the sample size of the distribution on the right.
We consider MMD-quad as the gold standard.
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Table 2 summarizes type-II errors of the tests. Note that it is not clear that distributions must differ, as
two brands sometimes compete directly, and target similar locations. We consider the MMD-quad
as the gold standard to decide whether distributions differ or not. The three cases for which there
seems to be a difference are Mc Donald’s vs Burger King, Mc Donald’s vs Wendy’s, and Mc Donalds
vs Arby’s. Overall, we find that the optimized L1-opt-ME agrees best with this gold standard. The
Mc Donald’s vs Arby’s problem seems to be an easy problem, as all tests reach a maximal power,
except for the L1-grid-SCF test which shows the gain of power brought by the optimization. In
the Mc Donald’s vs Wendy’s problem the L1-opt-ME test outperforms the `2 tests and even the
quadratic-time MMD. Finally, all the tests fail to discriminate Mc Donald’s vs KFC. The data provide
no evidence that these brands pursue different strategies to chose locations.

In the Mc Donald’s vs Burger King and Mc Donald’s vs Wendy’s problems, the optimized version of
the test proposed based on mean embedding outperform the grid version. This success implies that
the locations learned are each informative, and we plot them (see supp. mat. Figure 8), to investigate
the interpretability of the L1-opt-ME test. The figure shows that the procedure narrows on specific
regions of the USA to find differences between distributions of restaurants.

Real Data 3, text: For a high-dimension problem, we consider the problem of distinguishing the
newsgroups text dataset [18] (details in supp. Mat. F.5). Compared to their `2 counterpart, `1-
optimized tests bring clear benefits and separate all topics of articles based on their word distribution.

Discussion: Our theoretical results suggest it is always beneficial for statistical power to build tests on
`1 norms rather than `2 norm of differences between kernel distribution representatives (Propositions
3.1, 3.4). In practice, however, optimizing test locations with `1-norm tests leads to non-smooth
objective functions that are harder to optimize. Our experiments confirm the theoretical benefit of the
`1-based framework. The benefit is particularly pronounced for a large number J of test locations
–as the difference between `1 and `2 norms increases with dimension (see in supp. mat. Lemmas
8, 12)– as well as for large dimension of the native space (Figure 2). The benefit of `1 distances
for two-sample testing in high dimension has also been reported by [34], though their framework
does not link to kernel embeddings or to the convergence of probability measures. Further work
should consider extending these results to goodness-of-fit testing, where the L1 geometry was shown
empirically to provide excellent performance [16].

5 Conclusion

In this paper, we show that statistics derived from the Lp distances between well-chosen distribution
representatives are well suited for the two-sample problem as these distances metrize the weak conver-
gence (Theorem 2.1). We then compare the power of tests introduced in [5] and their `1 counterparts
and we show that `1-based statistics have better power with high probability (Propositions 3.1, 3.4).
As with state-of-the-art Euclidean approaches, the framework leads to tractable computations and
learns interpretable locations of where the distributions differ. Empirically, on all 4 synthetic and 3
real problems investigated, the `1 geometry gives clear benefits compared to the Euclidean geometry.
The L1 distance is known to be well suited for densities, to control differences or estimation [7]. It is
also beneficial for kernel embeddings of distributions.
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A A family of metrics that metrize of the weak convergence

A.1 Distances between Mean Embeddings

Theorem 1. Given p ≥ 1, k a definite positive, characteristic, continuous, and bounded kernel on
Rd, µP and µQ the mean embeddings of the Borel probability measures P and Q respectively, the
function defined onM1

+(Rd)×M1
+(Rd):

dLp,µ(P,Q) :=

(∫
t∈Rd

∣∣∣µP (t)− µQ(t)
∣∣∣pdΓ(t)

)1/p

(15)

is a metric on the space of Borel probability measures, for Γ a Borel probability measure absolutely
continuous with respect to Lebesgue measure. Moreover a sequence (αn)n≥0 of Borel probability
measures converges weakly towards α if and only if dLp,µ(αn, α)→ 0.
Proof. First, let us prove that for any p ≥ 1 dLp,µ is metric of on the space of Borel probability
measures. Let p ≥ 1, we have:

|µP (t)− µQ (t) |p= |〈µP − µQ, kt〉|p

Therefore:
|µP (t)− µQ (t) |p≤ ||µP − µQ||pH(k (t, t))p/2

But as k is bounded, and Γ is finite, dLp,µ is well defined onM1
+ (X )

2. Let us prove now that if
P 6= Q then dLp,µ (P,Q) > 0.
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Definition 1. [10] A kernel is characteristic if the mapping P ∈M1
+ (X )→ µP ∈ Hk is injective,

where Hk is the RKHS associated with k.
Lemma 1. [31] If k is a continuous kernel on a metric space then every feature maps associated
with the kernel are continuous.

Let P and Q two Borel distributions such that P 6= Q. Since the mapping p→ µP is injective, there
must exists at least one point o where µP − µQ is non-zero. By continuity of µP − µQ, there exists a
ball around o in which µP −µQ is non-zero. Then dLp,µ (P,Q) > 0. Finally all the other proprieties
of a metric are clearly verified by this function.

Let us now show that dL1,µ metrize the weak convergence. For that purpose, we first show that this
metric has an IPM formulation:
Lemma 2. l We denote by Tk the integral operator on LdΓ

2 (Rd) associated to the positive definite,
characteristic, continuous, and bounded kernel k defined as:

Tk : LdΓ
2 (Rd) → LdΓ

2 (Rd)
f →

∫
Rd k(x, .)f(x)dΓ(x)

By denoting BdΓ
∞ the unit ball of LdΓ

∞ (Rd), we have that:

dL1,µ(P,Q) = sup
f∈Tk(BdΓ

∞ )

(
EP [f(X)]− EQ[f(Y )]

)
Proof. We have:

dL1,µ (P,Q) =

∫
x∈Rd
|µP (x)− µQ (x) |dΓ(x)

=

∫
x∈Rd
|〈µP − µQ, kx〉H |dΓ(x)

=

∫
x∈{v:µP (v)≥µQ(v)}

〈µP − µQ, kx〉HdΓ(x)−
∫
x∈{v:µP (v)<µQ(v)}

〈µP − µQ, kx〉HdΓ(x)

=〈µP − µQ,
∫
x∈{v:µP (v)≥µQ(v)}

kxdΓ(x)−
∫
x∈{v:µP (v)<µQ(v)}

kxdΓ(x)〉H

Then:
dL1,µ (P,Q) = 〈µP − µQ, f〉H

with

f =

∫
t∈Rd

gtdΓ(t) where gt =

{
kt if t ∈ {x : µP (x) ≥ µQ (x)}
−kt otherwise. (16)

Therefore, f ∈ Tk(BdΓ
∞ ) ⊂ Hk and we have:

dL1,µ (P,Q) = EP (f (X))− EQ (f (Y ))

Now, let f be an element of Tk(BdΓ
∞ ) ⊂ Hk. Therefore there exists g ∈ BdΓ

∞ such that f = Tk(g) and
we have then:

EP (f (X))− EQ (f (Y )) =〈µP − µQ, f〉

=〈µP − µQ,
∫
t∈Rd

g(t)ktdΓ(t)〉

=

∫
t∈Rd

g(t)〈µP − µQ, kt〉dΓ(t)

=

∫
t∈Rd

g(t) (µP (t)− µQ (t)) dΓ(t)

≤
∫
t∈Rd
|µP (t)− µQ (t) |dΓ(t)

Therefore we have:

dL1,µ(P,Q) = sup
f∈Tk(BdΓ

∞ )

(
EP [f(X)]− EQ[f(Y )]

)
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From this IPM formulation we now show that dL1,µ metrize the weak convergence. First, as the
kernel k is assumed to be continuous, then Tk(BdΓ

∞ ) ⊂ Hk ⊂ C0(Rd), the set of continuous
functions. Therefore, thanks to the IPM formulation of the metric, the weak convergence of a
sequence of distributions (αn)n≥0 towards a distribution α implies the convergence according to
the dL1,µ-distance. Conversely let α ∈ M1

+ (X ) and let us assume that (αn)n≥0 is a sequence of
Borel probability measures such that dL1,µ(αn, α)→ 0. Since

∫
x∈Rd

k(x, x)dΓ(x) is finite, Tk is self-

adjoint, positive semi-definite and trace-class [27]. It has at most countably many positive eigenvalues
(λm)m≥0 and corresponding orthonormal eigenfunctions (em)m≥0. Then the Mercer theorem [6]
gives that (λ

1/2
m em)m≥0 is an orthonormal basis of Hk. Let us denote C = sup

x∈Rd

√
k(x, x) And

Vm =
λ1/2
m em
C . Therefore we have:

‖Vm‖∞,dΓ ≤
‖λ1/2

m em‖Hk
C

C ≤ 1

Therefore, thanks to Lemma 2, for all m ≥ 0, we have:

〈µαn − µα, Tk(Vm)〉Hk → 0

Now, we want to show that for every f ∈ Hk, 〈µαn − µα, f〉Hk → 0. Let us consider f ∈ Hk. As
(λ

1/2
m em)m≥0 is an orthonormal basis of Hk, we have:

f =
∑
m≥0

〈f, λ1/2
m em〉Hkλ1/2

m em

Therefore if we define for every m ≥ 0:

fm :=

m∑
i=0

〈f, λ1/2
i ei〉Hkλ

1/2
i ei

We have that:

‖fm − f‖Hk→ 0

Therefore let ε > 0, and K such that:

‖fK − f‖Hk≤ ε

First we remarks that:

〈µαn − µα, fK〉 =

K∑
i=0

〈f, λ1/2
i ei〉〈µαn − µα, λ

1/2
i ei〉

=

K∑
i=0

〈f, λ1/2
i ei〉C〈µαn − µα, Vi〉

=

K∑
i=0

〈f, λ1/2
i ei〉

C

λi
〈µαn − µα, Tk(Vi)〉

Indeed the last equality hold as all the eigenvalues are positives. Finally we have that:

〈µαn − µα, fK〉Hk → 0 as n goes to infinity.

Let N , such that for n ≥ N :

〈µαn − µα, fK〉Hk ≤ ε

Therefore we have for all n ≥ N :

〈µαn − µα, f〉 = 〈µαn − µα, fK〉+ 〈µαn − µα, f − fK〉
≤ ε+ ‖µαn − µα‖Hk‖f − fK‖Hk
≤ ε+ ‖µαn − µα‖Hkε
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Finally as k is bounded, we have that:

‖µαn − µα‖Hk≤ 2 sup
x,t

√
k(x, t)

Finally we have that for every f ∈ Hk:

〈µαn − µα, f〉 → 0

Therefore for any f ∈ BHk , the unit ball of the RKHS, we have:

〈µαn − µα, f〉 → 0

And then:

MMD[αn, α]→ 0

Moreover we have the following theorem:
Theorem 2. ([28]) A bounded kernel over a locally compact Hausdorff space X metrizes the weak
convergence of probability measures iff it is continuous and characteristic.

Therefore αn converge weakly towards α and dL1,µ metrize the weak convergence. Moreover thanks
to Hölder’s inequality we have that for any p ≥ 1:

dL1,µ(P,Q) ≤ dLp,µ(P,Q) (17)

Moreover as the kernel k is bounded we have also:

dLp,µ(P,Q)p ≤ ‖µP − µQ‖p−1
∞ dL1,µ(P,Q) (18)

≤ (2C2)p−1dL1,µ(P,Q) (19)

Therefore for any p ≥ 1 dLp,µ metrizes the weak convergence.

A.2 Distances between Smooth Characteristic Functions

Definition 2. [5] Let k : Rd → R be a translation-invariant kernel i.e., k(x− y) defines a positive
definite kernel for x and y, P a Borel probability measure and ψP (t) := Ex

(
exp(ixT t)

)
be the

characteristic function of P . A smooth characteristic function ΦP is defined as:

ΦP (v) :=

∫
Rd
ψP (t)k(v − t)dt (20)

Lemma 3. [5] If k is a continuous, integrable and translation invariant kernel with an inverse
Fourier transform strictly greater then zero an and P has integrable characteristic function, then the
mapping:

Γ : P → ΦP (21)

is injective and ΦP is an element of the RKHS Hk associated with k.
Theorem 3. Given p ≥ 1, k a translation invariant with an inverse Fourier transform strictly greater
then zero, continuous, and integrable kernel on Rd, ΦP and ΦQ the smooth characteristic functions
of the Borel probability measures with integrable characteristic functions P and Q respectively, the
following function:

dLp,Φ(P,Q) :=

(∫
t∈Rd

∣∣∣ΦP (t)− ΦQ(t)
∣∣∣pdΓ(t)

)1/p

(22)

where Γ a Borel probability measure absolutely continuous with respect to Lebesgue measure, is a
metric on the space of Borel probability measures with integrable characteristic functions. Moreover if
a sequence (αn)n≥0 of Borel probability measures with integrable characteristic functions converges
weakly towards α then dL1,µ(αn, α)→ 0.
Proof. Let p ≥ 1. First, as ψP and ψQ live in Hk, the RKHS associated with k, we have:

|ΦP (t)− ΦQ (t) |p≤ ||ΦP − ΦQ||pH k(0)p/2

Let us prove now that if P 6= Q then d(P,Q) > 0. Thanks to Lemma 1, ΦP and ΦQ are continuous.
Since the mapping P → ΦP is injective, there must exists at least one point o where ΦP − ΦQ is
non-zero. By continuity of ΦP − ΦQ, there exists a ball around o in which ΦP − ΦQ is non-zero.
Then dLp,Φ(P,Q) > 0. Moreover, all the other proprieties of a metric are clearly verified by this
function. Let us now show that dL1,Φ admits a IPM formulation:
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Lemma 4. Let Tk be the integral operator on LdΓ
2 (Rd) associated with the kernel k. By denoting

BdΓ
∞ the unit ball of LdΓ

∞ (Rd), we have that:

dL1,Φ(P,Q) = sup
f∈L(Tk(BdΓ

∞ ))

(
EP [f(X)]− EQ[f(Y )]

)
where:

L(f)(x) :=

∫
t∈Rd

exp(itTx)f(t)dt (23)

Proof. Let P and Q be Borel probability measures with integrable characteristic functions. As ΦP
and ΦQ live in the RKHS associated with k, we obtain, as in the proof of Theorem 2.1, that:

dL1,Φ(P,Q) = 〈ΦP − ΦQ, f〉
with

f =

∫
t∈Rd

gtdΓ(t) where gt =

{
kt if t ∈ {x : ΦP (x) ≥ ΦQ (x)}
−kt otherwise.

Therefore f ∈ Tk(BdΓ
∞ ) and we have:

dL1,Φ(P,Q) =

∫
Rd
ψP (t)f(t)dt−

∫
Rd
ψQ(t)f(t)dt

=

∫
t∈Rd

∫
ε∈Rd

exp(iεT t)f(t)dP (ε)dt−
∫
t∈Rd

∫
ε∈Rd

exp(iεT t)f(t)dQ(ε)dt

Let us now show that for any g ∈ BdΓ
∞ , Tk(g) is integrable (w.r.t the Lebesgue measure):∫

x∈Rd
|Tk(g)(x)|dx ≤

∫
x∈Rd

∫
t∈Rd
|k(x, t)g(t)|dΓ(t)dx

But as k is translation-invariant we have:∫
t∈Rd

∫
x∈Rd
|k(x, t)g(t)|dΓ(t)dx =

∫
x∈Rd

(∫
u∈Rd
|k(u)|du

)
|g(t)|dΓ(t)

=

∫
u∈Rd
|k(u)|du

∫
x∈Rd
|g(t)|dΓ(t)

And as k is integrable, and g ∈ BdΓ
∞ , we can apply the Fubini–Tonelli theorem, and Tk(g) is

integrable.

Therefore for any Borel probability measure P with integrable characteristic function,∫
x∈Rd

∫
ε∈Rd |f(t)|dP (ε)dt <∞ and by Fubini–Tonelli theorem, we can rewrite dL1,Φ(P,Q) as:

dL1,Φ(P,Q) =

∫
ε∈Rd

(∫
t∈Rd

exp(iεT t)f(t)dt

)
dP (ε)−

∫
ε∈Rd

(∫
t∈Rd

exp(iεT t)f(t)dt

)
dQ(ε)

Therefore we have:

dL1,Φ(P,Q) =

∫
ε∈Rd

L(f)(ε)dP (ε)−
∫
ε∈Rd

L(f)(ε)dQ(ε)

= EP (L(f)(X))− EQ(L(f)(Y ))

Let now g be an abritary function in BdΓ
∞ . Then we have:

EP (L(Tk(g))(X))− EQ(L(Tk(g))(Y )) =

∫
ε∈Rd

L(Tk(g))(ε)dP (ε)−
∫
ε∈Rd

L(Tk(g))(ε)dQ(ε)

But we have that:∫
ε∈Rd

L(Tk(g))(ε)dP (ε) =

∫
ε∈Rd

(∫
t∈Rd

exp(iεT t)Tk(g)(t)dt

)
dP (ε)

=

∫
t∈Rd

(∫
ε∈Rd

exp(iεT t)dP (ε)

)
Tk(g)(t)dt

=

∫
Rd
ψP (t)Tk(g)(t)dt

= 〈ΦP , Tk(g)〉
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Finally we have:

EP (L(Tk(g))(X))− EQ(L(Tk(g))(Y )) = 〈ΦP − ΦQ, Tk(g)〉

=

∫
Rd
g(t)(ΦP (t)− ΦQ(t))dΓ(t)

≤
∫
Rd
|ΦP (t)− ΦQ(t)|dΓ(t)

The results follows.

Therefore thanks to the IPM formulation of the dL1,Φ-distance, we deduce that for all p ≥ 1, if
αn converge weakly towards α, then dL1,Φ(αn, α) → 0. Indeed, we have shown that Tk(BdΓ

∞ ) ⊂
L1(Rd), therefore L(Tk(BdΓ

∞ )) ⊂ C0(Rd), and the result follows.

B Two-sample testing using the `1 norm

B.1 `1-based random metric with mean embeddings

Definition 3. Let k be a kernel. For any J > 0, we define:

d`1,µ,J :=

d`1,µ,J [P,Q] =
1

J

J∑
j=1

|µP (Tj)− µQ (Tj) |: P,Q ∈M1
+

(
Rd
)

with {Tj}Jj=1 sampled independently from the distribution Γ.

Theorem 4. Let k be a bounded, analytic, and characteristic kernel. Then for any J > 0, d`1,µ,J is
a random metric on the space of Borel probability measures.

Proof. To prove this theorem we have first to introduce the fact that analytic functions are ’well
behaved’.

Lemma 5. Let µ be absolutely continuous measure on Rd (wrt. the Lebesgue measure). Non-zero,
analytic function f can be zero at most at the set of measure 0, with respect to the measure µ.

Proof. If f is zero at the set with a limit point then it is zero everywhere. Therefore f can be zero at
most at a set A without a limit point, which by definition is a discrete set (distance between any two
points in A is greater then some ε > 0). Discrete sets have zero Lebesgue measure (as a countable
union of points with zero measure). Since µ is absolutely continuous then µ(A) is zero as well.

Let us now show how to build a random metric based on the `1 norm.

Lemma 6. Let Λ be an injective mapping from the space of the Borel probability measures into a
space of analytic functions on Rd. Define

dΛ,J [P,Q] :=
1

J

J∑
j=1

|ΛP (Tj)− ΛQ (Tj) |

with {Tj}Jj=1 sampled independently from the distribution Γ.

Then dΛ,J is a random metric.

Proof. Let ΛP and ΛQ be images of measures P and Q respectively. We want to apply Lemma 5 to
the analytic function f = ΛP − ΛQ, with the measure Γ, to see that if P 6= Q then f 6= 0 a.s. To do
so, we need to show that P 6= Q implies that f is non-zero. Since mapping to Γ is injective, there
must exists at least one point o where f is non-zero. By continuity of f, there exists a ball around o in
which f is non-zero.

We have shown that P 6= Q implies f is almost everywhere non zero which in turn implies that
dΛ,J (P,Q) > 0 a.s. If P = Q then f = 0 and dΛ,J (P,Q) = 0.

By the construction dΛ,J is clearly symmetric and satisfies the triangle inequality.
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Before proving the theorem we need to introduce a Lemma:
Lemma 7. [5] If k is a bounded, analytic kernel on Rd × Rd, then all functions in the RKHS H
associated with this kernel are analytic.

Since k is characteristic the mapping Λ : P → µP is injective. Since k is a bounded, analytic kernel
on Rd ×Rd,the Lemma 7 guarantees that µP is analytic, hence the image of Λ is a subset of analytic
functions. Therefore, we can use Lemma 6 to see that dΛ,J [P,Q] = d`1,µ,J [P,Q] is a random metric
and this concludes the proof.

B.2 A first test with finite-sample control

Let us now build a statistic based on an estimation of the random metric introduced in eq.7. Let
X = {x1, ..., xN1} and Y = {y1, ..., yN2} ⊂ Rd i.i.d. two samples drawn respectively from the
Borel probability measures P andQ. From these samples we define their empirical mean embeddings
µX and µY :

µX(T ) :=
1

N1

N1∑
i=1

k(xi, T ), µY (T ) :=
1

N2

N2∑
i=1

k(yi, T )

And we define:

SN1,N2 :=
(
µX(T1)− µY (T1), ..., µX(TJ)− µY (TJ)

)
(24)

with {Tj}Jj=1 sampled independently from the distribution Γ. Finally we define a first statistic:

d`1,µ,J [X,Y ] :=
1

J
‖SN1,N2‖1 (25)

We now derive a control of the statistic:
Proposition 1. With K such that sup

x,y∈Rd
|k(x, y)|≤ K

2 ,

PX,Y
(∣∣∣d`1,µ,J [X,Y ]− d`1,µ,J [P,Q]

∣∣∣ > t
)
≤ 2J exp

(
−t2N1N2

2K2(N1 +N2)

)
Proof. We have:

|d`1,µ,J [X,Y ]− d`1,µ,J [P,Q]|≤ 1

J

J∑
j=1

∣∣∣|µX (Tj)− µY (Tj) |−|µp (Tj)− µp (Tj) |
∣∣∣

Then:

|d`1,µ,J [X,Y ]− d`1,µ,J [P,Q]|≤ 1

J

J∑
j=1

∣∣∣ (µX (Tj)− µY (Tj))− EX,Y∼p,q (µX (Tj)− µY (Tj))
∣∣∣

Let us now consider the upper bound of the difference. By applying a union bound we have:

P
( 1

J

J∑
j=1

∣∣∣ (µX (Tj)− µY (Tj))− EX,Y (µX (Tj)− µY (Tj))
∣∣∣ ≥ t)

≤
J∑
j=1

PX,Y
(

1

J

∣∣∣ (µX (Tj)− µY (Tj))− EX,Y (..)
∣∣∣ ≥ t

J

)
Then by applying Hoeffding’s inequality on each term of the sum of the right term of the inequality,
we have:

PX,Y
(

1

J

∣∣∣ (µX (Tj)− µY (Tj))− EX,Y (..)
∣∣∣ ≥ t

J

)
≤ 2 exp

(
− t2N1N2

2K2 (N1 +N2)

)
Finally we have:

PX,Y
(∣∣∣d`1,µ,J [X,Y ]− d`1,µ,J [P,Q]

∣∣∣ ≥ t) ≤ 2J exp

(
− t2N1N2

2K2 (N1 +N2)

)
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Corollary 1. The hypothesis test associated with the statistic d`1,µ,J [X,Y ] of level α for the null
hypothesis P = Q, that is for d`1,µ,J [P,Q] = 0 almost surely, has almost surely the acceptance
region:

d`1,µ,J [X,Y ] < K

√
N1 +N2

N1N2

√
2 log

(
J

α

)
Moreover, the test is consistent almost surely.

Proof. Let us note the probability space of random variables {Tj}Jj=1 as (Ω,F , P ).

Let ω ∈ Ω such that dω`1,µ,J [P,Q] = 0. Then we have thanks to Proposition ?? that:

dω`1,µ,J [X,Y ] < K

√
N1 +N2

N1N2

√
2 log

(
J

α

)
with a probability at last of 1− α.

By assuming the null hypothesis P = Q, we have thanks to Theorem 4 that d`1,µ,J [P,Q] = 0 a.s.,
then the result above hold a.s.

Moreover the statistic converges in probability to its population value a.s which give us the consistency
of the test a.s.

We now show that, under the alternative hypothesis, the statistic captures dense differences between
distributions with high probability:

Corollary 2. Let γ > 0, then under the alternative hypothesis, almost surely there exist ∆ > 0 such
that for all N1, N2 ≥ 1:

PX,Y
(
∀j ∈ J1, JK,

|µX(Tj)− µY (Tj)|
J

≥ ∆

J
− ωN1,N2

)
≥ 1− γ

where ωN1,N2
=

1

J

√
log(

J2

γ
)
2K2(N1 +N2)

N1N2

Proof. Let ∆ be the minimum of µp − µq over the set of locations {Tj}Jj=1. Thanks to the analycity
of the kernel we have that under the alternative hypothesis, µp − µq is non zero everywhere almost
surely. Therefore ∆ > 0 almost surely. Moreover by applying Proposition 1 for each Tj we obtain
that for all N1, N2 ≥ 0:

PX,Y
(
|µX(Tj)− µY (Tj)|

J
≥ ∆

J
− ωN1,N2

)
≥ 1− γ

J

where ωN1,N2 =
1

J

√
log(

J2

γ
)
2K2(N1 +N2)

N1N2

Finally by applying an union bound, the result follows.

C A test statistic with simple asymptotic distribution

C.1 Asymptotic distribution of d̂`1,µ,J [X,Y ]

Proposition 2. Let {Tj}Jj=1 sampled independently from the distribution Γ and X := {xi}ni=1 and
Y := {yi}ni=1 be i.i.d. samples from P and Q respectively. Under H0, the statistic d̂`1,µ,J [X,Y ] is
almost surely asymptotically distributed as a sum of J correlated Nakagami variables. Finally under
H1, almost surely the statistic can be arbitrarily large as n→∞, allowing the test to correctly reject
H0.
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Proof. Let us note the probability space of random variables {Tj}Jj=1 as (Ω,F , P ). Let ω ∈ Ω such
that dω`1,µ,J [P,Q] = 0 (see Definition 3) and let us define:

zωi := (k (xi, T1 (ω))− k (yj , T1 (ω)) , ..., k (xi, TJ (ω))− k (yj , TJ (ω))) ∈ RJ

Therefore we can define:

Sn :=
1

n

n∑
i=1

zωi

By applying the Central-Limit Thoerem, we have:
√
nSn → N (0,Σω) with Σω := Cov(zω)

Therefore d̂ω`1,µ,J [X,Y ] = ‖
√
nSωn‖1 converges to a sum of correlated Nakagami variables. But

under, the null hypothesis P = Q, we have thanks to Theorem 4 that d`1,µ,J [P,Q] = 0 a.s., then a.s.
d̂`1,µ,J converges to a sum of correlated Nakagami variables. Let’s now consider an ω such that
dω`1,µ,J [P,Q] > 0. Since Sωn converges in probability to the vector Sω = E (zω) 6= 0, then we have:

P
(∥∥√nSωn

∥∥
1
> r
)

= P
(
‖Sωn‖1 −

r√
n
> 0

)
And as r√

t
→ 0 as t→∞, we have finally:

P
(∥∥√nSωn

∥∥
1
> r
)
→ 1 as t→∞.

Finally, under H1, d`1,µ,J [P,Q] > 0 almost surely and the statistic can be arbitrarily large as
n→∞ almost surely.

C.2 Proof of Proposition 3.1

Proposition 3. Let α ∈]0, 1[, γ > 0 and J ≥ 2. Let {Tj}Jj=1 sampled i.i.d. from the distribution Γ
and let X := {xi}ni=1 and Y := {yi}ni=1 i.i.d. samples from P and Q respectively. Let us denote δ
the (1− α)-quantile of the asymptotic null distribution of d̂`1,µ,J [X,Y ] and β the (1− α)-quantile
of the asymptotic null distribution of d̂2

`2,µ,J
[X,Y ]. Under the alternative hypothesis, almost surely,

there exists N ≥ 1 such that for all n ≥ N , with a probability of at least 1− γ we have:

d̂2
`2,µ,J [X,Y ] > β ⇒ d̂`1,µ,J [X,Y ] > δ (26)

Proof. First we remarks that:

d̂2
`2,µ,J [X,Y ] = ‖

√
nSn‖22

and

d̂`1,µ,J [X,Y ] = ‖
√
nSn‖1

where Sn := 1
n

∑n
i=1 zωi and zi := (k (xi, T1 (ω))− k (yj , T1 (ω)) , ..., k (xi, TJ (ω))− k (yj , TJ (ω))).

Let us now introduce the following Lemma:
Lemma 8. Let x a random vector ∈ RJ with J ≥ 2, z := min

j∈[|1,J|]
|xj |, ε > 0 and γ > 0. If

P(z ≥ ε) ≥ 1− γ

we have with a probability of at least 1− γ that, ∀t1 ≥ t2 ≥ 0, if ε ≥
√

t21−t22
J(J−1) , then

‖x‖2> t2 ⇒ ‖x‖1> t1.

Proof. First we remarks that:

ε >

√
t21 − t22
J (J − 1)

⇒J (J − 1) ε > t21 − t22

⇒t22 > t21 − J (J − 1) ε2
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Therefore, we have:

‖x‖2≥ t2 ⇒‖x‖22+J (J − 1) ε2 ≥ t21

⇒
√
‖x‖22+J (J − 1) ε2 ≥ t1

But we have that:

‖x‖21=

J∑
i=1

|xi|2+
∑
i 6=j

|xi||xj |

Therefore we have with a probability of 1-γ that:

‖x‖21≥ ‖x‖22+J (J − 1) ε2

And:
‖x‖2≥ t2 ⇒ ‖x‖1≥ t1

Moreover by denoting δ the (1− α)-quantile of the asymptotic null distribution of d̂`1,µ,J [X,Y ] and
β the (1− α)-quantile of the asymptotic null distribution of d̂2

`2,µ,J
[X,Y ] we have that δ ≥

√
β:

Lemma 9. Let x be a random vector in RJ , δ the (1−α)-quantile of ‖x‖1 and β the (1−α)-quantile
of ‖x‖2. We have then:

δ ≥ β ≥ 0. (27)

Proof. The results is a direct consequence of the domination of the `1 norm:

‖x‖1≥ ‖x‖2

Indeed, under H0, we have shown that (see proof Proposition 2):
√
nSn → N (0,Σω) with Σ := Cov(z)

Therefore by applying the Lemma 9 to x which follows N (0,Σω), we obtain that δ ≥
√
β. Now, To

show the result we only need to show that the assumption of the Lemma 8 is sastified for the random

vector x :=
√
nSn, t1 = δ and t2 =

√
β, i.e. for ε =

√
δ2−β
J(J−1) under the alternative hypothesis.

Under H1 : P 6= Q, we have that Sn converge in probability to S := E(x,y)∼(P,Q)(Sn). Then by
continuity of the application:

φj : x := (xj)
J
j=1RJ → |xj |

, we have that for all j ∈ [|1, J |], |(Sn)j | converges in probability towards Sj , the j-th coordinate
of S. Since S = (µP (Tj) − µQ(Tj))

J
j=1, thanks to the analycity of the kernel k, the Lemma 7

guarantees the analycity of µP − µQ. And thanks to the injectivity of the mean embedding function,
µP −µQ is a non-zero function, therefore thanks to Lemma 5 µP −µQ is non zero almost everywhere.
Moreover the (Tj)

J
j=1 are independent, therefore the coordinates of S are almost surely all nonzero.

Then we have then for all j ∈ J1, JK:

P
(∣∣∣(√nSn)j

∣∣∣ > ε
)

= P
(∣∣∣(Sn)j

∣∣∣− ε√
n
> 0

)
And as ε√

n
→ 0 as n→∞, we have finally almost surely for all j ∈ J1, JK:

PX,Y
(∣∣∣(√nSn)j

∣∣∣ ≥ ε)→ 1 as n→∞

Therefore almost surely there exist N ≥ 1 such that for all n ≥ N and for all j ∈ J1, JK:

PX,Y
(∣∣∣(√nSn)j

∣∣∣ ≥ ε) ≥ 1− γ

J

Finally by applying a union bound we obtain that almost surely, for all n ≥ N :

PX,Y
(
∀j ∈ [|1, J |],

∣∣∣(√nSn)j

∣∣∣ ≥ ε) ≥ 1− γ

Therefore by applying Lemma 8, we obtain that, almost surely, for all n ≥ N , with a probability of at
least 1− γ:

‖
√
nSn‖2>

√
β ⇒ ‖

√
nSn‖1> δ.
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C.3 Proof of the Proposition 3.2

Proposition 4. Let {Tj}Jj=1 sampled independently from the distribution Γ and X := {xi}N1
i=1 and

Y := {yi}N2
i=1 be i.i.d. samples from P and Q respectively. Under H0, the statistic L1-ME[X,Y ] is

almost surely asymptotically distributed as Naka( 1
2 , 1, J), a sum of J random variables i.i.d which

follow a Nakagami distribution of parameter m = 1
2 and ω = 1. Finally under H1, almost surely the

statistic can be arbitrarily large as t→∞, allowing the test to correctly reject H0.
Proof. Let us note the probability space of random variables {Tj}Jj=1 as (Ω,F , P ). Let ω ∈ Ω such
that dω`1,µ,J [P,Q] = 0 (see Definition 3). Let us denote:

Zi,ωX := (k (xi, T1 (ω)) , ..., k (xi, TJ (ω))) Zj,ωY := (k (yj , T1 (ω)) , ..., k (yj , TJ (ω))) ,

SωN1,N2
:=

1

N1

N1∑
i=1

Zi,ωX −
1

N2

N2∑
j=1

Zj,ωY .

As dω`1,µ,J [P,Q] = 0 then for all j, µp (Tj (ω)) = µq (Tj (ω)), which implies that E
(
Zi,ωX

)
=

E
(
Zj,ωY

)
. Therefore, by applying the Central-Limit Theorem, we have:

√
tSωN1,N2

−→ N
(

0,
Σω

1

ρ

)
−N

(
0,

Σω
2

1− ρ

)
with Σ1 = Cov (ZωX) and Σ2 = Cov (ZωY )

As ZωX and ZωY are independent, we have then that:
√
tSωN1,N2

−→ N (0,Σω) with Σω =
Σω

1

ρ
+

Σω
2

1− ρ
And by Slutsky’s theorem we deduce that:

√
t
(
Σω
N1,N2

)− 1
2 SωN1,N2

−→ N (0, I)

So by noting,
√
t
(
Σω
N1,N2

)− 1
2 SωN1,N2

=
(
W 1,ω
N1,N2

, ...,W J,ω
N1,N2

)
, we have that for each coordinate:(

W j,ω
N1,N2

)
−→ Sωj

where
(
Sωj
)

are i.i.d and follow a standard normal distribution. Therefore by considering the `1
norm of the statistic we have that:

||
√
t
(
Σω
N1,N2

)− 1
2 SωN1,N2

||1−→
J∑
j=1

|Sωj |

where
(
Sωj
)

are independent and Sωj ∼ Naka
(

1
2 , 1
)
. And by assuming the null hypothesis P = Q,

we have thanks to Theorem 4 that d`1,µ,J [P,Q] = 0 a.s., then the result above hold a.s. Moreover,

let’s consider an ω such that dω`1,µ,J [P,Q] > 0. First we need show that
(
Σω
N1,N2

)− 1
2 converges in

probability to the positive definite matrix (Σω)
− 1

2 . For that we need to prove the following:

Lemma 10. The function h (X) = X−
1
2 is well defined on S++

J (R) and is continuous.
Proof. First we observe that h is the composition of two function which are:

• h1 (X) = X−1 which is well defined and continuous on S++
J (R)

• h2 (X) = X
1
2 which is well defined on S+

J (R) because each matrix of S+
J (R) admits a

unique square root matrix on S+
J (R), so the result hold on S++

J (R).

Let us prove now the continuity of h2. Let (Un) a sequence in S++
n (R) such that Un → U and let

us prove that h2 (Un) → h2 (U) to prove the continuity of h2. As (Un) converges, then (Un) is
bounded, and we have:

|||Un|||≤ K =⇒ |||h2 (Un) |||=
√
|||Un||| ≤

√
K
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Then (h2 (Un)) is bounded. Let us show now that: ∀A s.t ∃ φ strictly increasing and h2

(
Uφ(n)

)
→

A we have A = h2 (U). Let A defined as above. Then ∃ φ strictly increasing such that
h2

(
Uφ(n)

)
→ A. As S+

n (R) is closed, A ∈ S+
n (R), and by continuity of M→M2 we have also

that Uφ(n) → A2. And as Un → U, we have A2 = U. And by uniqueness, we have finally:

h2 (U) = A.

So h2 est continuous, and that conclude the proof.

Then each entry of the matrix Σω
N1,N2

converges to the matrix Σω, hence entires of the matrix

(Σω)
− 1

2 , given by a continuous function of the entries of Σω , are limit of the sequence
(
Σω
N1,N2

)− 1
2 .

Similarly SωN1,N2
converges in probability to the vector Sω = E

(
Z1,ω

)
− E

(
Z2,ω

)
6= 0 . Since

‖(Σω)
− 1

2 Sω‖1= Aω > 0 (indeed (Σω)
− 1

2 is positive definite), then ‖
(
Σω
N1,N2

)− 1
2 SωN1,N2

‖1,

being a continuous function of the entries of SωN1,N2
and

(
Σω
N1,N2

)− 1
2 , converges to Aω . Then

P
(∥∥∥√t(Σω

N1,N2
)−

1
2 SωN1,N2

∥∥∥
1
> r
)

= P
(∥∥∥(Σω

N1,N2

)− 1
2 SωN1,N2

∥∥∥
1
− r√

t
> 0

)
And as r√

t
→ 0 as t→∞, we have finally:

P
(∥∥∥√t (Σω

N1,N2

)− 1
2 SωN1,N2

∥∥∥
1
> r
)
→ 1 as t→∞.

Finally, since d`1,µ,J [P,Q] > 0 almost surely then E
(
Z1,ω

)
− E

(
Z2,ω

)
6= 0 for almost all ω ∈ Ω1,

therefore under H1, the statistic can be arbitrarily large as t→∞ almost surely.

D Optimizing test locations to improve power

D.1 Proof of Proposition 3.3

Proposition D.1. Let K be a uniformly bounded family of k : Rd×Rd → R measurable kernels (i.e.,
∃K <∞ such that sup

k∈K
sup

(x,y)∈(Rd)2

|k(x, y)|≤ K). Let V be a collection in which each element is a

set of J test locations. Assume that c := sup
V ∈V,k∈K

‖Σ−1/2‖<∞. Then the test power P
(
λ̂t ≥ δ

)
of

the L1-ME test satisfies P
(
λ̂t ≥ δ

)
≥ L(λt) where:

L(λt) = 1− 2

J∑
k=1

exp

(
−
(
λt − δ
J2 + J

)2
γN1,N2

N1N2

(N1 +N2)2

)

− 2

J∑
k,q=1

exp

−2

(
γN1,N2

K3J2
λt−δ

(J2+J)
√
t
− J3K2√

γN1,N2
− J4K1

)2
K2
λ(N1 +N2) max

(
8
ρN1

, 8
(1−ρ)N2

)2


and K1,K2, K3 and Kλ, are positive constants depending on only K, J and c. The parameter
λt := ‖

√
tΣ−

1
2 S‖1 is the population counterpart of λ̂t := ‖

√
t(ΣN1,N2

+ γN1,N2
I)−

1
2 SN1,N2

‖1
where S = Ex,y(SN1,N2

) and Σ = Ex,y(ΣN1,N2
). Moreover for large t, L(λt) is increasing in λt.

Proof. We will first find an upper bound of |λ̂t − λt|, then we will compute a lower bound of

P
(
λ̂t > δ

)
. To simplify the notation In the following, we denote:

ΣN1,N2 :=
ΣN1

ρ
+

ΣN2

1− ρ
+ γN1,N2I (28)

such that λ̂t := ‖
√
t(ΣN1,N2

)−
1
2 SN1,N2

‖1. We have:

|λ̂N1,N2 − λt|=
∣∣∣√t(‖Σ− 1

2

N1,N2
SN1,N2‖1−‖Σ−

1
2 S‖1

)∣∣∣
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Then we have:∣∣∣‖Σ− 1
2

N1,N2
SN1,N2‖1−‖Σ−

1
2 S‖1

∣∣∣ ≤ ‖Σ− 1
2

N1,N2
SN1,N2 −Σ−

1
2 S‖1

≤ ‖Σ−
1
2

N1,N2
SN1,N2

−Σ
− 1

2

N1,N2
S + Σ

− 1
2

N1,N2
S−Σ−

1
2 S‖1

≤ ‖Σ−
1
2

N1,N2
(SN1,N2

− S) ‖1+‖
(
Σ
− 1

2

N1,N2
−Σ−

1
2

)
S‖1

Let us now consider the first term on the right side of the inequality:

‖Σ−
1
2

N1,N2
(SN1,N2

− S) ‖1=

J∑
j=1

|Σ−
1
2

N1,N2
(SN1,N2

− S) |j

But since ΣN1,N2 is symmetric definite positive, we can write:

ΣN1,N2
= UDUT

where U is orthogonal and D = diag (λi) with λi > 0. So:

Σ
− 1

2

N1,N2
= UD−

1
2 UT

But the regularization of ΣN1,N2 = (
ΣN1

ρ +
ΣN2

1−ρ + γN1,N2I) ensure that λi ≥ γN1,N2 . Thus

λ
− 1

2
i ≤ γ−

1
2

N1,N2
, and we have now:

∣∣∣[Σ− 1
2

N1,N2
]i,j

∣∣∣ =

∣∣∣∣∣∣
J∑
j=1

λ
− 1

2
j (Uk)i (Uk)j

∣∣∣∣∣∣
where U = [U1, ...,UJ ] and ‖Uk‖2= 1. And finally:∣∣∣[Σ− 1

2

N1,N2
]i,j

∣∣∣ ≤ J
√
γN1,N2

Now we have:∥∥∥Σ− 1
2

N1,N2
(SN1,N2 − S)

∥∥∥
1
≤

J∑
j=1

∣∣∣∣∣
J∑
k=1

[Σ
− 1

2

N1,N2
]j,k (SN1,N2 − S)k

∣∣∣∣∣
≤ J2

√
γN1,N2

J∑
k=1

|(SN1,N2 − S)k |

≤ J2

√
γN1,N2

J∑
k=1

|µX (Tk)− µY (Tk)− E (µX (Tk)− µY (Tk))|

Let us note ΣN1

ρ +
ΣN2

1−ρ = MN1,N2
and consider the second term of the inequality:

Σ
− 1

2

N1,N2
−Σ−

1
2 = (MN1,N2 + γN1,N2I)

− 1
2 −Σ−

1
2

=
[
(MN1,N2 + γN1,N2I)

− 1
2 − (Σ + γN1,N2I)

− 1
2

]
+
[
(Σ + γN1,N2I)

− 1
2 −Σ

]
= (1) + (2)

Let us first consider (1):

(1) =Σ
− 1

2

N1,N2

(
(Σ + γN1,N2I)

1
2 − (MN1,N2 + γN1,N2I)

1
2

)
(Σ + γN1,N2I)

− 1
2

=Σ
− 1

2

N1,N2

[
(E (MN1,N2

+ γN1,N2
I))

1
2 − (MN1,N2

+ γN1,N2
I)

1
2

]
(E (MN1,N2

+ γN1,N2
I))

1
2

=Σ
− 1

2

N1,N2

[
(E (ΣN1,N2))

1
2 −Σ

1
2

N1,N2

]
(E (ΣN1,N2))

− 1
2

=Σ
− 1

2

N1,N2

[(
E
(
Σ

1
2

N1,N2

))
−Σ

1
2

N1,N2

]
(E (ΣN1,N2

))
1
2 + Σ

− 1
2

N1,N2

[
(E (ΣN1,N2

))
1
2 − E

(
Σ

1
2

N1,N2

)]
(E (ΣN1,N2

))
− 1

2
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And we have for (2):

(2) = (Σ + γN1,N2
I)
− 1

2

(
Σ

1
2 − (Σ + γN1,N2

I)
1
2

)
Σ−

1
2

Thus we have:∥∥∥∥(Σ
− 1

2
N1,N2

−Σ− 1
2

)
S

∥∥∥∥
1

≤
∥∥∥∥Σ− 1

2
N1,N2

[(
E
(

Σ
1
2
N1,N2

))
−Σ

1
2
N1,N2

]
(E (ΣN1,N2))−

1
2 S

∥∥∥∥
1

+

∥∥∥∥Σ− 1
2

N1,N2

[
(E (ΣN1,N2))

1
2 − E

(
Σ

1
2
N1,N2

)]
(E (ΣN1,N2))−

1
2 S

∥∥∥∥
1

+
∥∥∥(Σ + γN1,N2I)−

1
2

(
Σ

1
2 − (Σ + γN1,N2I)

1
2

)
Σ− 1

2 S
∥∥∥

1

But we know that |Σ−
1
2

N1,N2
|i,j≤ J√

γN1,N2
and by the same reasoning we have also that

|(Σ + γN1,N2I)
− 1

2
i,j |≤ J√

γN1,N2
. By noting:

K1 = sup
k∈J1,JK

|[Σ− 1
2 S]k|

K2 = sup
k∈J1,JK

∣∣∣[(E (ΣN1,N2))
1
2 − E

(
Σ

1
2

N1,N2

)
(E (ΣN1,N2))

− 1
2 S
]
k

∣∣∣
K3 = sup

k∈J1,JK
|[(E (ΣN1,N2

))
− 1

2 S]k|

All these constants are independent from N1, N2, (xi) and (yj). We have finally:

∥∥∥(Σ
− 1

2

N1,N2
−Σ−

1
2 )S
∥∥∥

1
≤

J∑
j=1

J∑
q=1

J∑
k=1

∣∣∣∣(E(Σ
1
2

N1,N2

))
q,k
−
(
Σ

1
2

N1,N2

)
q,k

∣∣∣∣ K3J√
γN1,N2

+ J4K1 +
J3K2√
γN1,N2

≤

 J∑
q,k=1

∣∣∣∣(E(Σ
1
2

N1,N2

))
q,k
−
(
Σ

1
2

N1,N2

)
q,k

∣∣∣∣
 K3J

2

√
γN1,N2

+ J4K1 +
J3K2√
γN1,N2

And by applying a union bound on all the terms that compose the upper bound of |λ̂N1,N2 − λt| we
have thus:

P
(∣∣∣λ̂t − λt∣∣∣ ≤ α) ≥ J∑

k=1

P
(√

t
J2

√
γN1,N2

|µX (Tk)− µY (Tk)− E (µX (Tk)− µY (Tk)) |≤ α

J + J2

)

+

J∑
q,k=1

P
(√

t

((∣∣∣∣(E(Σ
1
2

N1,N2

))
q,k
−
(
Σ

1
2

N1,N2

)
q,k

∣∣∣∣) K3J
2

√
γN1,N2

+ J4K1 +
J3K2√
γN1,N2

)
≤ α

J2 + J

)
−
(
J2 + J − 1

)
As µX (T )− µY (T ) =

∑t
k=1 Zi where Zk are independent and:

• ∀i ≤ N1, Zi = k(xi,T )
N1

, so |Zi|≤ K
N1

• ∀N1 < i ≤ N2, Zi = −k(yi,T )
N1

so |Zi|≤ K
N2

We have thanks to Hoeffding’s inequality that ∀k ∈ J1, JK :

P
(√

t
J2

√
γN1,N2

|µX (Tk)− µY (Tk)− E (µX (Tk)− µY (Tk))| ≤ α

J + J2

)
≥ 1− 2 exp

(
−
(

α

J2 + J

)2
γN1,N2N1N2

K2 (N1 +N2)
2

)
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Moreover ∀k, q ∈ J1, JK :

P
[√

t

(∣∣∣∣(E(Σ
1
2

N1,N2

))
q,k
−
(
Σ

1
2

N1,N2

)
q,k

∣∣∣∣ K3J
2

√
γN1,N2

+
J4

K1
+

J3K2√
γN1,N2

)
≤ α

J2 + J

]
= P

[∣∣∣∣(Σ
1
2

N1,N2

)
k,q
− E

(
Σ

1
2

N1,N2

)
k,q

∣∣∣∣ ≤ γN1,N2

K3J2

[
α

(J2 + J)
√
t
−
(

J3K2√
γN1,N2

+ J4K1

)]]
Let define F (x1, ..., xN1

, y1, ..., yN2
) := ΣN1,N2

and Fk,q (x1, ..., xN1
, y1, ..., yN2

) :=
(ΣN1,N2

)k,q We can see easily that ∀ (xi) , (yi) , x, x
′, y, y′:∣∣∣Fk,q(x1, .., x, .., xN1

, y1, .., yN2
)− Fk,q(x1, .., x

′, .., xN1
, y1, .., yN2

)
∣∣∣ ≤ 8

ρN1

and ∣∣∣Fk,q(x1, .., xN1
, y1, ..y, .., yN2

)− Fk,q(x1, .., xN1
, y1, .., y

′, .., yN2
)
∣∣∣ ≤ 8

(1− ρ)N2

Let g (X) = X
1
2 defined on S++

J (R) and takes values in S++
J (R). This fuction is well defined

because each matrix of S++
J (R) admits a unique square root matrix on S++

J (R). Moreover The
result hold on S+

J (R).

Lemma 11. g is locally Lipschitz continuous on S++
J (R) which means that:

∀N > 0, ∀X,Y ∈ B (0, N) ⊂ S++
J (R) , ∃KN/‖g (X)− g (Y)‖ ≤ KN‖X−Y‖

Proof. Let us first prove that g is C∞. First thanks to Lemma 10 g is continuous on S++
J (R). Let us

show now that g is C∞ on this space. We know that M→M2 induces a bijection from S++
n (R) on

itself where the inverse is g. To prove then that g is C∞, thanks to the inverse function theorem, we
just have to show that DU0

(
M→M2

)
is invertible for every U0 ∈ S++

n (R). Let U0 ∈ S++
n (R).

And let’s consider the differential defined on Sn (R) in Sn (R) which is a linear application and
which associates H to U0H + HU0. If we prove the injectivity of this function we will have its
invertibility as Sn (R) is a finite dimensional space. Let H ∈ Sn (R) such that U0H + HU0 = 0
and x an eigenvector of U0 associated with the eigenvalue λ which is strictly positive as U0 is
definite positive. We have:

U0Hx = −HU0x = −λHx

As −λ < 0 it is not an eigenvalue of U0 and then Hx = 0. This is true for all the eigenvectors of
U0, then H = 0 and the differential is injective, so g is C∞ on S++

n (R). Finally by applying the
Mean value theorem, we have that g is locally Lipschitz continuous.

We also remark that ||F (xi, yj) ||= max
i,j∈J1,JK

|(ΣN1,N2
)i,j |≤ λ (because the Gaussian kernel is

bounded) with λ independent from N1, N2, (xi) and (yj). Then by taking the following norm
‖M‖= max

i,j∈J1,JK
Mi,j we have:

∥∥∥g (F (x1, .., x, .., xN1
, y1, .., yN2

))− g (F (x1, .., x
′, .., xN1

, y1, .., yN2
))
∥∥∥

≤ Kλ

∥∥∥F (x1, .., x, .., xN1
, y1, .., yN2

)− F (x1, .., x
′, .., xN1

, y1, .., yN2
)
∥∥∥

And:∥∥∥F (x1, .., x, .., xN1
, y1, .., yN2

)− F (x1, .., x
′, .., xN1

, y1, .., yN2
)
∥∥∥ ≤ max

(
8

ρN1
,

8

(1− ρ)N2

)
Then ∀k, q ∈ J1, JK :∣∣∣Σ 1

2

N1,N2
(x)−Σ

1
2

N1,N2
(x′)

∣∣∣ ≤ Kλ max

(
8

ρN1
,

8

(1− ρ)N2

)
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And thanks to the McDiarmid inequality we have:

P
(∣∣∣∣(Σ

1
2

N1,N2

)
k,q
− E

(
Σ

1
2

N1,N2

)
k,q

∣∣∣∣ ≤ γN1,N2

K3J2

[
α

(J2 + J)
√
t
−
(

J3K2√
γN1,N2

+ J4K1

)])

≥ 1− 2 exp

−2

(
γN1,N2

K3J2 ( α
(J2+J)

√
t
− J3K2√

γN1,N2
− J4K1)

)2

K2
λ (N1 +N2) max

(
8
ρN1

, 8
(1−ρ)N2

)2


Then we have:

P
(
|λ̂N1,N2

− λt|≤ α
)
≥ 1− 2

J∑
k=1

exp

(
−
(

α

J2 + J

)2
γN1,N2

N1N2

(N1 +N2)
2

)

− 2

J∑
k,q=1

exp

−2

(
γN1,N2

K3J2 ( α
(J2+J)

√
t
− J3K2√

γN1,N2
− J4K1)

)2

K2
λ (N1 +N2) max

(
8
ρN1

, 8
(1−ρ)N2

)2


And finally, by taking α = λt − δ we have the result.

E Using smooth characteristic functions (SCF)

Theorem 5. Let k be an analytic, integrable kernel with an inverse Fourier transform strictly greater
than zero. For any J > 0, we define:

dΦ,J =

dΦ,J [p, q] =
1

J

J∑
j=1

|Φp (Tj)− Φq (Tj) |: p, q ∈M1
+

(
Rd
)
,Φp,Φq ∈ L1

(
Rd
)

Then for any J > 0, dΦ,J is a random metric on the space of Borel probability measures with
integrable characteristic functions.

Proof. Since k is an analytic, integrable kernel with an inverse Fourier transform strictly greater
then zero then by the Lemma 3 the mapping Λ : P → ΦP is injective and Λ (P ) is an element of the
RKHS associated with k. The Lemma 7 shows that ΦP is analytic. Therefore we can use Lemma 6 to
see that dΛ,J (P,Q) = dΦ,J (P,Q) is a random metric. This concludes the proof of the Theorem.

E.1 Proof of Proposition 3.4

Proposition 5. Let α ∈]0, 1[, γ > 0 and J ≥ 2. Let {Tj}Jj=1 sampled i.i.d. from the distribution Γ
and let X := {xi}ni=1 and Y := {yi}ni=1 i.i.d. samples from P and Q respectively. Let us denote δ
the (1− α)-quantile of the asymptotic null distribution of d̂`1,Φ,J [X,Y ] and β the (1− α)-quantile
of the asymptotic null distribution of d̂2

`2,Φ,J
[X,Y ]. Under the alternative hypothesis, almost surely,

there exists N ≥ 1 such that for all n ≥ N , with a probability of at least 1− γ we have:

d̂2
`2,Φ,J [X,Y ] > β ⇒ d̂`1,Φ,J [X,Y ] > δ (29)

Proof. Let us first introduce the following Lemma:

Lemma 12. Let x a random vector ∈ CJ with J ≥ 2, ε > 0, γ > 0 and z :=
min

j∈[|1,J|]
|Re(xj)|+|Im(xj)| where Im and Re are respectively the imaginary and real part functions.

Moreover let denote X := (Im(xj),Re(xj))
J
j=1 ∈ R2J . If

P(z ≥ ε) ≥ 1− γ

we have with a probability of at least 1− γ that, ∀t1 ≥ t2 ≥ 0, if ε ≥
√

t21−t22
J(J−1) , then

‖X‖2> t2 ⇒ ‖X‖1≥ t1.
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Proof. First we remarks that:

ε >

√
t21 − t22
J (J − 1)

⇒J (J − 1) ε > t21 − t22

⇒t22 > t21 − J (J − 1) ε2

Therefore, we have:

‖X‖2≥ t2 ⇒‖X‖22+J (J − 1) ε2 ≥ t21

⇒
√
‖X‖22+J (J − 1) ε2 ≥ t1

But we have that:

‖X‖21= ‖X‖22+
∑
i 6=j

(|Im(xi)|+|Re(xi)|) (|Im(xj)|+|Re(xj |)

Therefore we have with a probability of 1-γ that:

‖X‖21≥ ‖X‖22+J (J − 1) ε2

And:
‖X‖2≥ t2 ⇒ ‖X‖1≥ t1

Moreover by denoting δ the (1 − α)-quantile of the asymptotic null distribution of d̂`1,Φ,J [X,Y ]

and β the (1 − α)-quantile of the asymptotic null distribution of d̂2
`2,Φ,J

[X,Y ] thanks to Lemma
9, we have that δ ≥

√
β. Therefore to show the result we only need to show that the assumption

of the Lemma 12 is sastified for the random vector X :=
√
nSn ∈ R2J , t1 = δ and t2 =

√
β, i.e.

for ε =
√

δ2−β
J(J−1) under the alternative hypothesis. Under H1 : P 6= Q, we have Sn converges in

probability to the vector S where Σ := E(x,y)∼(p,q)(Σn) and S := E(x,y)∼(p,q)(Sn). Moreover we
have S = (Im(ΦP (Tj) − ΦQ(Tj)),Re(ΦP (Tj) − ΦQ(Tj)))

J
j=1 ∈ R2J . Indeed, according to the

Definition 2, we have for all j ∈ [|1, J |]:

φP (Tj) :=

∫
ε∈Rd

ψP (ε)k(Tj − ε)dε

=

∫
ε∈Rd

∫
x∈Rd

exp(ixT ε)k(Tj − ε)dP (x)dε

=

∫
x∈Rd

(∫
ε∈Rd

exp(ixT (ε− Tj))k(ε− Tj)
)

exp(ixTTj)dεdP (x)

=

∫
x∈Rd

f(x) exp(ixTTj)dP (x)

and all these equalities hold as k is integrable. Lemma 3 guarantees the injectivity of the func-
tion Γ : P → ΦP , and as P 6= Q, therefore ΦP − ΦQ is a non-zero function. Moreover
ΦP and ΦQ live in the RKHS Hk associated with k. Therefore thanks to Lemma 7, ΦP − ΦQ
is analytic. Therefore thanks to Lemma 5, ΦP − ΦQ is almost surely non zero. Moreover the
(Tj)

J
j=1 are independent, therefore almost surely (|ΦP (Tj)− ΦQ(Tj)|)j are all non zero, and then

(|Im(ΦP (Tj)− ΦQ(Tj)))|+ |Re(ΦP (Tj)− ΦQ(Tj))|)j are all non zero. Then by continuity of the
functions defined for all k ∈ [|1, J |] by:

φk : x := (x1
j , x

2
j )
J
j=1 ∈ R2J → |x1

k|+|x1
k| (30)

We have that for all k ∈ [|1, J |], φk(Sn) converge in probability towards φk(S), which are almost
surely all non zeros. Then for all k ∈ J1, JK we have:

P
(∣∣∣(√nφk(Sn)

∣∣∣ > ε
)

= PX,Y
(∣∣∣(φk(Sn)

∣∣∣− ε√
n
> 0

)
And as ε√

n
→ 0 as n→∞, we have finally almost surely for all k ∈ J1, JK:

PX,Y
(∣∣∣(√nφk(Sn)

∣∣∣ ≥ ε)→ 1 as n→∞
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Therefore almost surely there exist N ≥ 1 such that for all n ≥ N and for all k ∈ J1, JK:

PX,Y
(∣∣∣(√nφk(Sn)

∣∣∣ ≥ ε) ≥ 1− γ

J

Finally by applying a union bound we obtain that almost surely, for all n ≥ N :

PX,Y
(
∀k ∈ [|1, J |],

∣∣∣(√nφk(Sn)
∣∣∣ ≥ ε) ≥ 1− γ

Therefore by applying Lemma 8, we obtain that, almost surely, for all n ≥ N , with a probability of at
least 1− γ:

d̂`2,Φ,J [X,Y ] >
√
β ⇒ d̂`1,Φ,J [X,Y ] > δ

F Experiments

F.1 Realization of the `1-based tests

Indeed to realize these tests, we need to compute the 1− α quantile of the Nake
(

1
2 , 1, J

)
. To do so

we need to obtain the cumulative distribution function ( CDF ) of the sum of J Nakagami i.i.d. But
as we do not have a closed form of this distribution, we need to estimate this CDF by considering the
empirical distribution function. Indeed to generate samples from Nake

(
1
2 , 1, J

)
, it is sufficient to

generate samples from multivariate normal distribution N (0, IdJ ), and to sum the absolute values of
the J coordinates of theses vectors.

Moreover, we have the following result:
Theorem 6. (Dvoretzky–Kiefer–Wolfowitz inequality) Let x1,...,xn be real-valued independent and
identically distributed random variables with cumulative distribution function F (.) Let Fn denote
the associated empirical distribution function defined by:

Fn (t) =
1

n

n∑
i=1

1xi≤t

Then we have ∀ε > 0:
P (||Fn − F ||∞> ε) ≤ 2e−2nε2

Finally we have, F (x)− ε ≤ Fn (x) ≤ F (x) + ε with a probability of 1− δ where ε =

√
ln( 2

δ )
2n .

Then with a probability of 99%, and by taking n = 100 000 samples i.i.d of the Naka
(

1
2 , 1, J

)
, we

can estimate the CDF with an error of ε ≤ 0.0051, which is less than α = 0.01.

Optimization: The lower bounds that we optimize to perform L1-opt-ME and L1-opt-SCF are
non-convex, as in the prior art [17]. However, the use of the `1-norm makes optimization even harder,
as it is no longer a smooth. Moreover we need to differentiate through the inverse square root matrix
operation which can lead is some cases to degenerate matrices during the gradient ascent. Therefore
to avoid this, we decide to check at each step the convergence of the inverse square root matrix
operation. Further work should consider dedicated optimization algorithms.

Table 3 gives the run times of the different optimized tests on the Blobs problem when the test sample
size is nte = 1e6.

L1-opt-ME ME-full L1-opt-SCF SCF-full
Run Time (s) 164.23 157.97 599.77 579.42

Table 3: Run times of the optimized tests when nte = 1e6 and J = 2 for the blobs problem.

Software implementation: as the expression of the optimization objective is rather complicated,
we use the automatic differentiation of pytorch [23], to compute its gradient, and then proceed with
a gradient ascent where the step size after t iterations is the inverse of the euclidean norm of the
gradient times

√
t. The specific code can be found at https://github.com/meyerscetbon/l1_

two_sample_test.
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F.2 Experimental verification of the Propostion 3.1

To show the validity of the Proposition 3.1 experimentally, we examine the behavior of the unor-
malized `2 and `1 based tests respectively defined in eq. 6 and 8. In Figure 5, we compare the
unormalized tests on the GVD problem where we increase the test sample size with d = 100 and
J = 2. Here the locations are chosen at random and are sampled from a standard normal distribution.
Moreover here α = 0.05. Compared to the normalized tests studied in section 4 is that here we no
longer have a direct access to the quantiles of the asymptotic null distribution. Being a problem
where we can generated the data ourselves, we have therefore estimate the quantiles of our interest.
Moreover, when comparing the `2 and `1 tests, we sample at random the locations and we evaluate
the two statistics at the same locations. We see that as the test sample size increases, the `1-based
tests rejects better the null distribution.

Figure 5: Plot of type-II error against
the test sample size nte in the GVD
toy problem: P = N (0, Id) and Q =
N (0, diag(2, 1, ..., 1)) with d = 100.
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F.3 Experiments on a more difficult problem

Figure 6: Plot of type-II error against
the test sample size nte in the following
toy problem: P = N (0, Id) and Q =

N
(

(0.3, 0, .., 0)
T
, Id

)
with d = 100
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In Figure 6, we consider the following GMD problem: P ∼ N (0, Id), Q ∼ N
(

(0.3, 0, .., 0)
T
, Id

)
with d = 100. The figure shows that when the problem of GMD is more difficult, we can see that
L1-opt-ME performs the best.

F.4 Informative features

We show that the optimization of the proxy λ̂trt (θ) for the test power in the `1 case is informative
for revealing the difference of the two samples in the ME test as in [17] with the `2 version. We
consider the Gaussian Mean Difference (GMD) problem (see Table 1), where both P and Q are
two-dimensional normal distributions with different means. We use J = 2 test locations T1 and T2 ,
where T1 is fixed to the location indicated by the black triangle in Figure 7. The contour plot shows
T2 → λ̂trt (T1, T2).

Figure 7a suggests that λ̂trt (T1, T2) is maximized when T2 is placed in either of the two regions that
captures the difference of the two samples i.e., the region in which the probability masses of P and Q
have less overlap. In Figure 7b, we consider placing T1 in one of the two key regions. In this case, the
contour plot shows that T2 should be placed in the other region to maximize λ̂trt (T1, T2), implying
that placing multiple test locations in the same neighborhood does not increase the discriminability.
The two modes on the left and right suggest two ways to place the test location in a region that reveals
the difference. The non-convexity of the λ̂trt (T1, T2) is an indication of many informative ways to
detect differences of P and Q, rather than a drawback. A convex objective would not capture this
multimodality.
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Figure 7: Illustrating
interpretable features,
replicating in the `1 case
the figure of [17]. A con-
tour plot of λ̂trt (T1, T2)
as a function of T2, when
J = 2, and T1 is fixed.
The red and black dots
represent the samples from
the P and Q distributions,
and the big black triangle
the position of T1.
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P Q L1-opt-ME L1-grid-ME L1-opt-SCF L1-grid-SCF ME-full SCF-full
sci (1187) sci (1187) 0.00 0.00 0.004 0.00 1 0.002
sci (1187) comp (292) 0.00 0.496 0.00 0.170 0.00 0.634
sci (1187) alt (240) 0.00 0.370 0.00 0.064 0.00 0.510

Table 4: Type-I errors and Type-II errors of various the L1-tests in the problem of distinguishing the
newsgroups text dataset. α = 0.01. J = 2. The number in brackets denotes the test sample size of
each samples.

F.5 Real problem: 20 newsgroups text dataset

In this experiment we use the 20 newsgroups text dataset from [18] which comprises around 18000
newsgroups posts on 20 topics. We consider 3 categories which are: "comp", "sci", and "alt" . The
first category is about components in hardware systems, the second is about sciences and spaces, and
the last is about religion. To perform the tests we need to embed these documents in a metric space.
For this, we use the TF-IDF matrix by group of two categories with a df ≥ 30, which lead to embed
the documents in spaces of 3 000 dimensions approximately. Then we perform the two-sample tests
on the embedded documents. We compare the distribution of "sci" documents with others, as well as
with itself to evaluate the level of the tests. The number of samples of each category is not the same,
hence to perform the tests from [17], we take randomly nmin samples for both distributions without
replacement (where nmin is in fact the number of samples of the distributions compared to the sci
distribution). We set the number of location J = 2.

Type-I errors and type-II errors are summarized in Table 4 The two first columns indicates the
categories of the papers in the two samples. This task represents a case in which H0 holds. In this
case all the tests are conservative except the ME-full test which totally rejecting the null hypothesis.
In the other problems, we show the Type-II errors of our tests. The `1 optimized tests perform very
well, which shows that the locations learned are indeed discriminant. The `1 approaches bring a clear
gain in statistical control compared to their `2 counterparts.

F.6 Real problem: fast-food distribution

Problem L1-opt-ME L1-grid-ME L1-opt-SCF L1-grid-SCF ME-full SCF-full MMD-quad
McDo vs McDo (2002) 0.010 0.000 0.000 0.000 0.012 0.000 0.000

Table 5: Fast food dataset: Type-I errors for distinguishing the distribution of fast food restaurants.
α = 0.01. J = 3. The number in brackets denotes the sample size of the distribution on the right.
We consider MMD-quad as the gold standard.

Table 5 summarizes Type-I errors observed on the Mac Donald’s vs Mac Donald’s problem. It shows
that the optimized tests based on mean embeddings stay roughly at the specified level α = 0.01 when
H0 hold, and others are more conservative.

Figures 9, 10, 11, 12, 13 give the distributions of the data (restaurant locations) and of the TJ for
each of the problems that we consider.
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Figure 8: Fast food data:
Visualizing interpretable loca-
tions for differences in Mc
Donald’s vs Burger King and
Mc Donald’s vs Wendy’s. The
lines correspond to the distri-
bution of the locations chosen
for the TJ features by the L1-
opt-ME procedure. The distri-
butions are estimated with a
kernel density estimate. The
lines represent the contours
probabilities 80% and 90%.

McDonald's
Burger King
Wendy's
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Figure 9: Mc Donald’s vs
Burger King

McDonald's
Burger King

Figure 10: Mc Donald’s vs
Taco Bell

McDonald's
Taco Bell

Figure 11: Mc Donald’s vs
Wendy’s

McDonald's
Wendy's

Figure 12: Mc Donald’s vs
Arby’s

McDonald's
Arby's
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Figure 13: Mc Donald’s vs
KFC

McDonald's
KFC
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