P. Borazjani, D. Everett, and . Mccoy, Octane: An extensible open source car security testbed, Proceedings of the Embedded Security in Cars Conference, 2014.

S. Checkoway, D. Mccoy, B. Kantor, D. Anderson, H. Shacham et al., Comprehensive experimental analyses of automotive attack surfaces, USENIX Security Symposium, 2011.

K. Cho, G. Kang, and . Shin, Fingerprinting electronic control units for vehicle intrusion detection, 25th USENIX Security Symposium (USENIX Security 16), pp.911-927, 2016.

D. Ian, A. Foster, K. Prudhomme, S. Koscher, and . Savage, Fast and vulnerable: A story of telematic failures, WOOT, 2015.

K. Han, A. Weimerskirch, and K. Shin, Automotive cybersecurity for in-vehicle communication, In IQT QUARTERLY, vol.6, pp.22-25, 2014.

O. Hartkopp, C. Reuber, and R. Schilling, MaCAN -Message Authenticated CAN, Escar Conference, 2012.

T. Hoppe, S. Kiltz, and J. Dittmann, Security threats to automotive CAN networks-practical examples and selected short-term countermeasures, International Conference on Computer Safety, Reliability, and Security, pp.235-248, 2008.

A. Humayed and B. Luo, Using ID-Hopping to Defend Against Targeted DoS on CAN, Proceedings of the 1st International Workshop on Safe Control of Connected and Autonomous Vehicles, pp.19-26, 2017.

. Iso and . Iso, 26262-5:Road vehicles -Functional safety -Part 5: Product development at the hardware level. International Organization for Standardization, 2011.

M. Kang and J. Kang, Intrusion detection system using deep neural network for in-vehicle network security, PloS one, vol.11, issue.6, p.155781, 2016.

K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno et al., Experimental security analysis of a modern automobile, Security and Privacy (SP), 2010 IEEE Symposium on, pp.447-462, 2010.

H. Kyusuk, W. Andr, and G. S. Kang, A practical solution to achieve real-time performance in the automotive network by randomizing frame identifier, Embedded Security in Cars, 2015.

G. Loukas, T. Vuong, R. Heartfield, G. Sakellari, Y. Yoon et al., Cloud-based cyber-physical intrusion detection for vehicles using deep learning, IEEE Access, vol.6, pp.3491-3508, 2018.

M. Marchetti and D. Stabili, Anomaly detection of CAN bus messages through analysis of ID sequences, Intelligent Vehicles Symposium (IV), 2017 IEEE, pp.1577-1583, 2017.

C. Miller and C. Valasek, Remote exploitation of an unaltered passenger vehicle, Black Hat USA, 2015.

M. Müter, A. Groll, and F. C. Freiling, A structured approach to anomaly detection for in-vehicle networks, Information Assurance and Security (IAS), 2010.

, Sixth International Conference on, pp.92-98, 2010.

S. Sandeep-nair-narayanan, A. Mittal, and . Joshi, OBD SecureAlert: An Anomaly Detection System for Vehicles, Smart Computing (SMARTCOMP), 2016 IEEE International Conference on, pp.1-6, 2016.

U. E. Dennis-k-nilsson, E. Larson, and . Jonsson, Efficient in-vehicle delayed data authentication based on compound message authentication codes, Vehicular Technology Conference, pp.1-5, 2008.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion et al., Scikit-learn: Machine learning in python, Journal of machine learning research, vol.12, pp.2825-2830, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00650905

A. Taylor, N. Japkowicz, and S. Leblanc, Frequency-based anomaly detection for the automotive CAN bus, Industrial Control Systems Security (WCICSS), 2015 World Congress on, pp.45-49, 2015.

A. Taylor, S. Leblanc, and N. Japkowicz, Anomaly Detection in Automobile Control Network Data with Long Short-Term Memory Networks, 2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA), pp.130-139, 2016.