P. A. Sarvari, A. Ustundag, E. Cevikcan, I. Kaya, and S. Cebi, Industry 4.0: Managing The Digital Transformation. Springer Series in Advanced Manufacturing, pp.95-103, 2018.

B. Rashid and M. H. Rehmani, Applications of wireless sensor networks for urban areas: A survey, J. Net. And Com. Appl, vol.60, pp.192-219, 2016.

L. Martí, N. Sanchez-pi, J. M. Molina, and A. C. Garcia, Anomaly detection base on sensor data in petroleum industry applications, Sensors, vol.15, pp.2774-2797, 2015.

J. Fernandez-de-canete, D. Saz-orozco, P. Baratti, R. Mulas, M. Ruano et al., Soft-sensing estimation of plant effluent concentrations in a biological wastewater treatment plant using an optimal neural network, Exp. Syst. Appl, vol.60, pp.8-19, 2016.

J. F. Qiao, Y. Hou, L. Zhang, and H. G. Han, Adaptive fuzzy neural network control of wastewater treatment process with multiobjective operation, Neurocomputing, vol.275, pp.383-393, 2018.

M. Wollschlaeger, T. Sauter, and J. Jasperneite, The future of industrial communication: Automation networks in the era of the internet of things and industry 4.0, IEEE Ind. Electron. Mag, vol.11, pp.17-27, 2017.

D. Zhang, N. Martinez, G. Lindholm, and H. Ratnaweera, Manage Sewer In-Line Storage Control Using Hydraulic Model and Recurrent Neural Network, Wat. Resour. Mang, vol.32, pp.2079-2098, 2018.

D. Zhang, E. S. Hølland, G. Lindholm, and H. Ratnaweera, Hydraulic modeling and deep learning based flow forecasting for optimizing inter catchment wastewater transfer, J. Hydrol, 2017.

D. Güçlü and ?. Dursun, Artificial neural network modelling of a large-scale wastewater treatment plant operation, Biopro. Biosyst. Eng, vol.33, pp.1051-1058, 2010.

M. Henze, Activated sludge model No.1, IAWPRC Sci. Tech. Reports, vol.1, 1987.

R. Vilanova, I. Santín, and C. Pedret, Control y Operación de Estaciones Depuradoras de Aguas Residuales: Modelado y Simulación, vol.14, pp.217-233, 2017.

I. Santín, C. Pedret, R. Vilanova, and M. Meneses, Advanced decision control system for effluent violations removal in wastewater treatment plants, Cont. Eng. Prac, vol.49, pp.60-75, 2015.

C. Foscoliano, S. Del-vigo, M. Mulas, and S. Tronci, Predictive control of an activated sludge process for long term operation, Chem. Eng. J, vol.304, pp.1031-1044, 2016.

U. Jeppsson, Benchmark simulation model no 2: general protocol and exploratory case studies, Water Sci. Technol, vol.56, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00276072

I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, 2016.

Y. Bengio, P. Simard, and P. Frasconi, Learning Long-Term Dependencies with Gradient Descent is Difficult, IEEE Trans. Neural Networks, vol.5, pp.157-166, 1994.

I. Pisa, I. Santín, J. L. Vicario, A. Morell, and R. Vilanova, A Recurrent Neural Network for Wastewater Treatment Plant effluents' prediction, XXXIX Jornadas de Automática, pp.621-268, 2018.