A. Eldar and M. B. Elowitz, Functional roles for noise in genetic circuits, Nature, vol.467, issue.7312, p.20829787, 2010.

J. E. Purvis and G. Lahav, Encoding and Decoding Cellular Information through Signaling Dynamics, Cell, vol.152, issue.5, p.23452846, 2013.

C. E. Shannon and W. Weaver, The Mathematical Theory of Communication, vol.27, 1949.

L. Paninski, Estimation of Entropy and Mutual Information, Neural Computation, vol.15, pp.1191-1253, 2003.

S. Strong, R. Koberle, R. De-ruyter-van-steveninck, and W. Bialek, Entropy and Information in Neural Spike Trains, Physical Review Letters, vol.80, pp.197-200, 1998.

R. Q. Quiroga and S. Panzeri, Extracting information from neuronal populations: information theory and decoding approaches, Nature Reviews Neuroscience, vol.10, issue.3, p.173, 2009.

C. G. Bowsher and P. S. Swain, Environmental sensing, information transfer, and cellular decision-making, Current Opinion in Biotechnology, vol.28, p.24846821, 2014.

W. Bialek, Biophysics: Searching for Principles, 2012.

G. Tka?ik and W. Bialek, Information Processing in Living Systems, Annual Review of Condensed Matter Physics, vol.7, issue.1, pp.89-117, 2016.

G. Tkacik and W. Aleksandra, Information transmission in genetic regulatory networks: a review, Journal of Physics: Condensed Matter, vol.23, p.21460423, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00560319

P. J. Thomas and A. W. Eckford, Capacity of a Simple Intercellular Signal Transduction Channel, IEEE Transactions on Information Theory, vol.62, issue.12, pp.7358-7382, 2016.

F. Tostevin and P. R. Ten-wolde, Mutual Information between Input and Output Trajectories of Biochemical Networks, Phys Rev Lett, vol.102, p.19519137, 2009.

G. Tka?ik, C. G. Callan, and W. Bialek, Information capacity of genetic regulatory elements, Phys Rev E, vol.78, p.11910, 2008.

T. R. Sokolowski and G. Tka?ik, Optimizing information flow in small genetic networks, IV. Spatial coupling. Physical Review E, vol.91, issue.6, p.62710, 2015.

T. R. Sokolowski, A. M. Walczak, W. Bialek, and G. Tka?ik, Extending the dynamic range of transcription factor action by translational regulation, Physical Review E, vol.93, issue.2, p.26986359, 2016.

G. Tkacik, A. M. Walczak, and W. Bialek, Optimizing information flow in small genetic networks. III. A self-interacting gene, Phys Rev E, vol.85, issue.4, p.41903, 2012.

A. M. Walczak, G. Tka?ik, and W. Bialek, Optimizing information flow in small genetic networks. II. Feed-forward interactions, Physical Review E, vol.81, issue.4, p.41905, 2010.

G. Tka?ik, A. M. Walczak, and W. Bialek, Optimizing information flow in small genetic networks, Physical Review E, vol.80, issue.3, p.31920, 2009.

G. Rieckh and G. Tka?ik, Noise and Information Transmission in Promoters with Multiple Internal States, Biophysical Journal, vol.106, issue.5, p.24606943, 2014.

R. Cheong, A. Rhee, C. J. Wang, I. Nemenman, and A. Levchenko, Information Transduction Capacity of Noisy Biochemical Signaling Networks, Science, vol.334, issue.6054, p.21921160, 2011.

F. Tostevin, T. Wolde, and P. R. , Mutual information in time-varying biochemical systems, Physical Review E, vol.81, issue.6, p.61917, 2010.

W. De-ronde, F. Tostevin, and P. R. Ten-wolde, Multiplexing Biochemical Signals, Phys Rev Lett, vol.107, p.21867046, 2011.

J. O. Dubuis, G. Tka?ik, E. F. Wieschaus, T. Gregor, and W. Bialek, Positional information, in bits, Proceedings of the National Academy of Sciences, vol.110, issue.41, pp.16301-16308, 2013.

M. Voliotis, R. M. Perrett, C. Mcwilliams, C. A. Mcardle, and C. G. Bowsher, Information transfer by leaky, heterogeneous, protein kinase signaling systems, Proceedings of the National Academy of Sciences, vol.111, issue.3, pp.326-333, 2014.

A. S. Hansen and E. Shea, Limits on information transduction through amplitude and frequency regulation of transcription factor activity. eLife, pp.1-19, 2015.

J. Selimkhanov, B. Taylor, J. Yao, A. Pilko, J. Albeck et al., Accurate information transmission through dynamic biochemical signaling networks, Science, vol.346, issue.6215, pp.1370-1373, 2014.

A. A. Granados, J. Pietsch, S. A. Cepeda-humerez, I. L. Farquhar, G. Tka?ik et al., Distributed and dynamic intracellular organization of extracellular information, Proceedings of the National Academy of Sciences of the United States of America, vol.115, issue.23, p.29784812, 2018.

A. Borst and F. E. Theunissen, Information theory and neural coding, Nature neuroscience, vol.2, p.10526332, 1999.

O. Marre, V. Botella-soler, K. D. Simmons, T. Mora, G. Tka?ik et al., High accuracy decoding of dynamical motion from a large retinal population, PLoS computational biology, vol.11, issue.7, p.26132103, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01236241

F. Rieke, D. Warland, and W. Bialek, Coding Efficiency and Information Rates in Sensory Neurons, Europhysics Letters), vol.22, issue.2, p.151, 1993.

D. T. Gillespie, A rigorous derivation of the chemical master equation, Physica A: Statistical Mechanics and its Applications, vol.188, issue.1-3, pp.404-425, 1992.

N. G. Van-kampen, Stochastic Processes in Physics and Chemistry, 2007.

D. T. Gillespie, Exact stochastic simulation of coupled chemical reactions, The Journal of Physical Chemistry, vol.81, issue.25, pp.2340-2361, 1977.

M. Feder and N. Merhav, Relations between entropy and error probability, IEEE Transactions on Information Theory, vol.40, issue.1, pp.259-266, 1994.

M. Hledík, T. Sokolowski, and G. Tka?ik, A tight upper bound on mutual information, 2018.

R. L. Dobrushin, A simplified method of experimental estimation of the entropy of a stationary distribution, Tear Veroyatnost i Primenen; English transl Theory Probab Appl, vol.3, pp.462-464, 1958.

O. A. Vasicek, A note on using cross-sectional information in bayesian estimation of security betas, The Journal of Finance, vol.28, issue.5, pp.1233-1239, 1973.

A. Kaiser and T. Schreiber, Information transfer in continuous processes, Physica D: Nonlinear Phenomena, vol.166, issue.1-2, pp.432-435, 2002.

A. Kraskov, H. Stö-gbauer, and P. Grassberger, Estimating mutual information, Nonlinear, and Soft Matter Physics, p.69, 2004.

S. Khan, S. Bandyopadhyay, A. R. Ganguly, S. Saigal, D. J. Erickson et al., Relative performance of mutual information estimation methods for quantifying the dependence among short and noisy data, Physical Review E, vol.76, issue.2, p.26209, 2007.

G. D. Potter, T. A. Byrd, A. Mugler, and B. Sun, Dynamic Sampling and Information Encoding in Biochemical Networks, Biophysical Journal, vol.112, issue.4, p.28256238, 2017.

T. W. Anderson, An introduction to multivariate statistical analysis, Cover TM, Thomas JA. Elements of Information Theory, vol.2, 1958.

N. Brunel and J. P. Nadal, Mutual information, Fisher information, and population coding, Neural computation, vol.10, issue.7, p.9744895, 1998.
URL : https://hal.archives-ouvertes.fr/hal-00143781

K. P. Murphy, Machine Learning: A Probabilistic Perspective, 2012.

I. Samengo, Information loss in an optimal maximum likelihood decoding, Neural Computation, vol.14, issue.4, p.11936960, 2002.

B. Khalid and Y. Bennani, Dendogram-based SVM for Multi-Class Classification, Journal of Computing and Information Technology, vol.14, issue.4, pp.283-289, 2006.

T. Lajnef, S. Chaibi, P. Ruby, P. E. Aguera, J. B. Eichenlaub et al., Learning machines and sleeping brains: Automatic sleep stage classification using decision-tree multi-class support vector machines, Journal of Neuroscience Methods, vol.250, p.25629798, 2015.

W. S. Mcculloch and W. Pitts, A logical calculus of the ideas immanent in nervous activity, The Bulletin of Mathematical Biophysics, vol.5, issue.4, pp.115-133, 1943.

F. Rosenblatt, The Perceptron-A Perceiving and Recognizing Automaton. Cornell Aeronautical Laboratory, 1957.

A. Géron, Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, 2017.

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen et al., TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems, 2015.

C. K. Dalal, L. Cai, Y. Lin, K. Rahbar, and M. B. Elowitz, Pulsatile Dynamics in the Yeast Proteome, Current Biology, vol.24, issue.18, p.25220054, 2014.

Y. Taniguchi, P. J. Choi, G. , L. Chen, H. Babu et al., Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells, Science, vol.30, p.533, 2010.

T. Schreiber, Measuring information transfer, Phys Rev Lett, vol.85, p.10991308, 2000.

M. Lindner, R. Vicente, V. Priesemann, and M. Wibral, TRENTOOL: A Matlab open source toolbox to analyse information flow in time series data with transfer entropy, BMC Neuroscience, vol.12, p.22098775, 2011.

A. Hafner, J. Stewart-ornstein, J. E. Purvis, W. C. Forrester, M. L. Bulyk et al., p53 pulses lead to distinct patterns of gene expression albeit similar DNA-binding dynamics, Nature Structural & Molecular Biology, vol.24, issue.10, pp.840-847, 2017.

B. A. Olshausen and D. J. Field, Sparse coding of sensory inputs, Current Opinion in Neurobiology, vol.14, issue.4, p.15321069, 2004.

J. H. Levine, Y. Lin, and M. B. Elowitz, Functional Roles of Pulsing in Genetic Circuits, Science, vol.342, pp.1193-1200, 2013.

J. G. Albeck, G. B. Mills, and J. S. Brugge, Frequency-modulated pulses of ERK activity transmit quantitative proliferation signals, Molecular cell, vol.49, issue.2, p.23219535, 2013.

G. Tka?ik, J. O. Dubuis, M. D. Petkova, and T. Gregor, Positional Information, Positional Error, and Readout Precision in Morphogenesis: A Mathematical Framework, Genetics, vol.199, issue.1, p.25361898, 2015.

M. Petkova, G. Tkacik, W. Bialek, E. F. Wieschaus, and T. Gregor, Optimal decoding of cellular identities in a genetic network, Cell, vol.176, p.30712870, 2019.

R. P. Heitz, The speed-accuracy tradeoff: history, physiology, methodology, and behavior, Frontiers in neuroscience, vol.8, p.24966810, 2014.

D. Yatsenko, K. Josi?, A. S. Ecker, E. Froudarakis, R. J. Cotton et al., Improved Estimation and Interpretation of Correlations in Neural Circuits, PLOS Computational Biology, vol.11, issue.3, p.25826696, 2015.