P. Purnick and R. Weiss, The second wave of synthetic biology: from modules to systems, Nature Reviews Molecular Cell Biology, vol.10, pp.410-422, 2009.

R. Kwok, Five hard truths for synthetic biology, Nature, vol.463, pp.288-290, 2010.

S. Jayanthi, K. S. Nilgiriwala, and D. D. Vecchio, Retroactivity controls the temporal dynamics of gene transcription, ACS Synthetic Biology, vol.2, issue.8, pp.431-441, 2013.

C. Guet, M. Elowitz, W. Hsing, and S. Leibler, Combinatorial synthesis of genetic networks, Science, vol.296, issue.5572, pp.1466-1470, 2002.

R. Gutenkunst, J. Waterfall, F. Casey, K. Brown, C. Myers et al., Universally sloppy parameter sensitivities in systems biology models, PLoS Computational Biology, vol.3, issue.10, p.189, 2007.

N. Braniff and B. Munsky, New opportunities for optimal design of dynamic experiments in systems and synthetic biology, Current Opinion in Systems Biology, vol.9, pp.42-48, 2018.

E. Balsa-canto, A. Alonso, and J. Banga, Computational procedures for optimal experimental design in biological systems, IET systems biology, vol.2, pp.163-172, 2008.

J. Ruess, A. Milias-argeitis, and J. Lygeros, Designing experiments to understand the variability in biochemical reaction networks, Journal of the Royal Society Interface, vol.10, p.20130588, 2013.

Z. Fox and B. Munsky, Designing Single-Cell Experiments with Discrete Stochastic Models, Biophysical Journal, vol.114, p.205, 2018.

C. Zechner, P. Nandy, M. Unger, and H. Koeppl, Optimal variational perturbations for the inference of stochastic reaction dynamics, IEEE 51st Annual Conference on Decision and Control (CDC), 2012.

J. Ruess and J. Lygeros, Identifying stochastic biochemical networks from single-cell population experiments: a comparison of approaches based on the Fisher information, IEEE 52nd Annual Conference on Decision and Control (CDC), 2013.

S. Bandara, J. Schloder, R. Eils, H. Bock, and T. Meyer, Optimal Experimental Design for Parameter Estimation of a Cell Signaling Model, PLoS Computational Biology, vol.5, issue.11, p.1000558, 2009.

J. Ruess, F. Parise, A. Milias-argeitis, M. Khammash, and J. Lygeros, Iterative experiment design guides the characterization of a lightinducible gene expression circuit, vol.112, pp.8148-53, 2015.

J. Lugagne, S. Sosa, M. Carrillo, A. Kirch, G. Köhler et al., Balancing a genetic toggle switch by real-time feedback control and periodic forcing, Nature Communications, vol.8, issue.1, p.1671, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01666980

M. Komorowski, M. J. Costa, D. A. Rand, and M. P. Stumpf, Sensitivity, robustness, and identifiability in stochastic chemical kinetics models, Proceedings of the National Academy of Sciences, vol.108, issue.21, pp.8645-8650, 2011.

V. Molla and R. Padilla, Description of the matlab functions sens sys and sens ind, 2002.

N. Hansen, The cma evolution strategy: A tutorial, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01297037

D. Hagen, J. White, and B. Tidor, Convergence in parameters and predictions using computational experimental design, Interface Focus, vol.3, p.20130008, 2013.

M. B. Elowitz and S. Leibler, A synthetic oscillatory network of transcriptional regulators, Nature, vol.403, issue.6767, pp.335-338, 2000.

L. Bandiera, Z. Hou, V. Kothamachu, E. Balsa-canto, P. Swain et al., On-line optimal input design increases the efficiency and accuracy of the modelling of an inducible synthetic promoter, Processes, vol.6, issue.9, p.148, 2018.

R. Chait, J. Ruess, T. Bergmiller, G. Tka?ik, and C. Guet, Shaping bacterial population behavior through computer-interfaced control of individual cells, Nature Communications, vol.8, issue.1, p.1535, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01669883

M. Rullan, D. Benzinger, G. Schmidt, A. Milias-argeitis, and M. Khammash, An optogenetic platform for real-time, single-cell interrogation of stochastic transcriptional regulation, Molecular Cell, vol.70, issue.4, pp.745-756, 2018.