A. Rajagopal, C. L. Dembia, M. S. Demers, D. D. Delp, J. L. Hicks et al., Full-Body Musculoskeletal Model for Muscle-Driven Simulation of Human Gait, IEEE Trans Biomed Eng, vol.63, issue.10, pp.2068-2079, 2016.

K. Hase, K. Miyashita, S. Ok, and Y. Arakawa, Human gait simulation with a neuromusculoskeletal model and evolutionary computation, J. Visual. Comput. Animat, vol.14, issue.2, pp.73-92, 2003.

K. Matsuoka, Sustained oscillations generated by mutually inhibiting neurons with adaptation, Biological Cybernetics, vol.52, issue.6, pp.367-376, 1985.

Y. Kim, G. Tagawa, K. Obinata, and . Hase, Robust control of CPG-based 3D neuromusculoskeletal walking model, Biol Cybern, vol.105, p.269, 2011.

D. Zhang, P. Poignet, A. P. Bo, and W. T. Ang, Exploring Peripheral Mechanism of Tremor on Neuromusculoskeletal Model: A General Simulation Study, IEEE Transactions on Biomedical Engineering, vol.56, issue.10, pp.2359-2369, 2009.

K. Jansen, F. De-groote, W. Aerts, J. De, J. Schutter et al., Altering length and velocity feedback during a neuromusculoskeletal simulation of normal gait contributes to hemiparetic gait characteristics, Journal of NeuroEngineering and Rehabilitation, 2014.

A. Murai, K. Yamane, and Y. Nakamura, Modeling and identification of human neuromusculoskeletal network based on biomechanical property of muscle, 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp.3706-3709, 2008.

S. L. Delp, OpenSim: open-source software to create and analyze dynamic simulations of movement, IEEE Trans Biomed Eng, vol.54, issue.11, pp.1940-1950, 2007.

A. Shachykov, P. Hénaff, A. Popov, and A. Shulyak, CPG-based circuitry for controlling musculoskeletal model of human locomotor system, 2017 IEEE Biomedical Circuits and Systems Conference (BioCAS, pp.1-4, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01798605

I. A. Rybak, N. A. Shevtsova, M. Lafreniere-roula, and D. A. Mccrea, Modelling spinal circuitry involved in locomotor pattern generation: insights from deletions during fictive locomotion, J Physiol, vol.577, issue.2, pp.617-639, 2006.

M. Mackay-lyons, Central pattern generation of locomotion: a review of the evidence, Phys Ther, vol.82, issue.1, pp.69-83, 2002.

O. Kiehn and K. Dougherty, Locomotion: Circuits and Physiology, Neuroscience in the 21st Century, D. W. Pfaff, pp.1209-1236, 2013.

T. G. Brown, On the nature of the fundamental activity of the nervous centres; together with an analysis of the conditioning of rhythmic activity in progression, and a theory of the evolution of function in the nervous system, J Physiol, vol.48, issue.1, pp.18-46, 1914.

S. Rossignol, R. Dubuc, and J. Gossard, Dynamic sensorimotor interactions in locomotion, Physiol. Rev, vol.86, issue.1, pp.89-154, 2006.

E. Marder and D. Bucher, Central pattern generators and the control of rhythmic movements, Current Biology, vol.11, issue.23, pp.986-996, 2001.

P. A. Guertin, The mammalian central pattern generator for locomotion, Brain Research Reviews, vol.62, issue.1, p.4556, 2009.

P. F. Rowat and A. I. Selverston, Learning algorithms for oscillatory networks with gap junctions and membrane currents, Network: Computation in Neural Systems, vol.2, pp.17-41, 1991.

A. J. Ijspeert, Central pattern generators for locomotion control in animals and robots: A review, Neural Networks, vol.21, issue.4, pp.642-653, 2008.

T. Nachstedt, C. Tetzlaff, and P. Manoonpong, Fast dynamical coupling enhances frequency adaptation of oscillators for robotic locomotion control, p.11, 2017.

J. Yu, M. Tan, J. Chen, and J. Zhang, A survey on cpg-inspired control models and system implementation, IEEE Transactions on neural networks and learning systems, vol.25, pp.441-456, 2014.

G. Taga, A model of the neuro-musculo-skeletal system for anticipatory adjustment of human locomotion during obstacle avoidance, Biological cybernetics, vol.78, pp.9-17, 1998.

K. B. Arikan and B. Irfanoglu, A test bench to study bioinspired control for robot walking, Journal of Control Engineering and Applied Informatics, vol.13, pp.76-80, 2011.

I. A. Rybak, K. J. Dougherty, and N. A. Shevtsova, Organization of the Mammalian Locomotor CPG: Review of Computational Model and Circuit Architectures Based on Genetically Identified Spinal Interneurons, vol.2, 2015.

P. F. Rowat and A. I. Selverston, Oscillatory Mechanisms in Pairs of Neurons Connected with Fast Inhibitory Synapses, J Comput Neurosci, vol.4, issue.2, pp.103-127, 1997.

M. Jouaiti, L. Caron, and P. Hénaff, Hebbian plasticity in CPG controllers facilitates self-synchronization for human-robot handshaking, Frontiers in Neurorobotics, vol.12, p.29
URL : https://hal.archives-ouvertes.fr/hal-01811316

T. Geng, B. Porr, and F. Wörgötter, Fast Biped Walking with a Sensordriven Neuronal Controller and Real-time Online Learning, The Int'l Journal of Robotics Research, vol.25, issue.3, pp.243-259, 2006.

P. Knysh and Y. Korkolis, Blackbox: A procedure for parallel optimization of expensive black-box functions, 2016.

L. Zhao, L. Zhang, L. Wang, and J. Wang, Three-dimensional motion of the pelvis during human walking, IEEE International Conference Mechatronics and Automation, vol.1, pp.335-339, 2005.

H. Serhan and P. Hénaff, MuscleLike Compliance in Knee Articulations Improves Biped Robot Walkings, Recent Advances in Robotic Systems, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01842424