J. Acharya, A. Orlitsky, A. T. Suresh, and H. Tyagi, The Complexity of Estimating Rényi Entropy, SODA, 2015.

R. Bassily, K. Nissim, U. Stemmer, and A. G. Thakurta, Practical locally private heavy hitters, NIPS, 2017.

R. Bassily and A. Smith, Local, private, efficient protocols for succinct histograms, STOC, 2015.

R. Bassily, A. D. Smith, and A. Thakurta, Private Empirical Risk Minimization: Efficient Algorithms and Tight Error Bounds, FOCS, 2014.

A. Bellet, A. Habrard, and M. Sebban, Metric Learning, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01121733

G. Blom, Some properties of incomplete U -statistics, Biometrika, vol.63, issue.3, pp.573-580, 1976.

A. P. Bradley, The use of the area under the ROC curve in the evaluation of machine learning algorithms, Pattern Recognition, vol.30, issue.7, pp.1145-1159, 1997.

J. Champion, A. Shelat, and J. Ullman, Securely sampling biased coins with applications to differential privacy, IACR Cryptology ePrint Archive, p.823, 2019.

T. H. Chan, E. Shi, and D. Song, Privacy-preserving stream aggregation with fault tolerance, Financial Cryptography, 2012.

S. Clémençon, A statistical view of clustering performance through the theory of U-processes, Journal of Multivariate Analysis, vol.124, pp.42-56, 2014.

S. Clémençon, A. Bellet, C. , and I. , Scaling-up Empirical Risk Minimization: Optimization of Incomplete U-statistics, Journal of Machine Learning Research, vol.13, pp.165-202, 2016.

S. Clémençon, G. Lugosi, and N. Vayatis, Ranking and empirical risk minimization of U -statistics, The Annals of Statistics, vol.36, issue.2, pp.844-874, 2008.

S. Clémençon, S. Robbiano, and N. Vayatis, Ranking data with ordinal labels: Optimality and pairwise aggregation, Machine Learning, vol.91, pp.67-104, 2013.

G. Cormode, T. Kulkarni, and D. Srivastava, Marginal release under local differential privacy, SIGMOD, 2018.

I. Damgård, V. Pastro, N. P. Smart, and S. Zakarias, Multiparty computation from somewhat homomorphic encryption, IACR Cryptology ePrint Archive, p.535, 2011.

V. De-la-pena and E. Giné, Decoupling: from Dependence to Independence, 1999.

B. Ding, J. Kulkarni, Y. , and S. , Collecting telemetry data privately, NIPS, 2017.

J. C. Duchi, M. I. Jordan, and M. J. Wainwright, Local privacy and statistical minimax rates, FOCS, 2013.

C. Dwork, K. Kenthapadi, F. Mcsherry, I. Mironov, and M. Naor, Our data, ourselves: Privacy via distributed noise generation, EUROCRYPT, vol.4004, pp.486-503, 2006.

C. Dwork, G. N. Rothblum, and S. Vadhan, Boosting and Differential Privacy, FOCS, 2010.

U. Erlingsson, V. Pihur, and A. Korolova, Rappor: Randomized aggregatable privacy-preserving ordinal response, CCS, 2014.

D. Evans, V. Kolesnikov, and M. Rosulek, A pragmatic introduction to secure multi-party computation, Foundations and Trends in Privacy and Security, vol.2, issue.2-3, pp.70-246, 2018.

L. Faivishevsky and J. Goldberger, ICA based on a Smooth Estimation of the Differential Entropy, NIPS, 2008.

G. Fanti, V. Pihur, and Ú. Erlingsson, Building a rappor with the unknown: Privacy-preserving learning of associations and data dictionaries, PoPETs, 2016.

O. Goldreich, The Foundations of Cryptography, Basic Applications, vol.2, 2004.

O. Goldreich, S. Micali, and A. Wigderson, How to play any mental game or A completeness theorem for protocols with honest majority, STOC, pp.218-229, 1987.

A. Herschtal and B. Raskutti, Optimising area under the ROC curve using gradient descent, ICML, 2004.

W. Hoeffding, A class of statistics with asymptotically normal distribution, Annals of Mathematics and Statistics, vol.19, pp.293-325, 1948.

T. Joachims, Optimizing search engines using clickthrough data, KDD, 2002.

P. Kairouz, S. Oh, and P. Viswanath, Extremal mechanisms for local differential privacy, NIPS, 2014.

P. Kar, B. K. Sriperumbudur, P. Jain, and H. Karnick, On the Generalization Ability of Online Learning Algorithms for Pairwise Loss Functions, ICML, 2013.

T. Kulkarni, G. Cormode, and D. Srivastava, Answering range queries under local differential privacy, SIGMOD, 2019.

M. Lapata, Automatic Evaluation of Information Ordering: Kendall's Tau, Computational Linguistics, vol.32, issue.4, pp.471-484, 2006.

A. Lee, U -statistics: Theory and practice, 1990.

Y. Lindell and B. Pinkas, A proof of security of yao's protocol for two-party computation, J. Cryptology, vol.22, issue.2, pp.161-188, 2009.

H. B. Mann and D. R. Whitney, On a Test of Whether one of Two Random Variables is Stochastically Larger than the Other, Annals of Mathematical Statistics, vol.18, issue.1, pp.50-60, 1947.

I. Mironov, O. Pandey, O. Reingold, and S. P. Vadhan, Computational Differential Privacy, 2009.

R. Shokri and V. Shmatikov, Privacy-preserving deep learning, CCS, 2015.

B. Strack, J. P. Deshazo, C. Gennings, J. L. Olmo, S. Ventura et al., Diabetes data, 2014.

. Van-der and A. W. Vaart, Asymptotic Statistics, 2000.

H. Wang, Trip advisor data, 2010.

T. Wang, J. Blocki, N. Li, and S. Jha, Locally differentially private protocols for frequency estimation, USENIX Security Symposium, 2017.