J. N. Brunet, A. Mendizabal, A. Petit, N. Golse, E. Vibert et al., Physics-based deep neural network for augmented reality during liver surgery, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02158862

P. Cignoni, M. Callieri, M. Corsini, M. Dellepiane, F. Ganovelli et al., MeshLab: an Open-Source Mesh Processing Tool, Eurographics Italian Chapter Conference. The Eurographics Association, 2008.

F. Faure, C. Duriez, and H. Delingette, Sofa: A multi-model framework for interactive physical simulation. In: Soft tissue biomechanical modeling for computer assisted surgery, pp.283-321, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00681539

A. Fedorov, R. Beichel, J. Kalpathy-cramer, J. Finet, J. C. Fillion-robin et al., 3d slicer as an image computing platform for the quantitative imaging network, Magnetic resonance imaging, vol.30, issue.9, pp.1323-1341, 2012.

C. A. Felippa and B. Haugen, A unified formulation of small-strain corotational finite elements: I. theory, Computer Methods in Applied Mechanics and Engineering, vol.194, pp.2285-2335, 2005.

R. Guo, G. Lu, B. Qin, and B. Fei, Ultrasound imaging technologies for breast cancer detection and management: A review, Ultrasound in medicine & biology, 2017.

L. Han, J. H. Hipwell, and B. Eiben, A nonlinear biomechanical model based registration method for aligning prone and supine mr breast images, IEEE transactions on medical imaging, vol.33, issue.3, pp.682-694, 2013.

J. H. Hipwell, V. Vavourakis, and L. Han, A review of biomechanically informed breast image registration, Physics in Medicine & Biology, vol.61, issue.2, p.1, 2016.

Y. Hu, H. U. Ahmed, Z. Taylor, C. Allen, M. Emberton et al., Mr to ultrasound registration for image-guided prostate interventions, Medical image analysis, vol.16, issue.3, pp.687-703, 2012.

G. R. Joldes, A. Wittek, and K. Miller, Real-time nonlinear finite element computations on gpu-application to neurosurgical simulation, Computer methods in applied mechanics and engineering, vol.199, pp.3305-3314, 2010.

J. Krücker, S. Xu, A. Venkatesan, J. K. Locklin, H. Amalou et al., Clinical utility of real-time fusion guidance for biopsy and ablation, J Vasc Interv Radiol, vol.22, issue.4, pp.515-524, 2011.

A. Lasso, T. Heffter, A. Rankin, C. Pinter, T. Ungi et al., Plus: open-source toolkit for ultrasound-guided intervention systems, IEEE Transactions on Biomedical Engineering, vol.61, issue.10, pp.2527-2537, 2014.

S. Marchesseau, T. Heimann, S. Chatelin, R. Willinger, and H. Delingette, Multiplicative jacobian energy decomposition method for fast porous viscohyperelastic soft tissue model, pp.235-242, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00593207

F. Martínez-martínez, M. J. Rupérez-moreno, and M. Martínez-sober, A finite element-based machine learning approach for modeling the mechanical behavior of the breast tissues under compression in real-time, Computers in biology and medicine, vol.90, pp.116-124, 2017.

K. Miller, G. Joldes, D. Lance, and A. Wittek, Total lagrangian explicit dynamics finite element algorithm for computing soft tissue deformation. Communications in numerical, methods in engineering, vol.23, issue.2, pp.121-134, 2007.

K. Miller and J. Lu, On the prospect of patient-specific biomechanics without patient-specific properties of tissues, Journal of the mechanical behavior of biomedical materials, vol.27, pp.154-166, 2013.

K. Morooka, X. Chen, R. Kurazume, S. Uchida, K. Hara et al., Real-time nonlinear fem with neural network for simulating soft organ model deformation, pp.742-749, 2008.

E. O'flynn, A. Wilson, and M. Michell, Image-guided breast biopsy: state-ofthe-art, Clinical radiology, vol.65, issue.4, pp.259-270, 2010.

M. Pfeiffer, C. Riediger, J. Weitz, and S. Speidel, Learning soft tissue behavior of organs for surgical navigation with convolutional neural networks, IJCARS pp, pp.1-9, 2019.

O. Ronneberger, P. Fischer, and T. Brox, U-net: Convolutional networks for biomedical image segmentation. MICCAI pp, pp.234-241, 2015.

E. Tagliabue, D. Dall'alba, E. Magnabosco, C. Tenga, I. Peterlik et al., Position-based modeling of lesion displacement in ultrasound-guided breast biopsy, IJCARS, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02276090

M. Tonutti, G. Gras, and G. Z. Yang, A machine learning approach for realtime modelling of tissue deformation in image-guided neurosurgery, Artificial intelligence in medicine, vol.80, pp.39-47, 2017.

F. Visentin, V. Groenhuis, and B. Maris, Iterative simulations to estimate the elastic properties from a series of mri images followed by mri-us validation, Medical and biological engineering and computing, vol.194, pp.1-12, 2018.

P. A. Yushkevich, J. Piven, and H. Cody-hazlett, User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability, Neuroimage, vol.31, issue.3, pp.1116-1128, 2006.