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Abstract The expanding cellular automata (XCA) variant of cellular
automata is investigated and characterized from a complexity-theoretical
standpoint. The respective polynomial-time complexity class is shown to
coincide with ≤p

tt(NP), that is, the class of decision problems polynomial-
time truth-table reducible to problems in NP. Corollaries on select XCA
variants are proven: XCAs with multiple accept and reject states are
shown to be polynomial-time equivalent to the original XCA model.
Meanwhile, XCAs with diverse acceptance behavior are classified in terms
of ≤p

tt(NP) and the Turing machine polynomial-time class P.

1 Introduction

Traditionally, cellular automata (CAs) are defined as a rigid and immutable
lattice of cells; their behavior is dictated exclusively by a local transition function
operating on homogeneous local configurations. This can be generalized, for
instance, by mutable neighborhoods [17] or by endowing CAs with the ability to
shrink, that is, delete their cells [18]. When shrinking, the automaton’s structure
and dimension are preserved by “gluing” the severed parts and reconnecting their
delimiting cells as neighbors. When employed as language recognizers, shrinking
CAs (SCAs) can be more efficient than standard CAs [18, 10].

Other variants of CAs with dynamically reconfigurable neighborhoods have
emerged throughout the years. In the case of two-dimensional CAs, there is
the structurally dynamical CA (SDCA) [7], in which the connections between
neighbors are created and dropped depending on the local configuration. In the
one-dimensional case, further variants in this sense are considered in the work
of Dubacq [5], where one finds, in particular, CAs whose neighborhoods vary
over time. Dubacq also proposes the dynamically reconfigurable CA (DRCA),
a CA whose cells are able to exchange their neighbors for neighbors of their
neighbors. Dantchev [4] later points out a drawback in the definition of DRCAs
and proposes an alternative dubbed the dynamic neighborhood CA (DNCA).

By relaxing the arrangement of cells as a lattice, CAs may be generalized to
graphs. Graph automata [21] are related to CAs in that each vertex in the graph
? Parts of this paper have been submitted [13] in partial fulfillment of the requirements
for the degree of Master of Science at the Karlsruhe Institute of Technology (KIT).



can be identified as a cell; thus, graphs whose vertices have finite degrees provide
a natural generalization of CAs. In [21], the authors also define a rule based on
topological refinements of graphs, which may be used as a model for biological
cell division. An additional example of cell division in this sense is found in the
“inflating grid” described in [1].

Modeling cell division and growth, in fact, was one of the driving motivations
towards the investigation of the expanding CA (XCA) in [14]. An XCA is, in a
way, the opposite of an SCA; instead of cells vanishing, new cells can emerge
between existing ones. This operation is topologically similar to the cell division
of graph automata; as in the SCA model, however, it maintains the overall
arrangement and connectivity of the automaton’s cells as similar as possible to
that of standard CAs (i.e., a bi-infinite, one-dimensional array of cells).

We mention a few aspects in which XCAs differ from the aforementioned
variants. Contrary to SDCAs [7] or CAs with dynamic neighborhoods such as
DRCAs [5] and DNCAs [4], XCAs enable the creation of new cells, not simply
new links between existing ones. In addition, the XCA model does not focus as
much on the reconfiguration of cells; in it, the neighborhoods are homogeneous
and predominantly immutable. Furthermore, in contrast to the far more general
graph automata [21], XCAs are still one-dimensional CAs; this ensures basic CA
techniques (e.g., synchronization) function the same as they do in standard CAs.

Finally, shrinking and expanding are not mutually exclusive. Combining them
yields the shrinking and expanding CA (SXCA). The polynomial-time class of
SXCA language deciders was shown in [14, 15] to coincide with PSPACE.

In [14], the polynomial-time class XCAP of XCA language deciders is shown
to contain both NP and coNP while being contained in PSPACE. A precise
characterization of XCAP, however, remained outstanding. Such was the topic
of the author’s master’s thesis [13], the results of which are summarized in this
paper. The main result is XCAP being equal to the class of decision problems
which are polynomial-time truth-table reducible to NP, denoted ≤ptt(NP).

The rest of this paper is organized as follows: Section 2 covers the fundamental
definitions and results needed for the subsequent discussions. Following that,
Section 3 recalls the main result of [14] concerning XCAP and presents the
aforementioned characterization of XCAP. Section 4 covers some immediate
corollaries, in particular by considering an XCA variant with multiple accept
and reject states as well as two other variants with diverse acceptance conditions.
Finally, Section 5 concludes.

2 Basic Definitions

This section recalls basic concepts and results needed for the proofs and discussions
in the later sections and is broken down in two parts. The first is concerned with
basic topics regarding formal languages, Turing machines, and Boolean formulas.
The second part covers the definition of expanding CAs.



2.1 Formal Languages and Turing Machines

It is assumed the reader is familiar with the concepts of ωω-words and their
homomorphisms as well as deterministic and non-deterministic Turing machines
(TMs and NTMs, respectively) and the fundamental classes P, NP, coNP, and
PSPACE. In this paper, it is assumed all words have length at least one. The
notion of a complete language is employed strictly in the sense of polynomial-time
many-one (i.e., Karp) reductions by Turing machines.

Boolean Formulas Let V be a language of variables over an alphabet Σ which,
without loss of generality, is disjoint from {T, F,¬,∧,∨, (, )}. BOOLV denotes
the language of Boolean formulas over the variables of V . An interpretation of
V is a map I : V → {T, F}. Each interpretation I gives rise to an evaluation
EI : BOOLV → {T, F} which, given a formula f ∈ BOOLV , substitutes each
variable x ∈ V with the truth value I(x) and reduces the resulting formula using
standard propositional logic. A formula f is satisfiable if there is an interpretation
I such that EI(f) = T ; f is a tautology if this holds for all interpretations.

In order to define the languages SAT of satisfiable formulas and TAUT
of tautologies, a language V of variables must be agreed on. In this paper,
variables are encoded as binary strings prefixed by a special symbol x, that is,
V = {x} · {0, 1}+. The language SAT contains exactly the satisfiable formulas
of BOOLV . Similarly, TAUT contains exactly the tautologies of BOOLV . The
following is a well-known result concerning SAT and TAUT [3]:

Theorem 1. SAT is NP-complete, and TAUT is coNP-complete.

Truth-Table Reductions The theory of truth-table reductions was established
in [12, 11]; later it was shown the class of decision problems polynomial-time truth-
table (i.e., Boolean circuit) reducible to NP, denoted ≤ptt(NP), is equivalent to
that of those polynomial-time Boolean formula reducible to NP [22]. We refer to
[2] for a series of alternative characterizations of ≤ptt(NP). As a cursory remark,
we state the inclusions NP∪ coNP ⊆ ≤ptt(NP) and ≤ptt(NP) ⊆ PSPACE hold.

For the results of this paper, a formal treatment of the class ≤ptt(NP) is not
necessary; it suffices to note ≤ptt(NP) has complete languages. In particular, we
are interested in Boolean formulas with NP and coNP predicates. To this end,
we employ SAT and TAUT to define membership predicates of the form f L,
where f is a Boolean formula, L ∈ {SAT,TAUT}, and “ L” is a purely syntactic
construct which stands for the statement “f ∈ L”.

Definition 1 (SAT∧-TAUT∨). Let V = {x}·{0, 1}+ and VL = BOOLV ·{ L}
for L ∈ {SAT,TAUT}. The language BOOL∧∨SAT,TAUT ⊆ BOOLVSAT∪VTAUT

is defined recursively as follows:

1. VSAT, VTAUT ⊆ BOOL∧∨SAT,TAUT
2. If v ∈ VSAT and f ∈ BOOL∧∨SAT,TAUT, then ∧(v, f) ∈ BOOL∧∨SAT,TAUT
3. If v ∈ VTAUT and f ∈ BOOL∧∨SAT,TAUT, then ∨(v, f) ∈ BOOL∧∨SAT,TAUT



The language SAT∧-TAUT∨ ⊆ BOOL∧∨SAT,TAUT contains all formulas which
are true under the interpretation mapping f L to the truth value of the statement
“f ∈ L”.

The following follows from the results of Buss and Hay [2]:

Theorem 2. SAT∧-TAUT∨ is ≤ptt(NP)-complete.

2.2 Cellular Automata

In this paper, we are strictly interested in one-dimensional cellular automata
(CAs) with the standard neighborhood and employed as language deciders. CA
deciders possess a quiescent state q; cells which are not in this state are said to
be active and may not become quiescent. The input for a CA decider is provided
in its initial configuration surrounded by quiescent cells. As deciders, CAs are
Turing complete, and, more importantly, CAs can simulate TMs in real-time [19].
Conversely, it is known a TM can simulate a CA with time complexity t in time
at most t2. A corollary is that the CA polynomial-time class equals P.

Expanding Cellular Automata First considered in [14], the expanding CA
(XCA) is similar to the shrinking CA (SCA) in that it is dynamically recon-
figurable; instead of cells being deleted, however, in an XCA new cells emerge
between existing ones. This does not alter the underlying topology, which remains
one-dimensional and biinfinite.

For modeling purposes, the new cells are seen as hidden between the original
(i.e., visible) ones, with one hidden cell placed between any two neighboring visible
cells. These latter cells serve as the hidden cell’s left and right neighbors and are
referred to as its parents. In each CA step, a hidden cell observes the states of its
parents and either assumes a non-hidden state, thus becoming visible, or remains
hidden. In the former case, the cell assumes the position between its parents and
becomes an ordinary cell (i.e., visible), and the parents are reconnected so as to
adopt the new cell as a neighbor. Visible cells may not become hidden.

Definition 2 (XCA). Let N = {−1, 0, 1} be the standard neighborhood. An
expanding CA (XCA) is a CA A with state set Q and local transition function
δ : QN → Q and which possesses a distinguished hidden state � ∈ Q. For any
local configuration ` : N → Q, δ(`) = � is allowed only if `(0) = �.

Let c : Z → Q be a global configuration and z ∈ Z, and let hc : Z → QN

be such that hc(z)(−1) = c(z), hc(z)(0) = �, and hc(z)(1) = c(z + 1). Define
α : QZ → QZ as follows, where ∆ is the standard CA global transition function:

α(c)(z) =

{
∆(c)( z2 ), z even
δ(hc(

z−1
2 )), otherwise

Finally, let Φ be the ωω-word homomorphism induced by the mapping Q→ Q∗

which maps any state to itself except for �, which is mapped to ε (i.e., the empty
word). Then the global transition function of an XCA is ∆X = ∆X

δ := Φ ◦ α.



Figure 1 illustrates an XCA A and its operation for input 001010 as an
example. The local transition function δ of A is as follows:

δ(q−1, q0, q1) =

{
q−1 ⊕ q1, q−1, q1 ∈ {0, 1}
q0, otherwise

(where ⊕ denotes the bitwise XOR operation, that is, addition modulo 2). In
the initial configuration c, the hidden cells are all in the state �. Using hc as
the hidden cells’ local configurations, α applies δ to each local configuration and
promotes all hidden cells to ordinary (i.e., visible) ones. Finally, Φ eliminates
hidden cells which conserved the state � (as these are present only implicitly in
the global configuration).

q 0 0 1 0 1 0 q

-1 0 1 2 3 4 5 6

q 0 0 1 0 1 0 q
� � � � � � �

-2 0 2 4 6 8 10 12

-1 1 3 5 7 9 11

q 0 1 0 1 0 0 q
� 0 1 1 1 1 �

-2 0 2 4 6 8 10 12

-1 1 3 5 7 9 11

1 1 1 0 1 0 � q01100�q

-2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12

1 1 1 0 1 0 q01100q

-1 0 1 2 3 4 5 6 7 8 9 10 11

α(c)

c

∆X(c)

Figure 1. Illustration of a step of the XCA A. The number next to each cell indicates its
index in the respective configuration. In this particular example, we use the convention
that the ωω-word homomorphism Φ contracts deleted symbols towards index zero.
Adapted from [14].

The supply of hidden cells is never depleted; if a hidden cell becomes an
ordinary cell, new ones appear between it and its neighbors. Thus, the number
of active cells in an XCA may increase exponentially [14]:

Lemma 1. Let A be an XCA. For an input of size n, A has at most (n+3)2t−3
active cells after t ∈ N0 steps. This upper bound is sharp.

We have postponed defining the acceptance behavior of an XCA until now.
Usually, a CA possesses a distinguished cell, often cell 0, which dictates the
automaton’s accept or reject response [9]. In the case of XCAs, however, under



a reasonable complexity-theoretical assumption (i.e., P 6= ≤ptt(NP)) such an
acceptance behavior results in XCAs not making full use of the efficient cell
growth indicated in Lemma 1 (see Section 4.3). This phenomenon does not occur
if the acceptance behavior is defined based on unanimity, that is, in order for
an XCA to accept (or reject), all its cells must assume the accept (or reject)
state simultaneously. This acceptance condition is by no means novel [6, 20, 16,
8]. As an aside, note all (reasonable) CA time complexity classes (including,
in particular, linear- and polynomial-time) remain invariant when using this
acceptance condition instead of the standard one.

Definition 3 (Acceptance behavior, time complexity). Each XCA has a
(unique) accept state a and a (unique) reject state r. An XCA A halts if all
active (and non-hidden) cells are either all in state a, in which case the XCA
accepts, or they are all in state r, in which case it rejects; if neither is the case,
the computation continues. L(A) denotes the set of words accepted by A.

The time complexity of an XCA is the number of elapsed steps until it halts.
An XCA decider is an XCA which halts on every input. A language L is in
XCAP if there is an XCA decider A′ with polynomial time complexity (in the
length of its input) and such that L = L(A′).

In summary, the decision result of an XCA decider is the one indicated by
the first configuration in which its active cells are either all in the accept or all
in the reject state. This agrees with our aforementioned notion of a unanimous
decision.

3 Characterizing the XCA Polynomial-Time Class

In [14], the following first result regarding the class XCAP is proven:

Theorem 3. NP ∪ coNP ⊆ XCAP.

We give a brief outline of the proof and refer the interested reader to [14] for
the details. Since many-one reductions by TMs can be simulated by (X)CAs in
real-time, it suffices to show XCAP contains NP- and coNP-complete problems.
We construct XCAs for SAT and TAUT which run in polynomial time and
apply Theorem 1. The two constructions are very similar; in fact, one obtains one
from the other simply by swapping the accept and reject states. The following
describes the XCA A for TAUT.

XCAs allow for efficient creation of new cells between existing ones. This
may be used in order to efficiently create copies of the original formula and in
each copy set a given variable to a possible truth value (i.e., “true” or “false”).
A iterates over the input formula’s variables and, at each iteration step, creates
two copies of each formula: one in which the respective variable is set to “true”
and one in which it is set to “false”. The copies are synchronized with each other,
and the process continues in parallel as separate computation branches. The
synchronization ensures that, since all copies have equal length, all variables will
be exhausted by each branch at the same time.



When this is the case, parallel evaluations of the resulting formulas are carried
out, and their results combining using a subtlety of the accepting behavior of
XCAs: Reject states are conserved while accept states yield to reject in the
next step. If the result of an evaluation is “true”, then all respective cells are
synchronized and enter the accept state; otherwise, that is, if the result is “false”,
then all respective cells enter the reject state (after synchronization). As a result,
if no reject states are present, then A immediately accepts; otherwise, in the next
step, any existing accepting cells become rejecting cells, and A rejects.

Note the steps described above are all carried out in polynomial time since
the whole process amounts to replacing variables with truth values and then
evaluating the resulting formulas.

3.1 A First Characterization

This section covers the following (main) result of [13]:

Theorem 4. XCAP = ≤ptt(NP).

The equality in Theorem 4 is proven by considering the two inclusions.

Proposition 1. ≤ptt(NP) ⊆ XCAP.

Proof. We construct an XCA A which decides SAT∧-TAUT∨ (see Definition 1
and Theorem 2) in polynomial time. The actual inclusion follows from the fact
that CAs can simulate polynomial-time many-one reductions by TMs in real-time.

Given a problem instance f , A evaluates f recursively. Without loss of
generality, f = ∧(f1 SAT,∨(f2 TAUT, f

′)), where f ′ is some other problem
instance; other instances of SAT∧-TAUT∨ are obtained by replacing f1, f2, or
f ′ with a trivial formula (e.g., a trivial tautology).

To evaluate f1 SAT, A emulates the behavior of the XCA for SAT (see
Theorem 3); however, special care must be taken to ensure A does not halt
prematurely. All computation branches retain a copy of f . Whenever a branch
obtains a “true” result, the respective cells do not directly accept (as in the
original construction); instead, they proceed with evaluating the formula’s next
connective. Conversely, if the result is false, the respective cells simply enter the
reject state. The behavior for f2 TAUT is analogous, with A emulating the XCA
for TAUT instead (and with exchanged accept and reject states, accordingly).
Additionally, the accept and reject states are such that cells transition between
them back and forth1, and we (arbitrarily) enforce accept states only exist in
even- and reject states in odd-numbered steps2.

If f1 6∈ SAT, all branches of A transition into the reject state, and A rejects.
Otherwise, f1 is satisfiable; thus, at least one branch obtains a “true” result,
and A continues to evaluate f until the (aforementioned) base case is reached.
1 That is, δ(`) = a for `(0) = r and vice-versa, where δ and ` are as in Definition 2.
2 This may be accomplished, for example, by using a bit counter in the cells’ states,
and having cells wait for a step before transitioning to an accept or reject state if
needed.



An analogous argument applies for f2. Note the synchronicity of the branches
guarantee they operate exactly the same and terminate at the same time. The
repeated transition between accept and reject states guarantee the only cells
relevant for the final decision of A are those in the branches which are still “active”
(in the sense they are still evaluating f).

It is concluded that A accepts f if and only if it evaluates to true and rejects
it otherwise. A runs in polynomial time (in |f |) since f has at most |f | predicates
and since evaluating a predicate requires polynomial time in |f |. ut

For the converse, we express an XCA computation as a SAT∧-TAUT∨

instance. The main effort here lies on defining the appropriate “variables”:

Definition 4 (STATE∀). Let A be an XCA, and let VA be the set of triples
(w, t, z), w being an input for A, t ∈ {0, 1}+ a (standard) binary representation
of τ ∈ N0, and z a state of A. STATE∀(A) ⊆ VA is the subset of triples such
that, if A is given w as input, then after τ steps all active cells are in state z.

Lemma 2. If A has polynomial time complexity, STATE∀(A) ∈ coNP.

Proof. Fix an efficiently computable polynomial p : N→ N0 such that A always
terminates after at most p(n) steps for an input of size n. Consider an NTM
T which non-deterministically picks an active cell in step τ of A for input w,
computes its state z′ in polynomial time, and accepts if and only if z′ = z.
Additionally, suppose that, by doing so, T covers all active cells of A in step τ .
Furthermore, to ensure T only simulates A for a polynomial number of steps (in
|w|), T determines p(|w|) and rejects in case τ > p(|w|); this is not a restriction
because of the choice of p. The claim follows immediately from the existence of
such a T : If all computation branches of T accept, then in step τ all cells of A are
in state z; otherwise, there is a cell in a state which is not z, and T rejects. The
rest of the proof is concerned with the construction of T as well as showing that
its branches cover all active cells of A in its final configuration for the input w.

To compute the state of an active cell in step τ , T calculates a series of
subconfigurations c0, . . . , cτ of A, that is, contiguous excerpts of the global con-
figuration of A. As the number of cells in an XCA may increase exponentially
in the number of computation steps, bounding ci is essential to ensure T runs
in polynomial time; in particular, T maintains |ci| = 1 + 2(τ − i), thus ensuring
the lengths of the ci are linear in τ (which, in turn, is polynomial in |w|). This
choice of length for the ci ensures each of the subconfigurations correspond to a
cell of A surrounded by τ − i cells on either side.3 The non-determinism of T is
used precisely in picking the cells from ci which are to be included in the next
subconfiguration ci+1.

The initial subconfiguration c0 is set to be q2τwq2τ , thus containing the input
word as well as (as shall be proven) a sufficiently large number of surrounding
quiescent cells. To obtain ci+1 from ci, T applies the global transition function
of A on ci to obtain a new temporary subconfiguration c′i+1. The next state of

3 That is to say, each ci corresponds to the so-called extended (τ − i)-neighborhood of
a cell of A.



the two “boundary” cells (i.e, those belonging to indices 0 and |ci| − 1) cannot be
determined since the state of their neighbors is unknown; thus, they are excluded
from c′i+1. The same applies to any hidden cell which remains so. c′i+1 contains,
as a result, |ci| − 2 active cells from the previous configuration ci in addition to a
maximum of |ci|−1 previously hidden cells. To maintain |ci| = 1+2(τ−i), T non-
deterministically chooses a contiguous subset s of c′i+1 containing 1+2(τ− i) cells
and sets ci+1 to s; when doing so, T ignores subsets containing solely quiescent
cells. That there are enough cells to choose from is, again, ensured by the fact
that c′i+1 contains at least |ci| − 2 active cells from the previous configuration ci.

The process of selecting a next subconfiguration ci+1 from ci is depicted in
figure 2. In the figure, |ci| has been replaced with n for legibility. T at first applies
the global transition function of A to obtain an intermediate subconfiguration
c′i+1 with m = |c′i+1| cells. Because of hidden cells, c′i+1 may consist of n− 2 ≤
m ≤ 2n−3 cells. Non-determinism is used to select a contiguous subconfiguration
of n− 2 cells, thus giving rise to ci+1.

z1 z2 . . . zn−1 znci

. . .z′2z′1 z′m−1 z′mc′i+1

n− 2

. . .z′′2z′′1 z′′n−3 z′′n−2ci+1

Figure 2. Illustration of how T obtains the next subconfiguration ci+1 from ci.

This concludes the construction of T . Note it runs in polynomial time since
the invariant |ci| = 1 + 2(τ − i) guarantees the number of states T computes
in each step is bounded by a multiple of τ , which, as previously discussed, is
bounded by p(|w|). Only |w| has to be taken into account when estimating the
time complexity of T since the encoding of z is constant with respect to |w| while
that of t is logarithmic with respect to p(|w|); expressing the problem instance
(w, t, z) requires, as a result, asymptotically |w| space.

To show all active cells of A in step τ are covered by T , it suffices to prove
the following by induction: Let i ∈ {0, . . . , τ}, and let z1, . . . , zm be the active
cells of A in step i; then T covers all subconfigurations of q2(τ−i)z1 · · · zmq2(τ−i)
of size 1 + 2(τ − i). Note this corresponds to T covering all subconfigurations of
A in step i which contain at least one active cell; thus, when T reaches step τ , it
covers all subconfigurations of z1 · · · zm of size 1, that is, all active cells.

The induction basis follows from c0 = q2τwq2τ . For the induction step, fix
a step 0 < i ≤ τ and assume the claim holds for all steps prior to i. To each



subconfiguration of q2(τ−i)z1 · · · zmq2(τ−i) having size 1 + 2(τ − i) corresponds a
cell w which is located in its center; such subconfiguration is denoted by si(w).
Now let si(w) be given, in which case there are three cases to be considered: w
was active in step i−1; w was a hidden cell which became active in the transition
to step i; or w was a quiescent cell in step i− 1 and, by |si(w)| = 1+ 2(τ − i), is
at most τ − i cells away from z1 or zm.

In the first case, by the induction hypothesis, there is a value of ci−1 corre-
sponding to si−1(w); since only the two boundary cells are present in ci−1 but
not in c′i, choosing ci from c′i with w as its middle cell yields si(w). In the second,
for any of the two parents p1 and p2 of w, there are, by the induction hypothesis,
values of ci−1 which equal si−1(p1) and si−1(p2); in either case, choosing ci from
c′i with w as its middle cell again yields si(w).

Finally, if w was a quiescent cell, then, without loss of generality, consider
the case in which w was located to the left of the active cells in step i− 1. By
the induction hypothesis, for each cell w′ up to τ − i + 1 cells away from the
leftmost active cell z1 there is a value of ci−1 corresponding to si−1(w′), and the
first case applies; the only exception is if ci would then contain only quiescent
cells, in which case w would be located strictly more than τ − i cells away from
z1, thus contradicting our previous assumption. The claim follows. ut

The following proposition completes our argument by reduction:

Proposition 2. XCAP ⊆ ≤ptt(NP).

Proof. Let L ∈ XCAP, and let A be an XCA for L whose time complexity is
bounded by a polynomial p : N → N0. Additionally, let w be an input for A,
VA be as in Definition 4, and let V = VA · { STATE∀(A)}, where STATE∀(A) is
a syntactic symbol standing for membership in STATE∀(A) (cf. Definition 1).
Define f0(w), . . . , fp(n)(w) ∈ BOOLV recursively as follows:

fi(w) :=

{
∨( (w, i, a) STATE∀(A),∧(¬( (w, i, r) STATE∀(A) ), fi+1 ) ), i 6= p(n)

∨( (w, p(n), a) STATE∀(A),¬( (w, p(n), r) STATE∀(A) ) ), i = p(n)

Lemma 2 together with the coNP-completeness of TAUT (see Theorem 1)
ensures each subformula of the form (w, i, a) STATE∀(A) is polynomial-time
many-one reducible to an equivalent4 SAT∧-TAUT∨ formula g TAUT, g being
a TAUT instance. Similarly, each subformula ¬((w, i, a) STATE∀(A)) is reducible
to an equivalent formula h SAT. Since each of the fi(w) may contain only
polynomially (respective to |w|) many connectives, each is polynomial-time
(many-one) reducible to an equivalent SAT∧-TAUT∨ instance f ′i(w).

By the definition of XCA (i.e., Definitions 2 and 3) and our choice of p,
f ′(w) := f ′0(w) is true if and only if A accepts w. Since f ′(w) is such that |f ′(w)|
is polynomial in |w|, this provides a polynomial-time (many-one) reduction of L
to a problem instance of SAT∧-TAUT∨ ∈ ≤ptt(NP). The claim follows. ut
4 In the sense of evaluating to the same truth value under the respective interpretations
(see Definition 1).



4 Immediate Implications

This section covers some immediate corollaries of Theorem 4 regarding XCA
variants. In particular, we address XCAs with multiple accept and reject states,
followed by XCAs with acceptance conditions differing from that from Definition 3,
in particular the two other classical acceptance conditions for CAs [16].

4.1 XCAs with Multiple Accept and Reject States

Recall the definition of an XCA specifies a single accept and a single reject state
(see Section 2.2). Consider XCAs with multiple accept and reject states. As
shall be proven, the respective polynomial-time class (MAR-XCAP) remains
equal to XCAP. In the case of TMs, the equivalent result (i.e., TMs with a
single accept and a single reject state are as efficient as standard TMs) is trivial,
but such is not the case for XCAs. Recall the acceptance condition of an XCA
requires orchestrating the states of multiple, possibly exponentially many cells.
In addition, an XCA with multiple accept states may, for instance, attempt
to accept whilst saving its current state (i.e., a cell in state z may assume an
accept state az while simultaneously saving state z). Such is not the case for
standard XCAs (i.e., as specified in Definition 3), in which all accepting cells
have necessarily the same state.

Definition 5 (MAR-XCA, MAR-XCAP). A multiple accept-reject XCA
(MAR-XCA) D is an XCA with state set Q and which admits subsets A,R ⊆ Q
of accept and reject states, respectively. D accepts (rejects) if its active cells
all have states in A (R), and it halts upon accepting or rejecting. In addition,
D is required to either accept or reject its input after a finite number of steps.
MAR-XCAP denotes the MAR-XCA analogue of XCAP.

The following generalizes STATE∀ (see Definition 4 and Lemma 2) to the
case of MAR-XCAs:

Definition 6 (STATEMAR
∀ ). Let A be a MAR-XCA with state set Q, and let

VA be the set of triples (w, t, Z), w being an input for A, t ∈ {0, 1}+ a binary
encoding of τ ∈ N0, and Z ⊆ Q. STATEMAR

∀ (A) ⊆ VA is the subset of triples
such that, if A is given w as input, after t steps all active cells have states in Z.

Lemma 3. If A has polynomial time complexity, STATEMAR
∀ (A) ∈ coNP.

Proof. Simply adapt the NTM from the proof of Lemma 2 so as to accept if and
only if the final state is contained in Z. ut

Proceeding as in the proof of Proposition 2 (simply using STATEMAR
∀ instead

of STATE∀) yields:
Theorem 5. MAR-XCAP = XCAP.

Proof. Define formulas fi(w) as in the proof of Proposition 2 while replacing
STATE∀ with STATEMAR

∀ , the accept state a with the set A, and the reject
state r with the set R. Lemma 3 guarantees the reductions to SAT∧-TAUT∨

are all efficient. This implies MAR-XCAP ⊆ ≤ptt(NP) = XCAP. Since MAR-
XCAs are a generalization of XCAs, the converse inclusion is trivial. ut



4.2 Existential XCA

The remainder of this section is concerned with XCAs variants which use the
two other acceptance conditions from [16, 6, 20, 8]. The first is that of a single
final state being present in the CA’s configuration sufficing for termination.

Definition 7 (EXCA, EXCAP). An existential5 XCA (EXCA) is an XCA
with the following acceptance condition: If at least one of its cells is in the accept
(reject) state a (r), then the EXCA accepts (rejects). The coexistence of accept
and reject states in the same global configuration is disallowed (and any machine
contradicting this requirement is, by definition, not an EXCA). EXCAP denotes
the EXCA analogue of XCAP.

Disallowing the coexistence of accept and reject states in the global configu-
ration of an EXCA is necessary to ensure a consistent accepting behavior. An
alternative would be to establish a priority relation between the two (e.g., an
accept state overrules a reject one); nevertheless, this behavior can be emulated by
our chosen variant with only constant delay. This is accomplished by introducing
binary counters to delay state transitions and assure, for instance, that accept
and reject states exist only in even- and odd-numbered steps, respectively.

Despite the diverse accepting behavior, the following holds for EXCAs:

Theorem 6. EXCAP = XCAP = ≤ptt(NP).

Note this is an equivalence between two disparately complex acceptance
behaviors: As by Definition 3, in an XCA all cells must agree on the final decision;
on the other hand, in an EXCA, a single, arbitrary cell suffices. We ascribe this
phenomenon to XCAP = ≤ptt(NP) being equal to its complementary class.

As for the proof of Theorem 6, first note that Proposition 1 may easily be
restated in the context of EXCAs:

Proposition 3. ≤ptt(NP) ⊆ EXCAP.

Proof. Consider the XCA A for SAT∧-TAUT∨ from the proof of Proposition 1;
by adapting it, we obtain an EXCAB which decides TAUT∧-SAT∨ in polynomial
time. TAUT∧-SAT∨ is the problem analogous to SAT∧-TAUT∨ and which is
obtained by exchanging “TAUT” and “SAT” in Definition 1. As SAT∧-TAUT∨,
TAUT∧-SAT∨ is ≤ptt(NP)-complete (see Theorem 2).

To evaluate a predicate of the form f TAUT, B proceeds as A and emulates
the behavior of the XCA deciding TAUT (see Theorem 3); however, unlike A, the
computation branches of B which evaluate to false reject immediately while it is
those that evaluate to true that continue evaluating the input formula. As a result,
if f ∈ TAUT, all branches of B evaluate to true and continue evaluating the
input in a synchronous manner; otherwise, there is a branch evaluating to false,
and, since a single rejecting cell suffices for it to reject, B rejects immediately.
The evaluation of f SAT is carried out analogously.

The modifications to A to obtain B do not impact its time complexity
whatsoever; thus, B also has polynomial time complexity. ut
5 An allusion to the existential states of alternating Turing machines (ATMs)



For the converse inclusion, consider the followingNP analogue of the STATE∀
language (cf. Definition 4 and Lemma 2):

Definition 8 (STATE∃). Let A be an XCA, and let V be the set of triples
(w, t, z) as in definition 4. STATE∃ ⊆ V is the subset of triples such that, for
the input w, after t steps at least one of the active cells of A is in state z.

Lemma 4. If A has polynomial time complexity, STATE∃(A) ∈ NP.

Proof. Consider the NTM T from Lemma 2 and notice that, if any of the active
cells of A in step τ have state z, then T will have at least one accepting branch;
otherwise, none of the active cells of A in step τ have state z; thus, all branches
of T are rejecting. ut

Using Lemma 4 to proceed as in Proposition 2 yields the following, from
which Theorem 6 follows:

Proposition 4. EXCAP ⊆ ≤ptt(NP).

4.3 One-Cell-Decision XCA

We turn to the discussion of XCAs whose acceptance condition is defined in
terms of a distinguished cell which directs the automaton’s decision, considered
the standard acceptance condition for CAs [9]. This behavior is similar to the
existential variant in the sense that a single cell suffices to trigger the automaton’s
termination; the difference lies in the position of this single cell being immutable.

We consider only the case in which the decision cell is the leftmost active
cell in the initial configuration (i.e., cell 0). By a one-cell-decision XCA (1XCA)
we refer to an XCA which accepts if and only if 0 is in the accept state and
rejects if and only if cell zero is in the reject state. Let 1XCAP denote the
polynomial-time class of 1XCAs.

The position of the decision cell is fixed; with a polynomial-time restriction in
place, it can only communicate with cells which are a polynomial (in the length
of the input) number of steps apart. As a result, despite a 1XCA being able to
efficiently increase its number of active cells exponentially (see Lemma 1), any
cells impacting its decision behavior must be at most a polynomial number of
cells away from the decision cell. Thus:

Theorem 7. 1XCAP = P.

Proof. The inclusion 1XCAP ⊇ P is trivial. For the converse, recall the con-
struction of the NTM T in Lemma 2. T can be modified such that it works
deterministically and always chooses the next configuration ci+1 from ci by
selecting cell zero as the middle cell. If cell zero is accepting, then T accepts
immediately; if it is rejecting, then T also rejects immediately. This yields a
simulation of a 1XCA by a (deterministic) TM which is only polynomially slower,
thus implying 1XCAP ⊆ P. ut



5 Conclusion

This paper summarized the results of [13], which, in turn, expanded on the
complexity-theoretic aspects of XCAs from [14]. The main result was the charac-
terization XCAP = ≤ptt(NP) in Section 3.1. In Section 4, XCAs with multiple
accept and reject states were shown to be equivalent to the original model. Also in
Section 4, two other variants based on varying varying acceptance conditions were
considered: the existential (EXCA), in which a single, though arbitrary cell may
direct the automaton’s response; and the one-cell-decision XCA (1XCA), in which
a fixed cell does so. In the first case, it was shown that the polynomial-time class
EXCAP equals XCAP; in the latter, it was shown that the polynomial-time
class 1XCAP of 1XCAs equals P.

This paper has covered some XCA variants with diverse acceptance conditions.
A topic for future work might be considering further variations in this sense (e.g.,
XCAs whose acceptance condition is based on majority instead of unanimity).
Another avenue of research lies in restricting the capabilities of XCAs and
analyzing the effects thereof (e.g., restricting 1XCAs or SXCAs to a polynomial
number of cells). A final open question is determining what polynomial speedups,
if any, 1XCAs provide with respect to 1CAs.
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