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Abstract In this article we analyze the following problem: given a mechanical system subject to (possibly
redundant) bilateral and unilateral constraints with set-valued Coulomb’s friction, provide conditions such
that the state which consists of all contacts sticking in both tangential and normal directions, is solvable.
The analysis uses complementarity problems, variational inequalities, and linear algebra, hence it provides
criteria which are, in principle, numerically tractable. An algorithm and several illustrating examples are
proposed.
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1 Introduction

The contact problem in constrained multibody systems, with or without friction, consists of analysing
the system’s behaviour under the action of external and contact wrenches. It has considerable practical
interest in robotics tasks like biped locomotion stability analysis [47,22,16,9,48,49], and dexterous object
manipulation, grasping and workpiece fixture design or static equilibrium stability [62,14,68,52,53,33,10,
34,51], to cite a few articles. The case with both unilateral and bilateral constraints, without reduction
of the degrees of freedom, has not been as much studied as the pure bilaterally constrained, or unilat-
erally constrained problems, despite the fact that it represents the most frequently met case in practice
and industry. See [15,17,19,20,28,44,46,65] for various results in this setting, including frictionless and
frictional constraints. Continuous-time contact complementarity problems have been formulated in [1,31,
30,40] [29, Chapter 10], for various cases of systems subjected to unilateral constraints, with and without
friction. The analysis of such problems has been led in [7,6,11,42,43,54,53,70,69]. The contact problem
is formulated as a mixed nonlinear complementarity problem in both frictionless and 3D frictional cases
in [69], using suitable slack variables. It is formulated as a quasi variational inequality in [54]. Sticking,
sliding, and mixed sticking/sliding cases are analysed. The crucial property for existence of solutions
stems from Theorem [25, Theorem 3.8.6] (see Theorem 1 in Appendix). In the frictional case, existence
results are stated for small enough coefficients of friction for the sliding modes, the upperbound being
however not provided explicitly. In the sliding/sticking mode case, Proposition 13 in [54] states feasibility
conditions. One important hypothesis in these articles is that Coulomb’s friction holds at the acceleration
level [19, Section 5.3.4]. Theorem 3.1 in [70] states the existence of normal and tangential accelerations
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and multipliers, under the condition that the Delassus’ matrix is full rank. Smallness of friction for sliding
contacts guarantees existence, while smallness of friction at sticking contacts guarantees uniqueness. In
the all-sticking contacts case, existence holds under an inequality involving local velocities and accel-
erations. Frictional unilateral constraints are considered in [54,53,69,70]. Lemma 2 and Theorem 2 in
[42] are based on the assumption that matrices of the contact problems are P-matrices ( i.e., with all
principal minors positive), but no conditions on the friction coefficients are given to guarantee this. The
notion of disassemblability is introduced in [7] to analyse systems with bilateral and unilateral constraints,
with friction. Frictionless systems are always disassemblable. The contact complementarity problem with
friction is solvable if the frictionless system is disassemblable and friction is small enough. No explicit
upperbound on friction is given. A contact MLCP is constructed in [6]. Sliding frictional contacts are
analysed in [38] for bilateral constraints. Singularities in the contact force are studied numerically on
a three-body system with one sliding joint. Force and form closure, as well as various stability notions
and criteria are proposed in [47,22,16,9,48,49,62,68,52,53,33,10,34,51] for object grasping and biped
robots. Static equilibrium problems are anaylsed and algorithms are presented [51,52,33,68,49,16,48,9],
dynamical effects are taken into account in [47,62,34]. Most of these works rely on the careful study of
contact and external wrenches, and yield precise criteria on wrenches and contact points arrangements
so that stability or static equilibrium are guaranteed [10,48,49].

The contact model that is chosen in this article is a rigid-body nonsmooth approach with bilateral con-
straints, unilateral contacts and complementarity conditions (called hard-finger contact in the dexterous
manipulation literature), and set-valued friction. Compliant contact models can be used also (linear or
nonlinear spring-dashpot models). This may be needed in dexterous manipulation tasks when flexible
soft fingers are designed to manipulate fragile objects. Choosing a compliant model among the various
existing ones may not be easy (especially because of the difficulty related to dissipation modeling, and
how to choose the right dissipation model). Also one is often led to choose artificially high damping in
order to suppress unwanted oscillations, and artificially low equivalent contact stiffness to avoid the inte-
gration of stiff dynamics which leads to long simulation times. In some applications, the choice between
both approaches (rigid or compliant contact) may not be straighforward. It is nevertheless important to
remind that flexible contacts allowing for detachment (“unilateral springs”), can be recast into a comple-
mentarity framework quite similar to the one developed in this article, see [51,19]. Compliance at contacts
can also sometimes remove the non-uniqueness of contact forces (due to constraints redundancy), though
this may fail in some problems where Coulomb friction set-valuedness creates the non-uniqueness issue
[19, section 5.5.6]. Then some regularization of Coulomb’s model have to be used (henceby destroying
the sticking modes), but this creates new problems of robustness and high sensitivity of solutions with
respect to parameter uncertainties (see [74] for bilaterally constrained systems, where it is shown that
regularized models like the LuGre model and its variants are quite inappropriate).

When using the so-called natural coordinates [37], the mass matrix of a multibody system may become
constant but singular, and nonlinear bilateral constraints are necessarily added to the dynamics. It is
then important to get criteria of well-posedness of the contact problem for singular mass matrices, and
redundant constraints. This has been done in [36] when only frictionless bilateral constraints are present
(hence giving rise to the classical KKT conditions for the index one formulation of bilateral constraints
[19, Section 5.1.1] [39,60,63]), and in [20] for both frictionless bilateral and unilateral constraints. When
all contacts are sliding, the contact problem has been studied in [15] in various cases (bilateral and/or
unilateral contacts, with or without friction), and with a detailed analysis of the index one KKT condi-
tions.

In this article we analyse the contact problem when the multibody system is subjected to both bilateral
and unilateral constraints with set-valued Coulomb’s friction. We focus in particular on the case of all-
sticking contacts, i.e., contacts are activated and are not slipping at the time instant where the problem
is analysed. The presented criteria do no allow one to know whether or not the system attains such an
all-sticking mode, however it provides conditions that guarantee that such modes are well-posed (with
existence and possibly uniqueness of contact forces and acceleration). Moreover the results on the well-
posedness of a class of variational inequalities of the second kind presented in [3] are used to formulate
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conditions for the well-posedness of the all-sticking contact problem when the mass matrix is singular
and constraints are redundant.

1.1 Generic problem

In a Lagrangian formalism such systems may be written generically as follows,






M(q)q̈ + F (q, q̇, t) = ∇hn,b(q)λn,b +∇hn,u(q)λn,u +Ht,b(q)λt,b +Ht,u(q)λt,u (1a)

Local friction law (Coulomb) : (vi, λi) ∈ C(ni, µi), 1 6 i 6 m (1b)

Complementarity conditions : 0 6 hn,u(q) ⊥ λn,u > 0 (1c)

Bilateral (holonomic) constraints : hn,b(q) = 0, (1d)

where q ∈ R
n is the vector collecting the generalized coordinates qi, 1 6 i 6 n, assumed to be inde-

pendent when all the constraints are removed, q̇ is the vector of generalized velocities, M(q) = M(q)⊤

is the symmetric positive definite (or only semi definite) inertia matrix, F (q, q̇, t) collects internal forces
(including forces deriving from a potential as well as Coriolis and centripetal forces), and external actions
on the system such as disturbances or control. A more general dynamical framework could be chosen with
Newton-Euler dynamics, where generalized velocities q̇ are replaced by v = T (q)q̇ for some transformation
matrix T (q), and v may contain quantities like instantaneous angular velocities (so that T (q) involves
Olinde Rodrigues matrices).
We consider m = mu +mb constraints (or contacts) consisting of mu unilateral (inequality) constraints
hn,u(q) ∈ R

mu and mb bilateral (equality) constraints hn,b(q) ∈ R
mb . The vectors of Lagrange multipliers

λn,u ∈ R
mu and λn,b ∈ R

mb are associated with the unilateral and bilateral constraints, respectively.
We assume that the gap functions hn,u(q) are defined from the local kinematics at the contact points [2,
19]. Thus λn,u corresponds to the normal components of the contact forces. Let d ∈ N be the ambiant
space dimension (d = 2 in the planar case and d = 3 in the three dimensional case). The tangential
components of the contact forces are, in turn, collected by λt,u ∈ R

(d−1)mu (unilateral constraints) and
λt,b ∈ R

(d−1)mb (bilateral constraints), with Ht,b(q) ∈ R
n×(d−1)mb and Ht,u(q) ∈ R

n×(d−1)mu linear
operators that map local tangent frames at the contact points to the generalized coordinates, obtained
from the so-called contact kinematics and local frames [2, Section 3.3] [19, Chapter 4] [57, Chapter 4]
[56]. Note that the size of λt,b, λt,u, Ht,b(q) and Ht,u(q) depends on the space dimension d considered.
The unilateral constraints and their associated Lagrange multipliers are related through the complemen-
tarity condition (1c), which is to be understood componentwise (per contact). It models the fact that
for each contact i, the normal contact force should not act at a unilateral contact point if the contact is
open (i.e., hn,u,i(q) > 0), and that λn,u,i > 0 if and only if hn,u,i(q) = 0. This type of complementarity
conditions does not encompass adhesive contact forces [19, Section 5.4.1], which in turn may be useful in
some cases [61]. We note anyway that adhesive effects could be taken into account while remaining in a
set-valued framework [2, Section 3.9.4.4], however this is outside the scope of this paper.
The tangential counterpart of the ith contact force is, in turn, driven by the Coulomb friction law (1b).
Let us denote λi ∈ R

d the ith contact force, expressed in a local frame attached to the contact point, and
vi the local space velocity at contact. The λu,i vector collects the i

th scalar component of the vector λn,u
(normal part), together with the ith block component (of size d−1) of the vector λt,u (tangential part), i.e.
λu,i = (λn,u,i, λ

⊤
t,u,i)

⊤. Similarly for λb,i = (λn,b,i, λ
⊤
t,b,i)

⊤. At each contact point i, the Coulomb friction
law (vi, λi) ∈ C(ni, µi) relates the contact force λi to the local velocity vi through a nonsmooth multivalued
law involving the normal vector ni at contact and the coefficient of friction µi. For the sake of clarity, the
Coulomb friction law is fully described in Section 1.2. Finally we let λn,u = (λn,u,1, ..., λn,u,mu

)⊤ ∈ R
mu ,

λn,b = (λn,b,1, ..., λn,b,mb
)⊤ ∈ R

mb , λt,u = (λt,u,1, ..., λt,u,mu
)⊤ ∈ R

(d−1)mu , λt,b = (λt,b,1, ..., λt,b,mb
)⊤ ∈

R
(d−1)mb .

Remark 1 An underlying assumption, is that all joints (bilateral as well as unilateral ones) can be mod-
elled with a finite number of contact points. Thus Coulomb’s law can be applied at each contact point.
This may require a modelling step to properly represent, for instance, bilateral constraints that stem from
revolute joints in a mechanism, see e.g. [5].
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Mathematical notation: A (possibly non symmetric) matrix M ∈ R
n×n is positive semidefinite (M < 0)

if x⊤Mx > 0 for all x ∈ R
n. It is positive definite (M ≻ 0) if x⊤Mx > 0 for all x 6= 0. We denote M < N

ifM−N < 0. For a matrixM , we denoteMi,• its ith row, henceMi,•x is the ith component of the vector
Mx. Similarly M•,j is its jth column. The generalized (Moore-Penrose) inverse of M is denoted M†. The
image of M is denoted im(M) and its kernel ker(M). The identity matrix with suitable dimension is
denoted I. Let the n×n matrix M ≻ 0 be symmetric, then it defines an inner product as 〈x, y〉 = x⊤My

for any x and y ∈ R
n. With this metric, the orthogonal projection of a vector x ∈ R

n on a closed convex
set K ⊂ R

n is denoted as projM [K;x] = argminz∈K
1
2 (z−x)⊤M(z−x). Let x ∈ R

n and y =Mx+r ∈ R
n;

a Linear Complementarity Problem (LCP) is a problem of the form: x > 0, y > 0, x⊤y = 0, written
compactly as 0 6 x ⊥ y > 0. Let x ∈ R

n, z ∈ R
m, w = Cx +Dz + b ∈ R

m; a Mixed LCP (MLCP) is a
problem of the form: x > 0, w > 0, w⊤z = 0, Ax+Bz+a = 0, for some matrices A and B and a vector q.

We denote 0n = (0, . . . , 0)⊤ ∈ R
n, and 0n = (0n)

⊤. The polyhedral set P (A, b)
∆
= {x ∈ R

n|Ax > b}. Let
A ∈ R

n×n be a real square matrix, its induced norm is ||A||2 = maxx∈R
n,||x||2=1 ||Ax||2, where ||x||2 is the

Euclidean norm on the vector space Rn. This induced matricial norm is sometimes denoted as ||A||2,2. One

has ||A||2 = σmax(A) =
√

λmax(AA⊤) [12, Proposition 9.4.7], where σmax is the maximum singular value
of A, and λmin(·) and λmax(·) are its smallest and the largest eigenvalues, respectively [12, Proposition
9.4.7]. Moreover, if A is invertible, σmin(A) =

1
σmax(A−1) , where σmin(A) is the smallest singular value of

A [12, Fact 6.3.21].

1.2 Formulation of the Coulomb friction law

The Coulomb friction law is defined locally at each contact point of the system. At contact i, let us
assume that the geometry of the surface of contact is smooth enough, so that we can define a tangent
plane of contact S and the normal (unitary) vector ni at S. The vector ni, together with two arbitrary
orthonormal vectors t1,i, t2,i lying onto S, define a local basis Bi. We assume that each contact i involves
only two parts of the whole mechanical system, and denote by vi the local (space) relative velocity
between the two parts in contact, which can be decomposed in Bi as a normal part vn,i = v⊤i ni ∈ R and
a tangential part vt,i = {v⊤i t1,i, v⊤i t2,i} ∈ R

2 (when the contact i is closed, then vn,i = 0). As mentioned
earlier, the contact force λi can be similarly decomposed onto its normal part λn,i ∈ R and its tangential
part λt,i ∈ R

2. Let µi be the coefficient of friction at the contact point. It is assumed that the friction
coefficient is constant, though nonlinear Stribeck effects could be added in our framework, see [19, section
5.3.1].
Let us assume that the contact i is active (this trivially holds for bilateral contacts). The Coulomb friction
law, symbolically denoted as (vi, λi) ∈ C(ni, µi), relates the normal and tangential parts of both the local
velocity vi and the local contact force λi according to the following formulations [19, §5.3] [2, §3.9.1] [41,
§5.3.2] [45]:

(vi, λi) ∈ C(ni, µi) ⇐⇒







either ‖λt,i‖ 6 µi|λn,i| and vi = 0 (sticking mode)
or ‖λt,i‖ = µi|λn,i| and vn,i = 0, vt,i 6= 0

and ∃αi > 0, λt,i = −αivt,i (sliding mode).
(2)

In the sliding mode, one equivalently has λt,i = −µi|λn,i| vt,i

|vt,i| . Let us recall that (vi, λi) ∈ C(ni, µi) ⇒
λt,i ∈ D(λn,i, µi), where D(λn,i, µi) = |λn,i|Dµi

is the Coulomb-Moreau’s disk [45] [19, Section 5.3.2], and
Dµi

= {z ∈ R
d−1|z⊤z 6 µ2

i }. Then Coulomb’s law (in velocity) in (2) is equivalently formulated as the
variational inequality: Find λt,i ∈ D(λn,i, µi) such that

v⊤t,i(y − λt,i) > 0 for all y ∈ D(λn,i, µi), (3)

which shows that Coulomb’s friction follows a maximal dissipation “principle”. This variational inequality
is in turn equivalent to:

vt,i ∈ −∂ψD(λn,i,µi)(λt,i) ⇔ λt,i = proj[D(λn,i, µi);λt,i − ρvt,i] for any ρ > 0. (4)
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See Appendix C for the definition of the indicator function of a closed convex set. Notice from (4) that
λt,i ∈ Int(D(λn,i, µi)) implies that vt,i = 0. It is noteworthy that other friction models may be cast into
such nonsmooth, set-valued framework (Coulomb-Moreau’s disk may be replaced by other convex sets,
allowing for anisotropic friction [41, Fig. 5.6]), as well as Stribeck effects in slipping phases [19, Remark
5.16], micro displacements occurring during the sticking phase [2, Section 3.9.4.2], and more elaborated
models [40,66]. A crucial feature is that sticking contacts can be correctly handled when the tangential
velocity vanishes. This can be done only with a model of friction that is set-valued at zero tangential
velocity.

Restriction to the 2D case In the planar case, the tangent space S to the surface of contact is a line and
the local contact basis Bi is defined by two vectors, the normal ni and the tangent ti at contact. The two
cases of the Coulomb law boil down to a single, compact formulation relating the tangential components
of the force and the velocity,

λt,i ∈ −µi|λn,i| sgn(vt,i),

where sgn(x) is the set-valued signum function: sgn(x) = 1 if x > 0, sgn(x) = −1 if x < 0, sgn(0) = [−1, 1].

Coulomb’s law at the acceleration level So far we have formulated the Coulomb friction law at the velocity
level, regardless of the value of the acceleration. When studying the transition between the sticking case
and the sliding case, it is however helpful to make a further assumption pertaining to the value of the
acceleration ai = v̇i. In particular, a common assumption consists in imposing the force λi to lie on the
border of the cone in the sticking case (vi = 0) as soon as the acceleration ai ceases to vanish in the
tangential direction [29,53]. In this case the tangential component λt,i of the force should be parallel and
opposed in sign to at,i. This new model is symbolically denoted as (vi, ai, λi) ∈ C(ni, µi) and summarized
as [19, §5.3.4]:

(vi, ai, λi) ∈ C(ni, µi) ⇐⇒







either







either ‖λt,i‖ 6 µi|λn,i| and vi = 0, ai = 0
or ‖λt,i‖ = µi|λn,i| and vi = 0, an,i = 0, at,i 6= 0

and ∃βi > 0, λt,i = −βiat,i (sticking modes)
or ‖λt,i‖ = µi|λn,i| and vn,i = 0, vt,i 6= 0

and ∃αi > 0, λt,i = −αivt,i (sliding mode).

(5)

The second sticking mode yields an equivalent formulation λt,i = −µi|λt,i| at,i

||at,i|| , while the sliding mode

yields the same αi as in (2). Note that (vi, ai, λi) ∈ C(ni, µi) ⇒ (vi, λi) ∈ C(ni, µi). Compared to the
previous model formulated at the velocity level, a new subcase of the sticking mode has been added here,
which corresponds to a stick→slip transition (vanishing velocity and non-vanishing tangential acceleration
at,i). We may rewrite the first part of the model in (5), named “sticking modes”, as follows [64, Equations
(5) (6)] : If vi = 0 and an,i = 0, find λt,i ∈ D(λn,i, µi) such that:

a⊤t,i(y − λt,i) > 0 for all y ∈ D(λn,i, µi). (6)

This can in turn be formulated equivalently as: If vi = 0 and an,i = 0,

at,i ∈ −∂ψD(λn,i,µi)(λt,i) ⇔ λt,i = proj[D(λn,i, µi);λt,i − ρat,i] for any ρ > 0

⇔ λt,i ∈ ∂ψ⋆
D(λn,i,µi)

(at,i),
(7)

where ψ⋆
D(λn,i,µi)

(·) is the conjugate function of ψD(λn,i,µi)(·), i.e., the support function of the setD(λn,i, µi).

All the quantities in the above are considered at a given time t, and it is of interest to investigate their
evolution on the right of t. Notice that if an,i(t

+) > 0, then vn,i(t
+) > 0, λn,i(t

+) = 0 and it follows from
(7) that λt,i(t

+) = 0 and at,i(t
+) ∈ R, the latter being irrelevant in such a case where the contact opens.
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1.3 Mechanical notation

Since contacts may be frictionless, or in contrast may involve Coulomb’s friction, which in turn may be
in a sliding or sticking mode, the following conventions shall be adopted:

– Contacts: mb bilateral contacts, mu unilateral contacts, mb +mu = m.
– Bilateral contacts: 1 6 i 6 mb, i.e., i ∈ Ib.

– Frictional bilateral contacts: 1 6 i 6 m
µ
b , i.e., i ∈ Iµ

b .

• Sticking frictional bilateral contacts: 1 6 i 6 m
µ,st
b , i.e., i ∈ Iµ,st

b .

• Sliding frictional bilateral contacts: mµ,st
b + 1 6 i 6 m

µ
b , i.e., i ∈ Iµ,sl

b .
– Frictionless bilateral contacts: mµ

b + 1 6 i 6 mb, i.e., i ∈ I0
b .

– Unilateral contacts: mb + 1 6 i 6 m, i.e., i ∈ Iu.
– Frictional unilateral contacts: mb + 1 6 i 6 mµ

u, i.e., i ∈ Iµ
u .

• Sticking frictional unilateral contacts: mb + 1 6 i 6 mµ,st
u , i.e., i ∈ Iµ,st

u .
• Sliding frictional unilateral contacts: mµ,st

u + 1 6 i 6 mµ
u, i.e., i ∈ Iµ,sl

u .
– Frictionless unilateral contacts: mµ

u + 1 6 i 6 m, i.e., i ∈ I0
u.

We thus define ten disjoint index sets with Ib ∪ Iu = (Iµ
b ∪ I0

b ) ∪ (Iµ
u ∪ I0

u) = ((Iµ,st
b ∪ Iµ,sl

b ) ∪ I0
b ) ∪

((Iµ,st
u ∪ Iµ,sl

u ) ∪ I0
u), which correspond to the different modes of the system. We may therefore rewrite

(1a) as

M(q)q̈ + F (q, q̇, t) =
∑

i∈Iµ,st
b

∇hstn,b,i(q)λstn,b,i +
∑

i∈Iµ,sl
b

∇hsln,b,i(q)λsln,b,i +
∑

i∈I0
b
∇h0n,b,i(q)λ0n,b,i

+
∑

i∈Iµ,st
b

Hst
t,b,i(q)λ

st
t,b,i +

∑

i∈Iµ,sl
b

Hsl
t,b,i(q)λ

sl
t,b,i

+
∑

i∈Iµ,st
u

∇hstn,u,i(q)λstn,u,i +
∑

i∈Iµ,sl
u

∇hsln,u,i(q)λsln,u,i +
∑

i∈I0
u
∇h0n,u,i(q)λ0n,u,i

+
∑

i∈Iµ,st
u

Hst
t,u,i(q)λ

st
t,u,i +

∑

i∈Iµ,sl
u

Hsl
t,u,i(q)λ

sl
t,u,i,

(8)

where
∑

i∈Iµ,st
b

∇hstn,b,i(q)λstn,b,i = ∇hstn,b(q)λstn,b, and so on for the remaining terms.

1.4 Systems with 3D frictional persistent sticking contacts

Let us assume that I0
b = I0

u = Iµ,sl
b = Iµ,sl

u = ∅, which implies Iµ,st
b 6= ∅ and Iµ,st

u 6= ∅ and Iµ,st
b ∪Iµ,st

u =
Iu ∪ Ib: all contacts are supposed to be in the sticking mode in (2). An active contact point i is in
a persistent sticking mode on a non-trivial interval [t0, t] if and only if the non-holonomic constraint1

Ht,i(q)
⊤q̇ = vt,i(t) = 0 is satisfied for all t ∈ [t0, t]. We deduce that at,i = Ht,i(q)

⊤q̈ + d
dt (Ht,i(q)

⊤)q̇ = 0
on [t0, t], where q̈(·) is assumed to be right-continuous, i.e. q̈(t) = q̈(t+) (and same for the contact force
multipliers). Since it is supposed that all the contacts are frictional and in sticking mode, it follows that
Hst

t,b(q)
⊤q̈ + d

dt (H
st
t,b(q)

⊤)q̇ = 0 and Hst
t,u(q)

⊤q̈ + d
dt (H

st
t,u(q)

⊤)q̇ = 0 in a right neighborhood of t. Our
objective is to analyse the conditions under which the system with all persistent sticking contacts is
solvable. In other words, such that the following set of equations has at least one solution (the unknowns

1 This is sometimes called rolling friction, or friction without sliding. The expression for the velocities comes from the
principle of virtual work.
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being the acceleration and the contact force multipliers):







(a)M(q)q̈ + F (q, q̇, t) = ∇hstn,b(q)λstn,b +∇hstn,u(q)λstn,u +Hst
t,b(q)λ

st
t,b +Hst

t,u(q)λ
st
t,u

(b) at,b = Hst
t,b(q)

⊤q̈ + d
dt (H

st
t,b(q)

⊤)q̇ = 0

(c) at,u = Hst
t,u(q)

⊤q̈ + d
dt (H

st
t,u(q)

⊤)q̇ = 0

(d) an,b = ∇hstn,b(q)⊤q̈ + d
dt (∇hstn,b(q)⊤)q̇ = 0

(e) 0 6 λstn,u ⊥ an,u = ∇hstn,u(q)⊤q̈ + d
dt (∇hstn,u(q)⊤)q̇ > 0,

(9)

where the time argument has been dropped. The set of equations in (9) forms a mixed LCP. Indeed if the
system (9) has a solution that respects Coulomb’s contraint, the system persists in the all-sticking mode
in a right-neighborhood of t. Assume that M(q) ≻ 0. Using the first line to express the acceleration one
obtains:







(a)M(q)q̈ + F (q, q̇, t) = ∇hstn,b(q)λstn,b +∇hstn,u(q)λstn,u +Hst
t,b(q)λ

st
t,b +Hst

t,u(q)λ
st
t,u

(b) at,b = Hst
t,b(q)

⊤M(q)−1Hst
t,b(q)λ

st
t,b +Rst

t,b(q, q̇, t) = 0

(c) at,u = Hst
t,u(q)

⊤M(q)−1Hst
t,u(q)λ

st
t,u +Rst

t,u(q, q̇, t) = 0

(d) an,b = ∇hstn,b(q)⊤M(q)−1∇hstn,b(q)λstn,b +Rst
n,b(q, q̇, t) = 0

(e) 0 6 λstn,u ⊥ an,u = ∇hstn,u(q)⊤q̈ + d
dt (∇hstn,u(q)⊤)q̇ > 0,

(10)

which is a mixed LCP with unknowns q̈, λstn,b, λ
st
n,u, λ

st
t,b, λ

st
t,u, where:

Rst
t,b(q, q̇, t) = Hst

t,b(q)
⊤M(q)−1[−F (q, q̇, t) +∇hstn,b(q)λstn,b +∇hstn,u(q)λstn,u +Hst

t,u(q)λ
st
t,u]

+ d
dt (H

st
t,b(q)

⊤)q̇,
(11)

Rst
t,u(q, q̇, t) = Hst

t,u(q)
⊤M(q)−1[−F (q, q̇, t) +∇hstn,b(q)λstn,b +∇hstn,u(q)λstn,u +Hst

t,b(q)λ
st
t,b]

+ d
dt (H

st
t,u(q)

⊤)q̇,
(12)

Rst
n,b(q, q̇, t) = ∇hstn,b(q)⊤M(q)−1[−F (q, q̇, t) +∇hstn,u(q)λstn,u +Hst

t,b(q)λ
st
t,b +Hst

t,u(q)λ
st
t,u

+ d
dt (∇hstn,b(q)⊤)q̇.

(13)

2 Bilaterally constrained systems

Let us deal briefly with the bilaterally constrained case. Assume that mu = 0, from (9) (a) (b) (d) one
obtains the system:

(a)





M(q) −∇hstn,b(q) −Hst
t,b(q)

∇hstn,b(q)⊤ 0 0

Hst
t,b(q)

⊤ 0 0





︸ ︷︷ ︸

∆
=Mb(q)∈R(n+dm)×(n+dm)





q̈

λstn,b
λstt,b





︸ ︷︷ ︸

∆
=zb

=





−F (q, q̇, t)
− d

dt (∇hstn,b(q)⊤)q̇
− d

dt (H
st
t,b(q)

⊤)q̇





︸ ︷︷ ︸

∆
=Fb(q,q̇,t)∈Rn+dm

(b) λstt,b,i ∈ D(λstn,b,i, µi) for all 1 6 i 6 m.

(14)
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Part (a) possesses the form of a classical KKT system which is ubiquitous in bilaterally constrained
systems [63,74,27,76] and whose well-posedness conditions have been deeply analysed in [15, Appendix
E] and [36]. We may rewrite (14) (a) equivalently as an optimization problem with equality constraints,
where λstn,b and λstt,b are multipliers associated with the constraints (9) (b) (e). The complete problem
therefore involves constraints (14) (b) on the classical KKT system multipliers. Notice that (9) and (14)
do not rely on the assumption that M(q) ≻ 0. The next result relies on M(q) < 0 solely. It has been
tackled in [36] and [15].

Proposition 1 (i) The system (14) (a) has a unique solution zb for any Fb(q, q̇, t) (equivalently Mb(q)
is invertible) if and only if rank(∇hstn,b(q) Hst

t,b(q)) = dmb (⇒ dmb 6 n), and

ker(M(q)) ∩ ker

(∇hstn,b(q)⊤
Hst

t,b(q)
⊤

)

= {0}. (15)

(ii) Consider the system (14) (a). The necessary and sufficient condition for the existence of q̈, λstn,b and

λstt,b, such that uniqueness of q̈, ∇hstn,b(q)λn,b and Hst
t,b(q)λt,b, holds for arbitrary F (q, q̇, t), is that

− d
dt (∇hstn,b(q)⊤)q̇ ∈ im(∇hstn,b(q)⊤),− d

dt (H
st
t,b(q)

⊤)q̇ ∈ im(Hst
t,b(q)

⊤),

ker(M(q)) ∩ ker

(∇hstn,b(q)⊤
Hst

t,b(q)
⊤

)

= {0}.
(16)

Proof The proof of (i) can be established using [15, Appendix E, item (iii’)], the proof of (ii) follows
from [15, Appendix E, item (iv)].

The interest of item (ii) is that it does not restrict the number of constraints and the rank of the
acceleration constraints matrices, and thus allows for an arbitrary number of contact points. In case (ii)
the matrix Mb(q) is not necessarily full-rank. But since a solution exists that solves Mb(q)zb = Fb(q, q̇, t),
this solution can be expressed as zb = Mb(q)

†Fb(q, q̇, t) + (I −Mb(q)
†Mb(q))y for any y ∈ R

n+dm, and
Mb(q)

† is the generalized inverse of Mb(q) [12, Proposition 6.1.7]. The vector y reflects that there may
be more contact multipliers than independent equations to calculate them.

2.1 Solvability of (14) (a) and (b) (independent constraints)

The next step is to incorporate (14) (b) in the analysis. For this we proceed with the explicit calculation
of the solution to (14) (a), doing the assumptions which allow us to use the matrix inversion lemma [12,
Proposition 2.8.7]. Let us assume that M(q) ≻ 0, ∇hstn,b(q)⊤M(q)−1∇hstn,b(q) ≻ 0, and denote

G(q)
∆
=

(∇hstn,b(q)⊤M(q)−1∇hstn,b(q) ∇hstn,b(q)⊤M(q)−1Hst
t,b(q)

Hst
t,b(q)

⊤M(q)−1∇hstn,b(q) Hst
t,b(q)

⊤M(q)−1Hst
t,b(q)

)

=

(
Gnn(q) Gnt(q)
Gnt(q)

⊤ Gtt(q)

)

, (17)

where G(q) ∈ R
dm×dm, and

SG(q)
∆
= Gtt(q)−Gnt(q)

⊤Gnn(q)
−1Gnt(q) = SG(q)

⊤ ∈ R
(d−1)m×(d−1)m (18)

is the Schur complement of Gnn(q) in G(q). Then supposing that G(q) ≻ 0 (=⇒ SG(q) ≻ 0 by the Schur
complement Theorem), which implies that the gradients ∇hstn,b,i, 1 6 i 6 m are independent, as well as
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the operators Hst
n,b,i, 1 6 i 6 dm, the matrix Mb(q) is invertible and the Banachiewicz-Schur form of its

inverse is [67] 2:

Mb(q)
−1 =









M−1 −M−1(∇hstn,b Hst
t,b)G

−1

(

∇hst,⊤n,b

H
st,⊤
t,b

)

M−1 M−1(∇hstn,b Hst
t,b)G

−1

−G−1

(

∇hst,⊤n,b

H
st,⊤
t,b

)

M−1 G−1









(19)

and

G(q)−1 =

(
G−1

nn +G−1
nnGntS

−1
G G⊤

ntG
−1
nn −G−1

nnGntS
−1
G

−S−1
G G⊤

ntG
−1
nn S−1

G

)

(20)

We infer that (dropping the q argument)

(
λstn,b
λstt,b

)

= G−1

(

∇hst,⊤n,b

H
st,⊤
t,b

)

M−1F (q, q̇, t)−G−1

( d
dt (∇hstn,b(q)⊤)q̇
d
dt (H

st
t,b(q)

⊤)q̇

)

(21)

which could be obtained using (10) (b) (d), (11) and (13). In the following, we call dynamical sticking
the mode which corresponds to sticking contact points (in both tangential and normal directions), in a
dynamical setting (i.e., accelerations and velocities may be non zero).

Proposition 2 (Dynamical sticking, independent constraints) Assume thatM(q) ≻ 0 and G(q) ≻
0. Let (q, q̇) and F (q, q̇, t) be given and consider the three dimensional case (i.e. d = 3). Then the all-
sticking problem (14) (a) (b) has a solution if and only if:

||
([

S−1
G G⊤

ntG
−1
nn

]

2i−1,•[
S−1
G G⊤

ntG
−1
nn

]

2i,•

)
(

d
dt (∇h

st,⊤
n,b )q̇ −∇hst,⊤n,b M−1F (q, q̇, t)

)

+

([
S−1
G

]

2i−1,•[
S−1
G

]

2i,•

)
(

H
st,⊤
t,b M−1F (q, q̇, t)− d

dt (H
st,⊤
t,b )q̇

)

||

6 µi |(G−1
nn +G−1

nnGntS
−1
G G⊤

ntG
−1
nn )i,•

(

∇hst,⊤n,b M−1F (q, q̇, t)− d
dt (∇h

st,⊤
nb )q̇

)

−(G−1
nnGntS

−1
G )i,•

(

H
st,⊤
t,b M−1F (q, q̇, t) + d

dt (H
st,⊤
t,b )q̇

)

|

(22)

for all 1 6 i 6 m.

Proof Directly follows from (21) and (14) (b), noting that the conditions for the invertibility of Mb(q)
are satisfied. �

It may be interesting to formulate the problem another way. To that end let us define F (q, q̇, t) =
C(q, q̇)q̇+P (q) +Fext(t), where C(q, q̇)q̇ accounts for centrifugal and Coriolis forces, P (q) gathers forces
that derive from a potential, Fext(t) are external forces acting on the system, and:

Wt(q)
∆
= S−1

G [−G⊤
ntG

−1
nn∇hst,⊤n,b M−1 +H

st,⊤
t,b M−1]

Vt(q, q̇)
∆
= S−1

G [G⊤
ntG

−1
nn

d
dt (∇h

st,⊤
n,b )q̇ − d

dt (H
st,⊤
t,b )q̇] +Wt(q)[C(q, q̇)q̇ + P (q)]

Wn(q)
∆
= G−1

nn [(I +G−1
nnGntS

−1
G G⊤

ntG
−1
nn )∇hst,⊤n,b M−1 −GntS

−1
G M−1]

Vn(q, q̇)
∆
= G−1

nn [(I +G−1
nnGntS

−1
G G⊤

ntG
−1
nn )

d
dt (∇h

st,⊤
n,b )q̇ −GntS

−1
G

d
dt (H

st,⊤
t,b )q̇] +Wn(q)[C(q, q̇)q̇ + P (q)]

(23)
Then from (20) and (21) λstn,b =Wn(q)Fext(t) + Vn(q, q̇) and λ

st
t,b =Wt(q)Fext(t) + Vt(q, q̇).

2 The q argument is dropped because all the terms are functions of q.
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Proposition 3 (Dynamical sticking, independent constraints) Let q, q̇ and µi, 1 6 i 6 m, be
given, and the conditions of Propositions 2 hold. Then the all-sticking problem has a solution if and only
if there exists a vector Fext(t) such that:

Wt,i,•(q)Fext(t) + Vt,i(q, q̇) = proj[D(Wn,i,•(q)Fext(t) + Vn,i(q, q̇), µi);Wt,i,•(q)Fext(t) + Vt,i(q, q̇)]

⇐⇒ 0 ∈ ND(Wn,i,•(q)Fext(t)+Vn,i(q,q̇),µi)(Wt,i,•(q)Fext(t) + Vt,i(q, q̇))
(24)

for all 1 6 i 6 m.

Proof The conditions of Proposition 2 guarantee that λstn,b =Wn(q)Fext(t)+Vn(q, q̇) and λ
st
t,b =Wt(q)Fext(t)+

Vt(q, q̇) solve (14) (a), using (19)-(21). Using (4) we see that Fext(t) which solves (24) ensures that (14)
(b) holds. The normal cone formulation is a generalized equation and the equivalence follows from (85).
�

Obviously (24) is equivalent to Wt,i,•(q)Fext(t) + Vt,i(q, q̇) ∈ D(Wn,i,•(q)Fext(t) + Vn,i(q, q̇), µi), and to
||λstt,b,i|| 6 µi|λn,b,i|. The advantage of the formalism (24) is that efficient numerical algorithms for fixed-
point calculations may be used to solve it [2, Chapters 10 and 12]. In general there is non uniqueness of
solutions, because several (may be an infinity) external forces can be applied on a system to guarantee an
all-sticking mode. In the following, the above developments are particularized to the static case, where
both the acceleration and the velocity are zero.

Corollary 1 (Statical all-sticking equilibrium, independent constraints) Let q and µi, 1 6 i 6

m, be given, and the conditions of Proposition 2 hold. There exists a static equilibrium (q, q̇) = (q⋆, 0)
with all sticking contact points, if and only if there exists a vector Fext(t) such that:

Wt,i,•(q)(Fext(t) + P (q⋆)) = proj[D(Wn,i,•(q⋆)(Fext(t) + P (q⋆)), µi);Wt,i,•(q)(Fext(t) + P (q⋆))]

⇐⇒ 0 ∈ ND(Wn,i,•(q⋆)(Fext(t)+P (q⋆)),µi)(Wt,i,•(q)(Fext(t) + P (q⋆))),
(25)

for all 1 6 i 6 m.

Notice that (25) is nothing else but (4) with vt,i = 0. Let us investigate now the system’s behaviour in a
right neighborhood of the time t at which all-sticking is assumed to hold.

Proposition 4 Let the conditions of Proposition 2 hold. (i) Suppose that inequality (22) is satisfied
strictly for each i ∈ {1, ...,m}. If all the data are state and time piece-wise Lipschitz continuous, then the
all-sticking mode persists on [t, t+ ε) for some ε > 0. (ii) Suppose that the inequality in (22) is replaced
by an equality for some i ∈ J ⊆ {1, ...,m}, while it is satisfied strictly at the other contact points. If
at,i(t

+) = 0 for all i ∈ J , then the all sticking mode exists at t. If at,i(t
+) 6= 0 for some i ∈ J̄ ⊆ J , then

a stick → slip transition occurs at contacts j ∈ J̄ .

Proof (i) The dynamics of the system is given at t by (10) (a) (b) (d) and (11) (13), with λstn,u = 0 and
λstt,u = 0. Under the conditions of Proposition 2, G(q) ≻ 0 so that this differential-algebraic equation
can be reduced to an ordinary differential equation by computing the multipliers from (11) (13) and
injecting their values into (10) (a). Due to the piece-wise Lipschitz continuity of its right-hand side,
this ODE has a unique local solution in a right-neighborhood of t. This solution (position and velocity)
is continuously differentiable, thus the multipliers λstn,b and λstt,b are, due to (11) (13), time-continuous
functions. Consequently in a right-neighborhood of t the multipliers vary continuously, therefore the
contact reactions stay in the interior of Coulomb’s cone for a non zero period of time, which ends the
proof. (ii) The proof follows from (5).
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2.2 The general case

It is possible to express the generalized inverse Mb(q)
† to obtain a general criterion, just assuming that

M(q) < 0 and without restrictions on the number of contact points, hence not assuming independent
constraints. First notice that after suitable rearrangements, we can rewrite equivalently (14) (a) as:





M(q) −∇hstn,b(q) −Hst
t,b(q)

−∇hstn,b(q)⊤ 0 0

−Hst
t,b(q)

⊤ 0 0





︸ ︷︷ ︸

∆
=M̄b(q)





q̈

λstn,b
λstt,b



 =





−F (q, q̇, t)
d
dt (∇hstn,b(q)⊤)q̇
d
dt (H

st
t,b(q)

⊤)q̇





︸ ︷︷ ︸

∆
=F̄b(q,q̇,t)

(26)

where M̄b(q) is symmetric while Mb(q) in (14) is not. In this section the symmetry is needed because
Proposition 14 is used, which relies on Lemma 3 which needs symmetry. Following Proposition 14 and
Lemma 3, let us denote

R
n×n ∋ E(q)

∆
=M(q) +∇hstn,b(q)∇hstn,b(q)⊤ +Hst

t,b(q)H
st
t,b(q)

⊤ = E(q)⊤ < 0, (27)

and D(q)
∆
=

(∇hstn,b(q)⊤E(q)†∇hstn,b(q) ∇hstn,b(q)⊤E(q)†Hst
t,b(q)

Hst
t,b(q)

⊤E(q)†∇hstn,b(q) Hst
t,b(q)

⊤E(q)†Hst
t,b(q)

)

=

(
Dnn(q) Dnt(q)
Dnt(q)

⊤ Dtt(q)

)

= D(q)⊤ ∈

R
dm×dm, Dnn(q) ∈ R

m×m, Dtt(q) ∈ R
(d−1)m×(d−1)m, Dnt(q) ∈ R

m×(d−1)m. Notice that M(q) ≻ 0 ⇒
E(q) ≻ 0, however we do not assume M(q) full-rank in the next developments.

Lemma 1 The matrix D(q) is positive semidefinite if and only if:

Dnn(q) < 0, Dnt(q) = Dnn(q)Dnn(q)
†Dnt(q), Dnt(q)

⊤Dnn(q)
†Dnt(q) 4 Dtt(q)

⇐⇒ Dtt(q) < 0, Dnt(q) = Dnt(q)Dtt(q)Dtt(q)
†, Dnt(q)Dtt(q)

†Dnt(q)
⊤ 4 Dnn(q).

(28)

Let D(q) < 0, and define Q(q)
∆
= Dtt(q)−D⊤

ntDnn(q)
†Dnt(q). Suppose that Q(q) is nonsingular, then the

Moore-Penrose generalized inverse of D(q) is given by:

D(q)† =

(
D†

nn +D†
nnDntQ

−1D⊤
ntD

†
nn −D†

nnDntQ
−1

−Q−1DntD
†
nn Q−1

)

< 0. (29)

Proof Conditions (28) are necessary and sufficient for positive semidefiniteness of D(q) [12, Proposition
8.2.3]. The second part follows from the results in [59], see Lemma 3 in Appendix A, and from [12,
Proposition 6.1.6 xxvii)] which states that D(q) < 0 ⇔ D(q)† < 0.

The next step is to calculate the generalized inverse of M̄b(q), since from Proposition 14, if the system
(26) is solvable then all solutions are given by zb = M̄b(q)

†F̄b(q, q̇, t) + (I − M̄b(q)
†M̄b(q))y, y ∈ R

dm. In
view of (29) and (79), we should be able to get expressions for λstn,b and λstt,b. Using (79) we find:

M̄b(q)
† =





E† − E†(∇hstn,b Hst

t,b)D
†

(

∇hst,⊤n,b

H
st,⊤
t,b

)

E† −E†(∇hstn,b Hst
t,b)D

†

−(E†(∇hstn,b Hst
t,b)D

†)⊤ DD† −D†




 (30)

from which we deduce:

(
λstn,b
λstt,b

)

= (E†(∇hstn,b Hst
t,b)D

†)⊤F (q, q̇, t) + (DD† −D†)

( d
dt (∇hstn,b(q)⊤)q̇
d
dt (H

st
t,b(q)

⊤)q̇

)

(31)
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In view of Lemma 3 and Proposition 14, this solution is a minimum norm solution. After calculations
using Lemma 1 we find that:

λstn,b =[
(Dnn(q)− I)Dnn(q)

†(I +Dnt(q)Q(q)†Dnt(q)
⊤Dnn(q)

†)−Dnt(q)Q(q)†Dnt(q)Dnn(q)
†] d

dt (∇hstn,b(q)⊤)q̇
−
[
(Dnn(q)− I)Dnn(q)

†Dnt(q) +Dnt(q)
]
Q(q)† d

dt (H
st
t,b(q)

⊤)q̇

−Dnn(q)
†
[

−(I +Dnt(q)Q(q)†Dnt(q)
⊤Dnn(q)

†)∇hstn,b(q)⊤ +Dnt(q)Q(q)†Hst
t,b(q)

⊤
]

E(q)†F (q, q̇, t)

λstt,b =[
Dnt(q)

⊤Dnn(q)
†(I +Dnt(q)Q(q)†Dnt(q)

⊤Dnn(q)
†)− (Dtt(q)− I)Q(q)†Dnt(q)Dnn(q)

†] d
dt (∇hstn,b(q)⊤)q̇

+
[
−Dnt(q)

⊤Dnn(q)
†Dnt(q)Q(q)† + (Dtt(q)− I)Q(q)†

]
d
dt (H

st
t,b(q)

⊤)q̇

+Q(q)†
[

Dnt(q)Dnn(q)
†∇hstn,b(q)⊤ −Hst

t,b(q)
⊤
]

E(q)†F (q, q̇, t).

(32)
Let us denote λstn,b = Wn(q)Fext(t) + Vn(q, q̇) and λstt,b = Wt(q)Fext(t) + Vt(q, q̇). The matrices Wn(q),
Vn(q, q̇), Wt(q) and Vt(q, q̇) can be obtained from (29) and (31), and F (q, q̇, t) = C(q, q̇)q̇+P (q)+Fext(t)
(Coriolis and centrifugal torques, forces that derive from a potential, and external forces and torques).

Proposition 5 (Dynamical sticking, arbitrary constraints) Let M(q) < 0, m(= mb) and n be
arbitrary positive integers, q and q̇ be given, and the conditions of Lemma 1 hold. The all-sticking problem
(14) (a) (b) has a solution if and only if there exists a vector Fext(t) such that:

Wt,i,•(q)Fext(t) + Vt,i(q, q̇) = proj[D(Wn,i,•(q)Fext(t) + Vn,i(q, q̇), µi);Wt,i,•(q)Fext(t) + Vt,i(q, q̇)]

⇐⇒ 0 ∈ ND(Wn,i,•(q)Fext(t)+Vn,i(q,q̇),µi)(Wt,i,•(q)Fext(t) + Vt,i(q, q̇)),
(33)

for all 1 6 i 6 m, where the matrices Wn(q), Wt(q) and the vectors Vn(q, q̇), Vt(q, q̇) are obtained from
(31).

The proof is based on the use of (4). The static equilibrium conditions are easily deduced setting q̇ = 0
in (31) and (33). KKT problems as (14) (a) have been studied using Moore-Penrose generalized inverses
in [75] with full-rank mass matrix, where problems related to the dependence of numerical solutions
to chosen units are analysed. Many other results for (26) may be found in [76,55,73,27,74], with both
uniqueness of contact forces analysis and algorithms for solving the KKT problem.

3 Unilaterally constrained systems

Now we assume that mb = 0 and Iu = Ist
u , thus mu = mst

u = m. We first analyse the contact problem
disregarding the constraints imposed on the contact force by friction (hence implicitly assuming an infinite
coefficient of friction), thus stating necessary conditions for the whole problem to be solvable. Then the
Coulomb’s cone constraint is added to the problem.

3.1 The contact MLCP

We assume that the m unilateral contacts are active, thus hn,u(q(t)) = 0 and ∇hn,u(q(t))⊤q̇(t) = 0,
with continuous velocity. If we assume right-continuous acceleration (q̈(t) = q̈(t+) = limsցt q̈(s) and
an,u(t) = limsցt an,u(s)), and if F (q(t), q̇(t), t) is such that an,u(t) = 0, the contact remains active
in a right-neighborhood of t. However in the general case, it could be that some entries an,u,i satisfy
an,u,i(t

+) > 0: some contacts are deactivated in a right-neighborhood of t while they are sticking at t 3.

3 This kind of transition is often assumed to exist in biped robots control, for instance, when one foot detaches from the
ground at the end of a step where both feet are in persistent all-sticking mode.
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Some continuity conditions on the data will have to be imposed to guarantee that sticking persists. The
detection of tangentially sticking contacts which undergo a stick → slip transition with at,u(t

−) = 0 but
at,u(t

+) 6= 0, can be done using the Coulomb’s law at the acceleration level. When M(q) ≻ 0, we can use
the system in (10), which in this case reduces to:







(a)M(q)q̈ + F (q, q̇, t) = ∇hstn,u(q)λstn,u +Hst
t,u(q)λ

st
t,u

(c) Hst
t,u(q)

⊤M(q)−1Hst
t,u(q)λ

st
t,u +Rst

t,u(q, q̇, t, λ
st
n,u) = 0

(e) 0 6 λstn,u ⊥ an,u = ∇hstn,u(q)⊤q̈ + d
dt (∇hstn,u(q)⊤)q̇ > 0,

(34)

with Rst
t,u(q, q̇, t, λ

st
n,u) = Hst

t,u(q)
⊤M(q)−1[−F (q, q̇, t) + ∇hstn,u(q)λstn,u] + d

dt (H
st
t,u(q)

⊤)q̇. If we deal with
3D friction, d = 3 and λstt,u has dimension 2mu = 2m. In case of planar friction d = 2 and it has
dimension mu = m. The problem in (34) is an MLCP with unknowns λstn,u and λstt,u. There are various

ways to analyse MLCPs [26]. In its full generality we should assume that M(q) = M(q)⊤ < 0 and
Hst

t,u(q)
⊤M(q)−1Hst

t,u(q) < 0 only. The following assumption allows us to transform easily the MLCP into
an LCP:

Assumption 1 Let M(q) ≻ 0 and the matrix R
(d−1)m×(d−1)m ∋ Hst

t,u(q)
⊤M(q)−1Hst

t,u(q) ≻ 0 (⇔
Hst

t,u(q) has full column rank).

Assumption 1 allows us to eliminate λstt,u and to obtain a constrained Delassus’ matrix. Following the
same lines of calculation as in [17], one obtains that (34) (e) is rewritten as an augmented contact LCP
whose matrix is:

Ast
c (q) = ∇hstn,u(q)⊤Mst

c (q)−1∇hstn,u(q) (35)

with
Mst

c (q)−1 ∆
=M(q)−1 −M(q)−1Hst

t,u(q)(H
st
t,u(q)

⊤M(q)−1Hst
t,u(q))

−1Hst
t,u(q)

⊤M(q)−1. (36)

The matrix Mst
c (q)−1 is symmetric positive semi-definite with rank n− (d− 1)m (using [17, Lemma 2],

and the fact that Assumption 1 implies that (d − 1)m 6 n), and it is denoted this way to mimic the
case without bilateral constraints. However Ast

c (q) may have full rank, being the Schur complement of

Hst
t,u(q)

⊤M(q)−1Hst
t,u(q) in the matrix

(
∇hstn,u(q)⊤
Hst

t,u(q)
⊤

)

M(q)−1(∇hstn,u(q) Hst
t,u(q)) (a necessary and suffi-

cient condition for this is that all vectors ∇hstn,u,i(q) and Hst
t,u,i(q) be independent [17] [19, p.252]). The

contact LCP obtained from (34) is therefore equal to [17, section 4]

0 6 λstn,u ⊥ Ast
c (q)λstn,u +Hst

c (q, q̇, t) > 0, (37)

where:

Hst
c (q, q̇, t) = −∇hstn,u(q)⊤Mst

c (q)−1F (q, q̇, t)

−∇hstn,u(q)⊤M(q)−1Hst
t,u(q)(H

st
t,u(q)

⊤M(q)−1Hst
t,u(q))

−1 d
dt (H

st
t,u(q)

⊤)q̇ + d
dt (∇hstn,u(q)⊤)q̇.

(38)
The analytical computation of such expressions, is in general quite cumbersome. We have the following
result that is an extension of Proposition 1, and which holds because Ast

c (q) is symmetric positive (semi)
definite. It characterizes the augmented contact LCP (35) (36) (37) (38).

Proposition 6 (Sticking unilateral constraints) Let Assumption 1 hold. Then:

– (i) The contact LCP in (37) has a unique solution for any Hst
c (q, q̇, t) if and only if Ast

c (q) ≻ 0.
– (ii) Let λstn,u,1 and λstn,u,2 be two solutions of the contact LCP in (37). Then ∇hstn,u(q)(λstn,u,1−λstn,u,2) ∈

ker(Mst
c (q)−1), and (λst,Tn,u,1 − λ

st,T
n,u,2)H

st
c (q, q̇) = 0.

– (iii) Let Im(∇hstn,u(q))∩ Im(Hst
t,u(q)) = {0} for all q ∈ R

n. Let λstn,u,1 and λstn,u,2 be two solutions of the
LCP in (37). Then ∇hstn,u(q)(λstn,u,1 − λstn,u,2) = 0. If the LCP in (37) is solvable then the acceleration
q̈ exists and is unique.
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– (iv) The LCP in (37) is solvable if for any z ∈ R
n in the set of solutions of the homogeneous LCP

0 6 z ⊥ Ast
c (q)z > 0 one has z⊤Hst

c (q, q̇, t) > 0; if d
dt (∇Hst

t,u(q)) = 0 and d
dt (∇hstn,u(q)) = 0 and

Im(∇hstn,u(q)) ∩ Im(Hst
t,u(q)) = {0} for all q ∈ R

n, the LCP in (37) is solvable.

– (v) Suppose that −λ⊤n,u(∇hstn,u(q)⊤M(q)−1 d
dt (H

st
t,u(q)

⊤)q̇+ d
dt (∇hstn,u(q)⊤)q̇) > 0, then the LCP in (37)

is solvable.

Proof The proof follows from [15, Proposition 7], just noting that due to the all-sticking assumption, the
system (34) (or the system (9) (a) (c) (e) (12)) is identical to the system [15, Equation (16)], replacing
the bilateral constraints of [15, Equation (16)] by the frictional sticking constraints. �

Let us now analyse various cases of the so-called planar rocking block. Let (x, y) be the coordinates of its
gravity center (supposed to be the same as the geometric center), θ is the orientation angle (see Figure
2), L is the block’s width, l is its height. This system has two unilateral constraints at the potential

contact/impact points A1 and A2 (provided the base line is assumed to be concave) when y 6
√
l2+L2

2 :

hn,u,1(q) = y − l
2 cos(θ) +

L
2 sin(θ) > 0, and hn,u,2(q) = y − l

2 cos(θ) − L
2 sin(θ) > 0. An external force

Fext(·) acts at the gravity center. The dynamics of the block with Coulomb’s friction is given by [19]:







mẍ(t) = λt,u,1(t) + λt,u,2(t)− F x
ext

mÿ(t) = λn,u,1(t) + λn,u,2(t)− F
y
ext

IGθ̈(t) = λn,u,1(t)
(
l
2 sin(θ(t)) +

L
2 cos(θ(t))

)
+ λn,u,2(t)

(
l
2 sin(θ(t))− L

2 cos(θ(t))
)

+
(
l
2 cos(θ(t))− L

2 sin(θ(t))
)
λt,u,1 +

(
l
2 cos(θ(t)) +

L
2 sin(θ(t))

)
λt,u,2

0 6 λn,u(t) ⊥ hn,u(q(t)) > 0
λt,u,i(t) ∈ −µiλn,u,i(t) sgn(vt,i(t)), i = 1, 2,

(39)

where n = 3, m = 2, d = 2, we have used the expression of Coulomb’s law in 2D (see section 1.2),

IG = m l2+L2

12 , µi > 0 is the friction coefficient at contact i, and vt,i is the tangential velocity at the

point i, i.e., vt,1 = ẋ +
(
l
2 cos(θ)− L

2 sin(θ)
)
θ̇ at A1 and vt,2 = ẋ +

(
l
2 cos(θ) +

L
2 sin(θ)

)
θ̇ at A2 (from

which vt,1 = vt,2 when θ = 0). With q = (x, y, θ)⊤, one can identify M(q) = M , Fext, ∇hn,u(q) =
(
0 1 l

2 sin(θ) +
L
2 cos(θ)

0 1 l
2 sin(θ)− L

2 cos(θ)

)⊤
and Ht,u(q) =

(
1 0 l

2 cos(θ)− L
2 sin(θ)

1 0 l
2 cos(θ) +

L
2 sin(θ)

)⊤
, in (1) from (39). The contact

LCP is given by 0 6 λn,u ⊥ Dnn(θ)λn,u +∇f(θ)⊤M−1Ht(θ)λt,u +B(θ, θ̇) > 0, with

Dnn(θ) =

( 1
m + 1

4IG
(l sin(θ) + L cos(θ))2 1

m + 1
4IG

(l2 sin2(θ)− L2 cos2(θ))
1
m + 1

4IG
(l2 sin2(θ)− L2 cos2(θ)) 1

m + 1
4IG

(l sin(θ)− L cos(θ))2

)

,

and

B(θ, θ̇) =

(
−g + 1

2 θ̇
2(l cos(θ)− L sin(θ))

−g + 1
2 θ̇

2(l cos(θ) + L sin(θ))

)

.

Example 1 Let us consider the system in Figure 1, where both contacts are supposed to stick in both
normal and tangential directions (hence vt,1 = vt,2 = 0, θ̇ = 0, θ = 0, ẋ = 0, ẏ = 0). The configuration

is qst = (x, l
2 , 0)

⊤. Here we have ∇hstn,u(qst) =

(
0 1 L

2

0 1 −L
2

)⊤
∈ R

3×2 which is full column rank, but

Hst
t,u(q

st) =

(
1 0 l

2

1 0 l
2

)⊤
∈ R

3×2, hence Assumption 1 is not satisfied and one cannot construct the

contact LCP in (35) (36) (37) (38). We thus postpone the analysis later, see Example 4.

Example 2 Let us consider the system in Figure 2. Only point A2 is in contact and sticks in both directions
(vt,2 = 0, hn,u,2(q) = y − l

2 cos(θ)− L
2 sin(θ) = 0). Since there is only one contact, Ht,u(q) = Ht,u,2(q) =
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x

y

Fext

A2 A1

L

l

Fig. 1 A 2D rigid block in static equilibrium on a rough ground.

(1, 0, l
2 cos(θ)+

L
2 sin(θ))⊤ is a vector and Assumption 1 is satisfied since this vector is not zero. We have

∇hn,u(q) = ∇hn,u,2(q) = (0, 1, l
2 sin(θ)− L

2 cos(θ))⊤. The matrix

Ast
c (q) =

12

m(l2 + L2)

(

l2 + L2

12
+

(
l

2
sin(θ)− L

2
cos(θ)

)2

−
(
l
2 sin(θ)− L

2 cos(θ)
)2 ( l

2 cos(θ) +
L
2 sin(θ)

)2

l2+L2

12 +
(
l
2 cos(θ) +

L
2 sin(θ)

)2

)

(40)
is a positive scalar, since the vectors Ht,u,2(q) and ∇hn,u,2(q) are independent. Therefore the contact LCP
in (35) (36) (37) (38) always has a unique solution. Let us remind that obviously, this does not mean
that the contact is sticking for any Fext, as we are treating only a necessary condition. The contact LCP
being scalar, it is however easy to envision its two possible outcomes. The first term in the right-hand
side of (38) is:

−∇hstn,u(q)⊤Mst
c (q)−1F (q, q̇, t) = 1

mF
y
ext +

12
l2+L2

(
( l
2 sin(θ)− L

2 cos(θ)
) (

l
2 sin(θ) +

L
2 cos(θ)

)
×

×
(

1 + 12
( l

2 cos(θ)+L
2 sin(θ))

2

l2+L2

)−1

F x
ext

(41)

It is inferred from (41), (35) and (38), that whatever the values of F x
ext and of q̇, a large enough negative

F
y
ext exists to guarantee that λstn,u > 0. Notice also that if θ = arctan

(
L
l

)
(the block’s diagonal A2A3 is

normal to the constraint), then F x
ext plays no role. However, it will play a role when Coulomb’s cone is

taken into account (for the moment, the analysis implicitly assumes an infinite coefficient of friction).

Example 3 Let us consider the system in Figure 3. It has four degrees of freedom, with q = (x, y, θ, α)⊤.
Let us denote a the length of the pendulum, (xp, yp) the coordinates of its gravity center, xp = x +
a
2 cos(α+ θ)− l

2 sin(θ), yp = y+ l
2 cos(θ) +

a
2 sin(α+ θ) (in the figure the system is depicted with θ = 0).

The dynamics of this system is detailed in section D. The big discrepancy with the above two systems, is
that the inertia matrix is no longer constant diagonal. Even if θ = 0 rad, and θ̇ = 0 rad/s, the pendulum’s
motion plays a role in the sticking conditions. The inertial terms in (90) become when θ̇ = 0 rad/s, θ = 0
rad, ẋ = 0 m/s, ẏ = 0 m/s, and y = l

2 m, equal to:

F x(q, q̇, t) = − m̄a
2 α̇

2 cos(α) + F x
ext

F y(q, q̇, t) = − m̄a
2 α̇

2 sin(α) + F
y
ext

F θ(q, q̇, t) = − m̄al
4 α̇2 sin(α)

Fα(q, q̇, t) = 0.

(42)
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x

y

Fext

θ

A2

A3

Fig. 2 A 2D rigid block rotating around A1.

From (42) the first term in (38), it appears that not only the external force but also the inertial effects
due to the pendulum play a role in the sticking problem. We do not continue the calculations, because
inverting the mass matrix in (88) yields quite cumbersome calculations, which should be performed
numerically.

x

y

A2 A1

α

a

L
2

L
2

Fig. 3 A 2D rigid block in static equilibrium on a rough ground with an inverted pendulum at its top.

Remark 2 The LCP matrix Ast
c (q) is supposed to be full rank only in (i) of Proposition 6. The other items

hold for positive semi definite LCP matrices, that is, redundant constraints are allowed. It is noteworthy
that sticking friction under Assumption 1 does not destroy the convexity of the contact complementarity
problem, since the contact LCP matrix Ast

c (q) is always symmetric and positive semi definite, and may
even be positive definite if some conditions are fullfilled as alluded to above. This is a major discrepancy
between sticking and sliding friction, and might explain why sticking modes have always been considered
as being more tractable than sliding modes in the literature.

The generalized force F (q, q̇, t) plays no role in item (v) of Proposition 6, because of the specific structure
of Hst

c (q, q̇, t) in (38). We note anyway that item (v) of Proposition 6 is less general than [70, Theorem 3.1
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(B)], or [54, Theorem 5], which both rely on a similar condition stemming from [25, Theorem 3.8.6] (see
Theorem 1in Appendix), but incorporate the Coulomb’s cone constraint (a similar comment applies to
Proposition 7). Finally we can start from (9) (a) (c) (e) and adapt [15, Proposition 8] straightforwardly
to the unilateral all-sticking contact case. The interest is that it relaxes Assumption 1, in the sense that
Hst

t,u(q) needs not be full column rank.

Proposition 7 Let us consider the contact MLCP with unknowns q̈ and λstn,u in (9) (a) (c) (e). Assume

that M(q) ≻ 0. Suppose that d
dt (H

st
t,u(q)

⊤)q̇ ∈ im(Hst
t,u(q)

⊤). Then the solvability of the contact MLCP

holds if and only if ∇hstn,u(q)[z + y] + d
dt (∇hstn,u(q)⊤)q̇ > 0 for some z ∈ R

n and y ∈ ker(Hst
t,u(q)

⊤).

As alluded to above, this result is also close to [54, Theorem 5], nevertheless the obtained conclusions differ
from those in [54, Theorem 5], because we do not introduce Coulomb’s friction at the acceleration level
as in (5). Indeed this modeling assumption allows one to transform the persistent-sticking mode MLCP
in (34) into an LCP, introducing suitable slack variables. The fundamental assumption (inequality (35)

in [54]) is in our notations: (λst,⊤n,u λ
st,⊤
t,u ) d

dt

(
∇hstn,u(q)⊤
Hst

t,u(q)
⊤

)

q̇ > 0 for all λstt,u ∈ D(µ, λstn,u) and (λstn,u, λ
st
t,u) ∈

ker

(
∇hstn,u
Hst

t,u

)

.

3.2 Analysis of acceleration/multipliers inclusions

In the foregoing section, the contact LCP is obtained using Assumption 1. If the full-rank conditions
are relaxed, one obtains a contact MLCP that is harder to analyse. Inclusions for the acceleration may
be obtained, starting from (9) and relaxing Assumption 1 (hence allowing for an arbitrary number of
constraints). Starting from (9) (a) (c) (e) one obtains the MLCP with unknowns q̈, λstt,u and λstn,u:





M(q) −Hst
t,u(q)

Hst
t,u(q)

⊤ 0





︸ ︷︷ ︸

∆
=Mst

u (q)





q̈(t)

λstt,u(t)





︸ ︷︷ ︸

∆
=z(t)

+





F (q, q̇, t)

d
dt (H

st
t,u(q)

⊤)q̇





︸ ︷︷ ︸

∆
=F st

u (q,q̇,t)

=





∇hstn,u(q)λstn,u(t)

0





0 6 λstn,u(t) ⊥ ∇hstn,u(q)⊤q̈ + d
dt (∇hstn,u(q)⊤)q̇ > 0.

(43)

Similarly to (14), one assumes that M(q) < 0 in (43). One sees that Mst
u (q) is positive semidefinite, non

symmetric, but may have full rank (see [15, Equations (67) and (69)] and [12, Lemma 6.4.20] for rank
calculation). Let us transform the MLCP (43) into a more convenient form. First let us define the set of
R

n:

K
∆
= {w ∈ R

n|∇hstn,u(q)⊤w +
d

dt
(∇hstn,u(q)⊤)q̇ > 0}. (44)

Obviously for given q and q̇, K is a closed polyhedral convex set. We assume that in the sequel of this
section, the following holds:

Assumption 2 Given q and q̇, the set K is non empty.

This is a kind of constraint qualification. The complementarity conditions in (43) are equivalent to the
inclusion: λstn,u ∈ −NR

m
+
(∇hstn,u(q)⊤q̈ + d

dt (∇hstn,u(q)⊤)q̇) (see e.g. [19, section B.2]). Using the fact that

∂ψR
m
+
(x) = NR

m
+
(x), and the chain rule of Convex Analysis [58, Theorem 23.9], the term ∇hstn,u(q)λstn,u

can thus be rewritten equivalently as −NK(q̈), provided that im(∇hstn,u(q)⊤) contains a point of Rm
+ −

d
dt (∇hstn,u(q)⊤)q̇) (which is guaranteed by Assumption 2)4. We can rewrite equivalently the MLCP in (43)

as the inclusion Mst
u (q)z(t) + F st

u (q, q̇, t) ∈ −
(
NK(q̈)

0

)

, where the normal multiplier λstn,u no longer

4 See Appendix B and C for the definition of the indicator function, its subdifferential and the normal cone to a set K.
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appears explicitly but is replaced by a set-valued function of q̈. Consequently we have transformed
the all-sticking contact MLCP in (43) into a problem with unknowns q̈ and λstt,u only. Now we have

NR(d−1)m(λstt,u) = {0}. Let us define the closed convex set K̃ = K × R
(d−1)m ∋ (q̈, λstt,u), we thus obtain

the inclusion equivalent to the MLCP in (43):

Mst
u (q)z(t) + F st

u (q, q̇, t) ∈ −NK̃(z(t)) = −∂ψK̃(z(t)), (45)

where we used the fact that given two closed convex sets K1 ⊆ R
n1 and K2 ⊆ R

n2 , and two vectors

xi ∈ Ki, i = 1, 2, one has ψK1×K2
(x1, x2) = ψK1

(x1)+ψK2
(x2), so that ∂ψK1×K2

(x1, x2) =

(
∂ψK1

(x1)
∂ψK2

(x2)

)

.

The inclusion in (45) is in turn equivalent to the variational inequality: Find z(t) ∈ K̃ such that

〈Mst
u (q)z(t) + F st

u (q, q̇, t), y − z(t)〉 > 0, for all y ∈ K̃. (46)

The existence and uniqueness of solutions for this type of problems, has been studied in [3] (the existence
of solutions to (46) could also be analysed using results in [50], due to the particular form of the function
ϕ(·) in (81)), whose results have been used in [20] for the analysis of an inclusion simpler than (45)
(equivalently an MLCP simpler than (43), see [20, Equation (16)]; and the MLCP in [20, Equation (34)]
has a structure different than (43) because it involves two different multipliers). To analyse the contact
MLCP (43), we will rely on the material in Appendix B. It is noteworthy that the problem we are dealing
with is hard enough because Mst

u (q) is non symmetric and the indicator function ψK̃(·) is not strictly
convex. Clearly (86) cannot be used. Let us define Sst

n,u = {q ∈ R
n|hstn,u(q) > 0}, which under some

suitable conditions on the gap functions hstn,u,i : R
n → R is a prox-regular set [4]. For a matrix H ∈ R

n×m

and a set C ⊆ R
n, H−1(C) = {x ∈ R

m|Hx ∈ C}. The MFCQ definition is given in Appendix C, as well
as the definition of normal cones to prox-regular sets.

Proposition 8 (Sticking unilateral constraints) Let us consider the variational inequality in (46).
Suppose that the constraints hstn,u,i(q), 1 6 i 6 m, satisfy the MFCQ. Let

Est
n,u(q)

∆
= {(x, y) ∈ R

n × R
(d−1)m|x ∈ TSst

n,u
(q) ∩ ker(M(q)) ∩ ker(Hst

t,u(q)
⊤), y ∈ (Hst

t,u(q))
−1(NSst

n,u
(q))}
(47)

Then:

– (i) If Est
n,u(q) = {(0n, 0(d−1)m)}, the contact MLCP in (43), is solvable,

– (ii) if Est
n,u(q) 6= {(0n, 0(d−1)m)} and there exists x0 ∈ K such that F st

u (q, q̇, t)⊤v + x⊤0 H
st
t,u(q)vm > 0

for all v = (v⊤n , v
⊤
m)⊤ 6= (0n, 0(d−1)m)⊤, vn ∈ R

n, vm ∈ R
(d−1)m, and vm ∈ (Hst

t,u)
−1(NSst

n,u
(q)), then

the contact MLCP is solvable.
– (iii) If (q̈1, λst,1t,u ) and (q̈2, λst,2t,u ) are two solutions of the contact MLCP (43), then q̈1− q̈2 ∈ ker(M(q)).

Proof The proof relies on Proposition 16 in Appendix B. First we see that (46) is (81) with ϕ(·) = ψK̃(·),
M = Mst

u (q), q = F st
u (q, q̇, t), u = z(t), v = y. The first step consists in the calculation of the set

(dom(ϕ))∞ ∩ ker{M + M⊤} ∩ K(M, ϕ) in Proposition 16 (a). We have (dom(ϕ))∞ = K̃∞ = {w ∈
R

n|∇hstn,u(q)⊤w > 0} × R
(d−1)m, which is under the MFCQ equal to TSst

n,u
(q) × R

(d−1)m, and we used

Proposition 15 e). Secondly ker(Mst
u (q) +Mst

u (q)⊤) = ker

((
2M(q) 0

0 0

))

= {(x, y) ∈ R
n×(d−1)m|x ∈

ker(M(q)), y ∈ R
(d−1)m}. The third set isK(Mst

u (q), ψK̃) = {(x, y) ∈ R
n×(d−1)m|Mst

u (q)

(
x

y

)

∈
(

K̃∞
)⋆

}.
We have:

(

K̃∞
)⋆

= {(v, w) ∈ R
n×(d−1)m|v⊤x+ w⊤y > 0, for all x ∈ TSst

n,u
(q) and for all y ∈ R

(d−1)m}
= {(v, w) ∈ R

n×(d−1)m|v⊤x > 0 for all x ∈ TSst
n,u

(q), w = 0}
=
(

TSst
n,u

(q)
)⋆

× {0(d−1)m}
= −NSst

n,u
(q)× {0(d−1)m}.

(48)
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It is noteworthy that the normal and tangent cones have to be given a precise meaning, being the set Sst
n,u

non convex in general, see Appendix C. The last equality is obtained because we assume that the set Sst
n,u is

prox-regular, so that the dual cone of its tangent cone is the normal cone, and both cones are understood

in the sense of Clarke. Consequently (x, y) ∈ K(Mst
u (q), ψK̃) ⇔

(
M(q)x−Hst

t,u(q)y
Hst

t,u(q)
⊤x

)

∈
(

K̃∞
)⋆

⇔
M(q)x−Hst

t,u(q)y ∈ −NSst
n,u

(q) and x ∈ ker(Hst
t,u(q)

⊤). Therefore (dom(ϕ))∞∩ker{M+M⊤}∩K(M, ϕ) =

{(x, y) ∈ R
n ×R

(d−1)m|x ∈ TSst
n,u

(q)∩ ker(M(q))∩ ker(Hst
t,u(q)

⊤), y ∈ (Hst
t,u(q))

−1
(

NSst
n,u

(q)
)

} = Est
n,u(q),

where we used that x ∈ ker(M(q)), see the kernel in the second set calculation. Item (i) is proved.
Let us examine now item (ii). Let (x0, y0) ∈ dom(ψK̃) = K̃ ⇔ x0 ∈ K and y0 ∈ R

(d−1)m. The

condition in (83) is equal to: 〈F st
u (q, q̇, t)−Mst

u (q)

(
x0
y0

)

, v〉+ ψK̃∞
(v) > 0 for all v =

(
vn
vm

)

∈ Est
n,u(q).

Notice that ψK̃∞
(v) = ψTSst

n,u
(q)(v1), using Proposition 15 c) and e). Developing the product we find

F st
u (q, q̇, t)⊤v − x⊤0 M(q)vn − y⊤0 H

st
t,u(q)

⊤vn + x⊤0 H
st
t,u(q)vm > 0 for all vn ∈ TSst

n,u
(q) ∩ ker(M(q)) ∩

ker(Hst
t,u(q)

⊤) and for all v2 ∈ (Hst
n,u)

−1(NSst
n,u

(q)). Thus equivalently F st
u (q, q̇, t)⊤v+x⊤0 H

st
t,u(q)v2 > 0 for

all vm ∈ (Hst
t,u)

−1(NSst
n,u

(q)). Item (iii) follows directly from Proposition 16 c). �

The definition of the set Est
n,u(q) shows that the proposed criterion is an extension of the bilateral case in

Proposition 1. It is worth noting that solvability means that there exists q̈(t), λstt,u(t), and λ
st
n,u(t) which

solve (43) (∇hstn,u(q)λstn,u(t) being a selection of the set −NK̃(z(t)) in (45)). Nothing can be deduced about
the uniqueness of the multiplier λstt,u in Proposition 8 (iii), which is in agreement with the well-known
fact that contact forces may be non unique in frictional problems [19, Section 5.5.6]. However acceleration
non-uniqueness is essentially related to the mass matrix singularity. One sees that if there is no friction
(Hst

t,u(q) = 0) and if the constraints are bilateral so that Sst
n,u is a codimensionm submanifold (the tangent

cone thus reduces to the usual tangent space), we recover the criterion in [36]. The next result follows
directly from Proposition 8.

Corollary 2 Let the conditions of Proposition 8 hold. If M(q) ≻ 0 and im(Hst
t,u(q)) ∩ NSst

n,u
(q) = {0n},

then the contact MLCP in (43) is always solvable with uniqueness for q̈(t).

Example 4 (Example 1, continued) Assume that the set Sst
n,u is prox-regular and satisfies the MFCQ, the

normal cone is generated by the normals at the active contact points and is calculated as:

NSst
n,u

(qst) = {z ∈ R
3|z = λ1∇hstn,u,1(qst) + λ2∇hstn,u,2(qst), λ1 > 0, λ2 > 0, 0 6 λ ⊥ hn,u(q) > 0}

= {z ∈ R
3|z = (0, λ1 + λ2,

L
2 (λ1 − λ2))

⊤, λ1 > 0, λ2 > 0, 0 6 λ ⊥ hn,u(q) > 0}
(49)

The set im(Hst
n,u(q

st)) = {z ∈ R
3|z = β(1, 0, l

2 )
⊤, β ∈ R}. Thus any vector in im(Hst

n,u(q
st)) ∩ NSst

n,u
(qst)

must satisfy λ1 + λ2 = 0 ⇒ λ1 = λ2 = 0, and β = 0. Corollary 2 applies.

Besides a full rank inertia matrix, the corollary requires some kind of uncoupling between tangential
and normal directions. It is noteworthy that the sign conditions in the outwards normal cone’s elements,
reflect the unilaterality of the contact. Recall that K is defined in (44).

Corollary 3 Let the conditions of Proposition 8 hold. Assume that {0n} ∈ K. Then the contact MLCP
in (43) is solvable provided that F st

u (q, q̇, t)⊤v > 0 for all v = (v⊤n , v
⊤
m)⊤ 6= (0n, 0(d−1)m)⊤, vn ∈ R

n,
vm ∈ R

(d−1)m, and vm ∈ (Hst
n,u)

−1(NSst
n,u

(q)).

Notice that {0n} ∈ K is guaranteed if d
dt (∇hstn,u(q)⊤)q̇ = 0, which occurs in statics (q̇ = 0) or if ∇hstn,u(q)

is a constant.

Remark 3 We could choose to work with a slightly transformed equivalent problem involving the sym-

metric matrixMst
u (q) =

(
M(q) −Hst

t,u(q)
−Hst

t,u(q)
⊤ 0

)

. This matrix is never positive semidefinite as this would
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require that −Hst
t,u(q)

⊤M(q)†Hst
t,u(q) < 0 [12, Proposition 8.2.3], which is clearly impossible excepted if

Hst
t,u(q) is the zero matrix (the class of quasi-positive-semi-definite (QPSD) matrices [24], a relaxed form

of QPD matrices [71], which enjoy block-diagonal factorizations, may be a future path of investigations).
This is the reason why we chose to work with (43) instead, with a matrix with a skew-symmetric part,
enabling us to apply Proposition 16. This is a big difference with the bilaterally constrained case (26),
which does not rely on any positivity of the matrix M̄b(q), but just on linear algebra arguments, so
that the symmetric form in (26) is usually chosen [75,55,27,76]. But unilaterality yields complementarity
problems which need some positivity. However skew-symmetry hampers the use of items b’), d) and e)
of Proposition 16 in Appendix B.

3.3 Adding the Coulomb’s cone constraint

In the above two sections 3.1 and 3.2, we have derived the problems to be studied for the all-sticking
mode, and some well-posedness results for the contact problem, assuming that the contact force is not
constrained. Consequently the above results can be seen as necessary conditions for the complete contact
problem to be well-posed, in the sense that if the condition of Corollary 2 applies, one still has to check
that the solution satisfies Coulomb’s constraint. However, if there is no solution to the above problem,
then the complete problem has no solution. Let us now formulate the complete problem, that includes

Coulomb’s constraint Λst
t,i =

(
λstt,1,i
λstt,2,i

)

∈ D(µi, λn,u,i) at all the contact points i. Let us assume that

the contacts have been ordered such that λt,u = (λt,u,1,1 λt,u,1,2 λt,u,2,1 λt,u,2,2...λt,u,m,1 λt,u,m,2)
⊤ =

(Λt,u,1 Λt,u,2...Λt,u,m)⊤. Coulomb’s constraint can therefore be written as λstt,u ∈ D(µ, λstn,u) with

D(µ, λstn,u)
∆
= D(µ1, λ

st
n,u,1)× ...×D(µm, λ

st
n,u,m). (50)

Proposition 8 makes minimal assumptions on the system, however it does not provide many informations
on the solutions. Therefore suppose that Assumption 1 holds, securing that Mst

c (q)−1 in (36) is defined.
Then using (10) (c) and (12) the complete all-sticking problem boils down to analysing whether or not
the problem:







−λstt,u = (Hst
t,u(q)

⊤M(q)−1Hst
t,u(q))

−1Rst
t,u(q, q̇, t, λ

st
n,u) ∈ −D(µ, λstn,u)

0 6 λstn,u ⊥ Ast
c (q)λstn,u +Hst

c (q, q̇, t) > 0,
(51)

is solvable with unknown λstn,u, possibly with uniqueness. It follows from the expression of Rst
t,u(q, q̇, t, λ

st
n,u)

in (34) that λstn,u is multiplied by the inertial normal/tangential coupling matrixHst
t,u(q)

⊤M(q)−1∇hstn,u(q).
Using (51) we can state the following result.

Proposition 9 (Frictional, sticking unilateral constraints with Coulomb’s cone) Let Assump-
tion 1 hold.

(i) The mode corresponding to sticking unilateral contacts has a solution, if and only if the problem:





Hst
t,u(q)

⊤M(q)−1∇hstn,u(q)

Ast
c (q)



λstn,u +





Hst
t,u(q)

⊤M(q)−1F (q, q̇, t)− d
dt (H

st
t,u(q)

⊤)q̇

Hst
c (q, q̇, t)





∈ −





Hst
t,u(q)

⊤M(q)−1Hst
t,u(q) 0

0 I










D(µ, λstn,u)

N
R

mst
u

+

(λstn,u)






(52)

is solvable.
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(ii) Assume now that Ast
c (q) in (35) is positive definite. Then the mode corresponding to sticking

unilateral contacts has a solution, if and only if the problem:






Hst
t,u(q)

⊤M(q)−1F (q, q̇, t)− d
dt (H

st
t,u(q)

⊤)q̇ +Hst
t,u(q)

⊤M(q)−1∇hstn,u(q) λstn,u

∈ −Hst
t,u(q)

⊤M(q)−1Hst
t,u(q) D(µ, λstn,u)

λstn,u = projAst
c (q)[R

mst
u

+ ;−Ast
c (q)−1Hst

c (q, q̇, t)]

(53)

is solvable, where Hst
c (q, q̇, t) is in (38).

Proof (i) follows from (51) and the definition of Rst
t,u(q, q̇, t, λ

st
n,u) in (12). Item (ii) follows from (i) and

application of (86). �

Assumption 1 is needed to state (52) because of (38) and (36). Imposing Ast
c (q) ≻ 0 in (53) is even more

stringent. The problem (52) is a generalized equation with unknown λstn,u, i.e., an equation of the form
0 ∈ f(λstn,u) + F (λstn,u), with f(·) single-valued, F (·) multivalued functions, where the external action, q,
q̇ and µ are given data. The problem in (53) is a generalized equation where q, q̇ and possibly µ and the
external action, are the unknowns, since the multiplier λstn,u is calculated explicitly as a function of q, q̇
and external actions.
The solvability of the generalized equations (53) (52) may have several meanings: given q, q̇ and µi, find
an external force F (q, q̇, t); or given F (q, q̇, t) (inertial forces and external forces applied on the system),
find the state q, q̇ and friction coefficients µi; or find external forces, q, q̇ and µ. Uniqueness usually fails.
The problem tackled here is similar to the problem studied in [54, Section 4]. Instead of assuming that
Ast

c (q) in (35) is positive definite, we may simply suppose that the LCP is solvable, using Proposition 5
(iv). Then if one solution can be computed, it suffices to check whether or not the first line of (53) is
satisfied.

t1,i

t2,i

D̄µi

Dµi

Fig. 4 Inner polyhedral approximation of Coulomb-Moreau’s disk.

Let us describe a method for solving (53) when the sets Dµi
are facetized with an inner approximation as

depicted in Figure 4, where we recall that at each contact point D(λn,i, µi) = |λn,i|Dµi
and Dµi

= {z ∈
R

d−1|z⊤z 6 µ2
i }. The facetized sets are convex polyhedral sets denoted D̄µi

= {w ∈ R
d−1|Cµi

w+Dµi
> 0}

for Cµi
∈ R

l×(d−1) and Dµi
∈ R

l. The integer l depends on the number of facets of the approximation.
This operation makes sense only if d = 3 (3D friction), for otherwise the Coulomb-Moreau disk is already
facetized, being an interval. In order to prepare the next proposition, let us first rewrite more compactly
(53). Let us denote

F̃ (q, q̇, t)
∆
= Hst

t,u(q)
⊤M(q)−1F (q, q̇, t)− d

dt
(Hst

t,u(q)
⊤)q̇ +Hst

t,u(q)
⊤M(q)−1∇hstn,u(q) λstn,u(q, q̇, t)
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and

Ast
tt(q)

∆
= Hst

t,u(q)
⊤M(q)−1Hst

t,u(q) ∈ R
(d−1)m×(d−1)m. (54)

We further define Ãst
tt(q, q̇, t)

∆
= Ast

tt(q) blockdiag

[(
λstn,u,i 0
0 λstn,u,i

)]

∈ R
(d−1)m×(d−1)m, where we recall

that from (53) λstn,u = λstn,u(q, q̇, t), being the projection of a known quantity. Thus the inclusion in (53)

is rewritten in its facetized form as F̃ (q, q̇, t) + Ãst
tt(q, q̇, t) z = 0 where

z = (z11 z12, z21 z22, . . . , zi1 zi2, . . . , zm1 zm2)
⊤ ∈ R

(d−1)m, and zi =

(
zi1
zi2

)

∈ D̄µi
.

Finally we set Cµ
∆
= blockdiag(Cµi

) ∈ R
ml×(d−1)m, Dµ

∆
= (D⊤

µ1
, . . . , D⊤

µm
)⊤, D̄µ

∆
= D̄µ1

× . . .×D̄µm
. Hence

D̄µ = {z ∈ R
(d−1)m|Cµz +Dµ > 0} = P (Cµ, Dµ) and the facetized inclusion becomes

F̃ (q, q̇, t) = −Ãst
tt(q, q̇, t) z, z ∈ D̄µ. (55)

It is noteworthy that both D̄µ and Dµ are non-empty convex bounded closed (hence compact) sets.

Proposition 10 Let q, q̇ and external actions be given. Assume that z⋆ is a solution of (55), then z⋆

also solves the inclusion

Ãst
tt(q, q̇, t)

⊤Ãst
tt(q, q̇, t) z

⋆ + Ãst
tt(q, q̇, t)

⊤F̃ (q, q̇, t) ∈ −ND̄µ
(z⋆). (56)

Proof Assume that z⋆ solves (55). Then z⋆ is a solution of the quadratic program:







minz
1
2 (F̃ (q, q̇, t) + Ãst

tt(q, q̇, t) z)
⊤(F̃ (q, q̇, t) + Ãst

tt(q, q̇, t) z)

subject to: z ∈ D̄µ.

(57)

From the expression of D̄µ, the (necessary and sufficient) KKT conditions for the problem (57) are given
by:







Ãst
tt(q, q̇, t)

⊤Ãst
tt(q, q̇, t)z

⋆ + Ãst
tt(q, q̇, t)

⊤F̃ (q, q̇, t)− C⊤
µ λ = 0

0 6 λ ⊥ Cµz
⋆ +Dµ > 0,

(58)

which is an MLCP. We can rewrite equivalently (58) as Ãst
tt(q, q̇, t)

⊤Ãst
tt(q, q̇, t)z

⋆+ Ãst
tt(q, q̇, t)

⊤F̃ (q, q̇, t) ∈
−C⊤

µ ∂ψR
ml
+
(Cµz

⋆ + Dµ). Since the indicator function of a polyhedron is a polyhedral function [35],

applying the chain rule [21, Proposition A.2], we obtain equivalently (56). �

The interest of (56) is that the matrix Ãst
tt(q, q̇, t)

⊤Ãst
tt(q, q̇, t) < 0, and it is symmetric. It is note-

worthy that Ast
tt(q) in (54) is ≻ 0 in case (ii), because Ast

c (q) ≻ 0 if and only if all constraints are
independent, using the Schur complement Theorem. Consequently the rank of Ãst

tt(q, q̇, t), and in turn of

Ãst
tt(q, q̇, t)

⊤Ãst
tt(q, q̇, t), depends on the rank of blockdiag

[(
λstn,u,i 0
0 λstn,u,i

)]

only. We can apply Propo-

sition 16 to analyse the well-posedness of the following variational inequality, which is equivalent to
(56):

Find z⋆ ∈ D̄µ such that:

〈Ãst
tt(q, q̇, t)

⊤Ãst
tt(q, q̇, t) z

⋆ + Ãst
tt(q, q̇, t)

⊤F̃ (q, q̇, t), y − z⋆〉 > 0, for all y ∈ D̄µ.

(59)

The variable z⋆ is a selection of the facetized Coulomb-Moreau’s disk, which guarantees that the active
contacts are tangentially sticking.
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Corollary 4 (i) The variational inequality in (59) is always solvable; (ii) If z⋆1 and z⋆2 are two solutions

then z⋆1 − z⋆2 ∈ ker

(

blockdiag

[(
λstn,u,i 0
0 λstn,u,i

)])

; (iii) Moreover 〈Ãst
tt(q, q̇, t)

⊤F̃ (q, q̇, t), z⋆1 − z⋆2〉 = 0.

Proof (i) Let us first calculate the set (dom(ϕ))∞ ∩ ker{M} ∩ K(M, ϕ) in Proposition 16. We have
M = Ãst

tt(q, q̇, t)
⊤Ãst

tt(q, q̇, t), ϕ = ψD̄µ
, hence dom(ϕ) = D̄µ. Using Proposition 15 e) f) we infer that

(dom(ϕ))∞ = (D̄µ)∞ = {z ∈ R
(d−1)m|Cµz > 0} = P (Cµ, 0) = {0}, because D̄µ is a bounded closed con-

vex set. Thus (i) follows from Proposition 16 a). Secondly ker(Ãst
tt(q, q̇, t)

⊤Ãst
tt(q, q̇, t)) = ker(Ãst

tt(q, q̇, t))
[12, Theorem 2.4.3]. As we have seen above, under the conditions for (53) we have Ast

tt(q) ≻ 0. There-

fore ker(Ãst
tt(q, q̇, t)) = ker

(

blockdiag

[(
λstn,u,i 0
0 λstn,u,i

)])

. Thus (ii) follows from Proposition 16 c), using

once again that Ast
tt(q) is full rank. (iii) is a consequence of Proposition 16 d). �

Notice that the uniqueness condition in Proposition 16 e) cannot hold. Indeed 〈Ãst
tt(q, q̇, t)

⊤F̃ (q, q̇, t), e〉 =
F̃ (q, q̇, t)⊤Ãst

tt(q, q̇, t)e and this is equal to zero for all e ∈ ker(Ãst
tt(q, q̇, t)

⊤Ãst
tt(q, q̇, t)) = ker(Ãst

tt(q, q̇, t)).
We could have followed a similar path without facetization and working with Dµ. However the facetization
paves the way to the use of efficient numerical solvers for MLCPs as (58).

Recapitulation : z⋆ solution of (53) ⇐ z⋆ solution of (55)
=⇒
⇐=

if min = 0
z⋆ solution of (57) ⇔ z⋆ solution

of (58) ⇔ z⋆ solution of (56) ⇔ z⋆ solution of (59). Thus in practice Corollary 4 provides sufficient
conditions for the solvability of (59), and the QP (57) can be numerically solved. If the obtained solutions
imply that the quadratic objective function vanishes, the all-sticking problem is solved.

What about problem (52) in Proposition 9 (i)? Proposition 6 can be used to check whether the contact
LCP (37) (38) is solvable with uniqueness. Getting an analytical expression for one solution λstn,u with
Ast

c (q) < 0 only, is not doable in general. One can nevertheless numerically compute one solution and
then inject its numerical value in the problem. The only missing step compared with (53), is that the
projection is not available.

The most general problem with no rank assumption, consists of the MLCP (43) with the constraint
λstt,u ∈ D(µ, λstn,u). One thus obtains the following problem, where no assumptions are made a priori on
the rank of matrices:







(a)M(q)q̈ + F (q, q̇, t)−∇hstn,u(q)λstn,u −Hst
t,u(q)λ

st
t,u = 0

(b) Hst
t,u(q)

⊤q̈ + d
dt (H

st
t,u(q)

⊤)q̇ = 0

(c) 0 6 λstn,u ⊥ an,u = ∇hstn,u(q)⊤q̈ + d
dt (∇hstn,u(q)⊤)q̇ > 0

(d) λstt,u ∈ blockdiag

(
λstn,u,i 0
0 λstn,u,i

)

Dµ.

(60)

This is a mixed nonlinear CP, with unknowns q̈, λstn,u, λ
st
t,u, and data µ, q, q̇, and external actions. The

major discrepancy with respect to (52) and (53), is that we have no means to first calculate λstn,u in (60).

Proposition 11 Assume that the conditions of solvability in Proposition 8 (i) or (ii) are satisfied. Then
there exists µmin < +∞ such that problem (60) (a)-(d) has at least a solution for all µ > µmin.

Proof The MLCP (43) (which is (60) (a) (b) (c)) being solvable, one can find at least one triplet
(q̈(t), λstt,u, λ

st
n,u) which solves (60) (a) (b) (c). The set Dµ can be enlarged increasing µi’s so that the

inclusion (60) (d) is satisfied. �

In particular, µ = 0 implies λstt,u = 0, so that solving the MLCP (60) (a) (b) (c) is a test for sticking
contact existence with no friction (called the frictionless stability in [52]).
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3.4 Another way to tackle the problem

If we don’t want to allow for the possibility of an,u,i(t
+) > 0 for some i (a possible outcome of the

foregoing problem, which involves complementarity conditions in (43) and in (60)), then we may state
right from the beginning that an,u(t

+) = 0 and construct a linear algebraic problem similar to (14) (a),
adapting the matrices to cope with the unilateral constraint case. One big difference with the bilateral
constraints case, is however that we have to check that the solution satisfies λstn,u(t) > 0 (or > 0). The
complete problem thus takes the form:

(a)





M(q) −∇hstn,u(q) −Hst
t,u(q)

∇hstn,u(q)⊤ 0 0
Hst

t,u(q)
⊤ 0 0









q̈(t)
λstn,u(t)
λstt,u(t)



 =





−F (q, q̇, t)
− d

dt (∇hstn,u(q)⊤)q̇
− d

dt (H
st
t,u(q)

⊤)q̇





(b) λstn,u(t) > 0

(c) λstt,u ∈ blockdiag

(
λstn,u,i 0
0 λstn,u,i

)

Dµ.

(61)

All the results obtained in section 2 can be repeated for (61) (a) and (c). One can invert (61) (a) as
done in (30) (31) and check whether or not (61) (b) and (c) hold. In general this will be possible only
numerically. The great advantage of working with complementarity conditions, is that it allows one to
formulate conditions for the existence of solutions. This is not the case of problem (61) which is basically
a linear algebra problem whose solutions have to satisfy a signum constraint. Notice that it is always
possible to solve the problem allowing for an,u,i(t

+) > 0, and then eliminate unwanted situations where
some contacts detach, using a suitable numerical test. It is noteworthy that we have no general criterion
for the existence of solutions to (61) (a) (b).

Example 5 Let us consider the manipulation problem depicted in Figure 5, where three “fingers” with
prismatic joints are used. All coordinates are in the Galilean frame L0 = (0, i, j). The gravity center G co-
ordinates are (x, y), each finger tip Ai has coordinates (xi, yi), 1 6 i 6 3, with y1, x2 and y3 constant, Bi is
the projection of Ai onto the closest the segment of the rectangular object with width L and height l, A is
the right bottom corner with coordinates (xA, yA), the local frames Li at the potential contact points are
(Bi,ni, ti), to simplify we denote n = (cos(θ), sin(θ))⊤ and t = (sin(θ),− cos(θ))⊤ for the normal and tan-
gential unit vectors as indicated in the Figure. The mass matrix is M = diag(m,m, IG,m1,m2,m3), and

q = (x, y, θ, x1, y2, x3)
⊤ ∈ R

6, n = 6, m = mu = 3, d = 2. We also let β(x, y, θ)
∆
= − sin(θ)yA − cos(θ)xA.

The gap functions hn,u,i(q) are computed from hn,u,i(q) = (AiBi)
⊤ni, thus hn,u,3(q) = (A3B3)

⊤n. The
projection B3 may be calculated from the KKT conditions which yield mina,b

1
2 (a − x3)

2 + 1
2 (b − y3)

2

subject to sin(θ)b + cos(θ)a + β(x, y, θ) = 0, so that B3 = (a, b)⊤ with xB3
= a = x3 − cos2(θ)x3 −

β(x, y, θ) cos(θ)−cos(θ) sin(θ)y3, yB3
= b = y3−sin2(θ)y3−β(x, y, θ) sin(θ)−sin(θ) cos(θ)x3. Consequently

hn,u,3(q) = (A3B3)
⊤n = (x3−xA(x, y, θ)) cos(θ)+(y3−yA(x, y, θ)) sin(θ), xA = x+ 1

2

√
L2 + l2 sin(α+θ),

yA = y − 1
2

√
L2 + l2 cos(α + θ), thus hn,u,3(q) = (x3 − x + 1

2

√
L2 + l2 sin(α + θ)) cos(θ) + (y3 − y +

1
2

√
L2 + l2 cos(α + θ)) sin(θ). Performing rotations of the Galilean frame it is inferred that hn,u,2(q) =

(y2 − y + 1
2

√
L2 + l2 sin(ᾱ + θ)) cos(θ) + (−x2 + x + 1

2

√
L2 + l2 cos(ᾱ + θ)) sin(θ), hn,u,1(q) = (−x1 +

x+ 1
2

√
L2 + l2 sin(α+ θ)) cos(θ) + (−y1 + y+ 1

2

√
L2 + l2 cos(α+ θ)) sin(θ). The gradient ∇hn,u(q) in the

right-hand side of (1a) is deduced easily. Notice that d
dthn,u,i(q) =

(
d
dt (AiBi)

⊤)n+ (AiBi)
⊤ dn

dt . However
dn
dt |L0

= dn
dt |Li

+ΩL0/Li
× n, hence (AiBi)

⊤ dn
dt = 0 because n is fixed in Li, while ΩL0/Li

× n is orthog-

onal to n and AiBi is colinear to n5. Hence d
dthn,u,i(q) =

(
d
dt (AiBi)

⊤)n = vn,u,i = ∇hn,u,i(q)⊤q̇ (all

vectors being expressed in L0). In the same way an,u,i =
(

d2

dt2 (AiBi)
⊤
)

n+
(

d
dt (AiBi)

⊤) (ΩL0/Li
× n) =

∇hn,u,i(q)⊤q̈ + d
dt (∇hn,u,i(q)⊤)q̇.

5 Vector product is calculated adding 0 as the third component of vectors.
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Let us now deal with relative tangential velocities at contact points when the contacts are activated.

The relative velocity at contact 3 is given by Vr,3
∆
= VA3

− VB3
where both vectors are expressed in

L0. We have VA3
= (ẋ3, ẏ3, 0)

⊤, VB3
= (ẋ3 + 2θ̇ cos(θ) sin(θ)x3 − cos2(θ)ẋ3 − β̇ cos(θ) + θ̇β sin(θ) +

θ̇sin2(θ)y3 − θ̇ cos2(θ)y3 − cos(θ) sin(θ)ẏ3, ẏ3 − 2θ̇ cos(θ) sin(θ)y3 − sin2(θ)ẏ3 − β̇ sin(θ) − βθ̇ cos(θ) −
θ̇ cos2(θ) + θ̇ sin2(θ)x3 − sin(θ) cos(θ)ẋ3, 0)⊤, with ẏ3 = 0. One obtains the following: vr,t,3 = V ⊤

r,3t =
(0, 0,− cos(θ)x3 − sin(θ)y3 − β(x, y, θ), 0, 0, 0)
︸ ︷︷ ︸

∆
=H⊤

t,u,3

q̇. The same can be redone at contacts 1 and 2, andHt,u(q) =

(
Ht,u,1(q) Ht,u,2(q) Ht,u,3(q)

)
∈ R

6×3.

The external action atG on the object is given by Fext/ob(t) = (Fext/ob,x(t), Fext/ob,y(t), Cext/ob,θ(t), 0, 0, 0)
⊤,

where Cext/ob,θ(t) is a torque which works on θ. Each finger i is acted upon by a force Fext/i(t),

giving Fext,f (t) = (0, 0, 0, Fext/1(t), Fext/2(t), Fext/3(t))
⊤. Notice that due to the constant M , one has

F (q, q̇, t) = Fext/ob(t) + Fext/f (t). The MLCP in (43) can be constructed and analysed using the above
results. The first step in the analysis of the problem, is to apply Proposition 8. Since rank(M) = 6,
this boils down to checking whether or not the inclusion y ∈ (Hst

t,u(q))
−1(NSst

n,u
(q)) has the 6-vector

(0, 0, . . . , 0)⊤ as its unique solution (item (i)). If not, check item (ii). Using the material in Appendix
C, one sees that this inclusion can be transformed in a problem of the form: find y and λi > 0 such
that Hst

t,u(q)y = −∑3
i=1 λi∇hn,u,i(q). One feature of the MLCP in (43) is that Mst

u (q) is a sparse ma-
trix, which can easily be rendered symmetric for the purpose of numerical solvers. In case of constraints
redundancy that imply loss of rank, efficient interior point algorithms can be used to solve the MLCP.
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Fig. 5 A robotic planar manipulation task.
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4 Unilaterally/bilaterally constrained systems (all-sticking contacts)

Let us now deal with the more general case with both bilateral and unilateral constraints, which gives
rise to the mixed LCP in (10)-(13). As above we first study the case without Coulomb’s cone constraints,
then these constraints are inserted.

4.1 Augmented contact LCP

Consider (b) (c) (d) in (10) as well as (11) (12) and (13). It is possible to rewrite equivalently the three
equations (b) (c) (d) in (10) as:

H1(q)





λstt,b
λstt,u
λstn,b



+ F(q, q̇, t) +H2(q)λ
st
n,u = 0. (62)

The matrix H1(q) in the right-hand side of (62) has the three matrices:

Hst
t,b(q)

⊤M(q)−1Hst
t,b(q), H

st
t,u(q)

⊤M(q)−1Hst
t,u(q), ∇hstn,b(q)⊤M(q)−1∇hstn,b(q)

on its diagonal. The off-block-diagonal sub-matrices are made of dynamic couplings between the three
multipliers λstt,b, λ

st
t,u and λstn,b, i.e., terms of the form Hst

t,b(q)
⊤M(q)−1Hst

t,u(q), H
st
t,b(q)

⊤M(q)−1∇hstn,b(q),
etc. One has

F(q, q̇, t)
∆
=





−Hst
t,b(q)

⊤M(q)−1F (q, q̇, t) + d
dt (H

st
t,b(q)

⊤)q̇
−Hst

t,u(q)
⊤M(q)−1F (q, q̇, t) + d

dt (H
st
t,u(q)

⊤)q̇
−∇hstn,b(q)⊤M(q)−1F (q, q̇, t) + d

dt (∇hstn,b(q)⊤)q̇





H2(q)
∆
=





Hst
t,b(q)

⊤M(q)−1∇hstn,u(q)
Hst

t,u(q)
⊤M(q)−1∇hstn,u(q)

∇hstn,b(q)⊤M(q)−1∇hstn,u(q)



 .

Assumption 3 One has:

Hst
t,b(q)

⊤M(q)−1Hst
t,b(q) ≻ 0, Hst

t,u(q)
⊤M(q)−1Hst

t,u(q) ≻ 0, ∇hstn,b(q)⊤M(q)−1∇hstn,b(q) ≻ 0.

Lemma 2 Let Assumption 3 hold true. Consider the matrix H1(q) in (62). If the dynamical couplings
between the three multipliers λstt,b, λ

st
t,u and λstn,b are small enough, then H1(q) is invertible.

The proof follows from diagonal dominance [12, Fact 4.10.15]. If the conditions of Lemma 2 are satisfied,
(a) and (e) in (10) can be used to deduce that the contact LCP matrix is given this time by (compare
with (35) (36) (37) (38)):

Ast
c (q) = ∇hstn,u(q)⊤M(q)−1[∇hstn,u(q)− (Hst

t,b(q) H
st
t,u(q) ∇hstn,b(q))H1(q)

−1H2(q)] (63)

We may now use Corollary 5 to state conditions under which Ast
c (q) ≻ 0.

Proposition 12 Suppose that M(q) ≻ 0, Ast
n,u(q)

∆
= ∇hstn,u(q)⊤M(q)−1∇hstn,u(q) ≻ 0. Assume that:

σmax(∇hstn,u(q)⊤M(q)−1(Hst
t,b(q) H

st
t,u(q) ∇hstn,b(q)))σmax(H2(q)) < σmin(A

st
n,u(q))σmin(H1(q)). (64)

Then the matrix Ast
c (q) in (63) is positive definite, consequently the contact LCP that results from (10)–

(13) always has a unique solution.

Proof The proof is a consequence of Corollary 5. �

One sees that the inequality (64) boils down to designing systems with small enough crossed nor-
mal/tangential inertial couplings.
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4.2 Analysis of acceleration inclusions

Starting from (9) and including Coulomb’s cone constraints one obtains a direct extension of (60), as the
following problem with unknowns q̈(t), λstn,b(t), λ

st
t,b(t), λ

st
t,u(t), λ

st
n,u(t):







(a)







M(q) −∇hstn,b(q) −Hst
t,b(q) −Hst

t,u(q)

∇hstn,b(q)⊤ 0 0 0

Hst
t,b(q)

⊤ 0 0 0

Hst
t,u(q)

⊤ 0 0 0







︸ ︷︷ ︸

∆
=Mst

u,b(q)∈R
(n+(d−1)m+mb)×(n+(d−1)m+mb)







q̈(t)
λstn,b(t)

λstt,b(t)

λstt,u(t)







︸ ︷︷ ︸

∆
=z(t)

+







F (q, q̇, t)
d
dt (∇hstn,b(q)⊤)q̇
d
dt (H

st
t,b(q)

⊤)q̇
d
dt (H

st
t,u(q)

⊤)q̇







︸ ︷︷ ︸

∆
=F st

u,b

=







∇hstn,u(q)λstn,u(t)
0
0
0







(b) 0 6 λstn,u(t) ⊥ an,u(t) = ∇hstn,u(q)⊤q̈(t) + d
dt (∇hstn,u(q)⊤)q̇ > 0

(c) λstt,u(t) ∈ blockdiag

(
λstn,u,i(t) 0

0 λstn,u,i(t)

)

Dµ,u

(d) λstt,b(t) ∈ blockdiag

(
λstn,b,i(t) 0

0 λstn,b,i(t)

)

Dµ,b.

(65)
Let us recall that it is assumed that the problem is analysed at a time t with active unilateral contacts,
i.e., hn,u(q(t)) = 0 and ∇hn,u(q(t))⊤q̇(t) = 0, so that we cannot exclude an,u,i(t

+) > 0 for some contacts
i. In the tangential direction, the system (65) (a) is constructed under the assumption that vt,i(t) = 0
and at,i(t) = 0, for both bilateral and unilateral contacts: the constraints (65) (c) (d) only check the
admissibility of the tangential multipliers which solve (65) (a) (b). The contacts keep tangential sticking
provided the acceleration is continuous in a right-neighborhood of t, see Example 6 for an illustration.
Without the Coulomb’s cone constraints in (c) and (d), the problem (65) is an MLCP which can be
analysed in a similar way as we did for (43) in Propositions 6, 7 and 8 and Corollaries 2 and 3. It suffices

to replace −Hst
t,u(q) in (43) by (−∇hstn,b(q) −Hst

t,b(q) −Hst
t,u(q)), and λ

st
t,u by





λstn,b(t)

λstt,b(t)

λstt,u(t)



, etc. One obtains

the variational inequality equivalent to (65) (a) (b): Find z(t) ∈ K̃ such that

〈Mst
u,b(q)z(t) + F st

u,b(q, q̇, t), y − z(t)〉 > 0 for all y ∈ K̃, (66)

where K̃ is defined as in (45) with appropriate modifications. Adding the Coulomb’s cone constraint (65)
(c) (d) we can proceed as in Propositions 9 and 10. The following algorithm may be designed to solve
(65):

All-Sticking Bilateral/Unilateral Contact Algorithm:

1. data: q(t), q̇(t), M(q), F (q, q̇, t), hstn,u(q(t)), h
st
n,b(q(t)), H

st
t,b(q(t)), H

st
t,u(q(t)), µi, 1 6 i 6 m.

2. Compute the set Sz(t) = {z(t) ∈ R
n+dmb+(d−1)mu | z(t) solves the VI in (66)}.

3. Compute the set Sλst
n,u

(t) = {λstn,u ∈ R
mu | ∇hstn,u(q(t))λstn,u =

(

M(q) −∇hstn,b(q) −Hst
t,b(q) −Hst

t,u(q)
)

z(t) for all z(t) ∈ Sz(t)}.
4. Compute the sets Sλst

t,u
(t) of multipliers λstt,u(t) from (65) (c), and Sλst

t,b
(t) of multipliers λstt,b(t)

from (65) (d), for all λstn,u ∈ Sλn,u
(t) and for all λstn,b(t) in Sz(t), respectively.

5. Find the sets S̄λst
t,u

(t) and S̄λst
t,b
(t) of multipliers λstt,u(t) and λstt,b(t), respectively, which belong

to Sz(t) and to Sλst
t,u

(t) and Sλst
t,b
(t), respectively.

6. If S̄λst
t,u

(t) = ∅ or S̄λst
t,b
(t) = ∅, then modify data q(t), Fext, µi, and go to step 1.

7. Elseif S̄λst
t,u

(t) 6= ∅ and S̄λst
t,b
(t) 6= ∅, then:

8. Terminate.
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If we assume that conditions for existence of solutions hold, then the sets Sz(t), Sλst
n,u

(t) are guaranteed to
be both non empty. Some steps of this algorithm may be non trivially solved. Especially some sets may be
unbounded. However one may restrict the search within contact forces which are technologically feasible
and admissible (hence adding non mathematical constraints stemming from the actuators technological
features). Step 3 may be already solved in step 2, see for instance Example 6. An additional step that
eliminates contacts i which detach (an,u,i(t

+) > 0) or such that the reaction force lies on the boundary of
the friction cone, can be added for the sake of Lyapunov stability study [72] (different from the stability
notions defined in [52]).

Example 6 Let us illustrate the All-Sticking Bilateral/Unilateral Contact Algorithm on a simple example,
as depicted in Figure 6. For this system we have: q = (x y x1, x2)

⊤ (y1 and y2 are supposed to be
constants), n = 4, mb = 1, mu = 2, m = 3, d = 2, hn,b(q) = x − a, hn,u,1(q) = x − x1 − L, hn,u,2(q) =

x2 − x − L, F (q, q̇, t) = (0 mg F1 F2)
⊤, M(q) = M = diag(m,m,m1,m2), H

st
t,u =







0 0
1 1
0 0
0 0






, Mst

u,b =













m 0 0 0 −1 0 0
0 m 0 0 0 −1 −1
0 0 m1 0 0 0 0
0 0 0 m2 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 1 0 0 0 0 0













. To simplify the notation we will assume that all masses satisfy m = m1 =

m2 = 1 kg. Since vt,1 = vt,2 = ẏ, we assume that at,1(t) = at,2(t) = ÿ(t) = 0. Step 1: F1(t) < 0 and
F2(t) > 0, µ1 > 0 µ2 > 0. Step 2: using the system’s dynamics and the bilateral constraint, it follows

that (65) (b) is 0 6

(
λstn,u,1
λstn,u,2

)

⊥
(
λstn,u,1
λstn,u,2

)

+

(
F1

−F2

)

> 0. Thus λstn,u,1 = −F1(t) and λstn,u,2 = F2(t),

λstn,b = F1(t) + F2(t). It follows that Sz(t) = {z(t) ∈ R
7 | z(t) = (0 0 0 0 F1 + F2 λstt,u,1 λstt,u,2)

⊤}. Step
3: done at step 2. Step 4: Sλst

t,u
(t) = {(λstt,u,1, λstt,u,2) | λstt,u,1 ∈ −F1(t)Dµ1

= [µ1F1(t),−µ1F1(t)], λ
st
t,u,2 ∈

−F2(t)Dµ2
= [−µ2F2(t), µ2F2(t)]}. Step 5: one calculates that S̄λst

t,u
(t) = {(λstt,u,1, λstt,u,2) | λstt,u,1 ∈

[µ1F1(t),−µ1F1(t)], λ
st
t,u,2 ∈ [−µ2F2(t), µ2F2(t)], and λt,u,1+λt,u,1 = g}. Step 6: If −µ1F1(t)+µ2F2(t) >

g, then terminate. Else go to step 1 and modify the data.

Notice that if F1(t) > 0 and F2(t) < 0 then the normal multipliers are both zero and conditions for
detachment of both fingers hold. It is also noteworthy that the stciking mode persists in a right neigh-
borhood of t, provided the data chosen at step 1, F1(t) and F2(t), are continuous in a right neighborhood
of t. But, if these two external forces jump at t, the deactivation of the unilateral contacts may occur, or
contact may be sustained but sliding occurs because the normal components are no longer large enough.

The system can be modified by allowing for varying y1(t) and y2(t), with 2-dimensional external forces
on both fingers, so that ÿ(t) 6= 0 (the mass has a vertical motion with sticking contacts at A1 and A2).

This time q = (x y x1 y1 x2 y2)
⊤ ∈ R

6, F (q, q̇, t) = (0 g F1,x F1,y F2,x F2,y)
⊤, Hst

t,u =











0 0
1 1
0 0
−1 0
0 0
0 −1











. The

constraints are the same as above, but this time vt,1 = ẏ − ẏ1, vt,2 = ẏ − ẏ2. Again we will assume that
all masses satisfy m = m1 = m2 = 1 kg. Step 1: F1x(t) < 0, F2x(t) > 0, F1y(t), F2y(t), µ1 > 0, µ2 > 0.
Step 2: similarly as above it is found that λstn,u,1(t) = −F1x(t) and λstn,u,2(t) = F2x(t), while λ

st
t,u,1(t) =

λstt,u,1(t) =
1
3 (g−F1y(t)), ÿ(t) = ÿ1(t) = ÿ2(t) = − 1

3 (g+2F1y(t)). It follows that Sz(t) = {z(t) ∈ R
8 | z(t) =

(0 − 1
3 (g+2F1y(t)) 0 − 1

3 (g+2F1y(t)) 0 − 1
3 (g+2F1y(t))

1
3 (g−F1y(t))

1
3 (g−F1y(t)))

⊤}. Step 3: done at
step 2. Step 4: Sλst

t,u
(t) = {(λstt,u,1, λstt,u,2) | λstt,u,1 ∈ [µ1F1x(t),−µ1F1x(t)], λ

st
t,u,2 ∈ [−µ2F2x(t), µ2F2x(t)]}.
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Step 5: S̄λst
t,u

(t) = {(λstt,u,1, λstt,u,2) | λstt,u,1 = 1
3 (g − F1y(t)) ∈ [µ1F1(t),−µ1F1(t)], λ

st
t,u,2 = 1

3 (g − F1y(t)) ∈
[−µ2F2(t), µ2F2(t)]}. Step 6: If | 13 (g − F1y(t))| 6 min[−µ1F1x, µ2F2x], then terminate. Else go to step 1
and modify the data.

When Step 6 fails, some intuition from the problem’s geometry may be necessary to find suitable values
of the data. Notice that Assumption 1 is satisfied in this example, so that Proposition 9 could be applied
also.

x1

y2

y1
y

A2

x2

A1

G
−g

x = a

F1

F2

0

µ = 0

2L

Fig. 6 A simple hard-finger manipulation robotic task.

Remark 4 As alluded to in the introduction of the article, constant singular mass matrices often oc-
cur when the natural coordinates are used [37], and are necessarily accompanied by nonlinear bilateral
constraints which do not stem from mechanical contacts or joints. It is therefore of interest to consider
the case of singular M(q) < 0, unilateral constraints with friction, and frictionless bilateral constraints,
all constraints being potentially redundant. The frictionless case is easily obtained by setting vanishing
friction coefficients where needed in (65) (d).

Example 7 Let us outline a manipulation problem with hard-finger contact points with friction, as de-
picted in Figure 7, which can be analysed through (65) using an extension of Proposition 8 as in-
dicated above. This example encompasses Example 5. The mass matrix of this system is M(q) =
blockdiag(Mob(qob),M1(q1), . . . ,Mm(qm)), qob ∈ R

nob , qi ∈ R
ni , n = nob +

∑m
i=1 ni, m = mu, Ai are

the contact points between the “fingers” and the object, 1 6 i 6 m. In full 3D generality, one may
have nob = 6 but also nob > 6 if natural coordinates are used6. Then Mob(qob) < 0 and frictionless
bilateral constraints hob(qob) = 0 have to be added to the problem. The dynamics of the object is
Mob(qob)q̈ob + Fob(qob, q̇ob, t) =

∑m
i=1 Mn

i/ob(qob, qi)λ
st
n,u,i +∇hob(qob)λob +

∑m
i=1 Mt

i/ob(qob, qi)λt,u,i. The

dynamics of each arm i is Mi(qi)q̈i + Fi(qi, q̇i, t) = Mn
ob/i(qob, qi)λ

st
n,u,i +Mt

ob/i(qob, qi)λ
st
t,u,i. Recall that

λstn,u,i = Fn,i > 0 where Fn,i is the force normal component in each local frame at contact i, while

6 Which is the case in many multibody commercial software packages.
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λt,u,i ∈ R
d−1 is the local tangential force at contact i. Recall also that if vr,t,i denotes the relative tan-

gential velocity at contact i, then
∑m

i=1 vr,t,iλt,u,i = v⊤r,tλt,u = q̇⊤Ht,u(qob, q1, . . . , qm)λt,u = q̇⊤Λt,u from
the virtual work principle. Thus:

∇hstn,u(qob, q1, . . . , qm) =











Mn
1/ob Mn

2/ob . . . . . . . . . Mn
m/ob

Mn
ob/1 0 . . . . . . . . . 0

0 Mn
ob/2 0 . . . . . . 0

...
...

0 . . . . . . . . . 0 Mn
ob/m











∈ R
(m+1)×m, (67)

and

Hst
t,u(qob, q1, . . . , qm) =











Mt
1/ob Mt

2/ob . . . . . . . . . Mt
m/ob

Mt
ob/1 0 . . . . . . . . . 0

0 Mt
ob/2 0 . . . . . . 0

...
...

0 . . . . . . . . . 0 Mt
ob/m











∈ R
(m+1)×(d−1)m, (68)

for some matrices Mt
i/ob, Mt

ob/i, Mn
i/ob, Mn

ob/i, which depend on the object’s geometry, 1 6 i 6 m. The

matrix Mst
u,b(q) in (65) (a) therefore possesses a specific, sparse structure, which should be taken into

account to design efficient solvers for (66), as alluded to in Example 5. It is clear however, that excepted
in very simple cases (like manipulation of spherical objects with prismatic hard fingers), the gap functions
and their gradients are nonlinear functions of q and so is Mst

u,b(q). This may in general complicate step 6
of the above Contact Algorithm.

A2

Am

Mob

A1
Am−1

..........

Fig. 7 A hard-finger manipulation robotic task.

Remark 5 (Stick → slip transitions) In section 5 the case of both sticking and sliding contacts will be
analyzed. Obviously the intermediate case represented by stick→ slip transitions is of interest. Active con-
tacts with vt,i(t) = 0 which can potentialy undergo such transition, must have λstt,u,i(t) ∈ λstn,u,i(t)bd(Dµi

)
and λstt,b,i(t) ∈ λstn,b,i(t)bd(Dµi

), where bd denotes the boundary. Coulomb’s law at the acceleration in (5)
and its sticking mode formulation in (6) or (7), is useful, because it allows one to calculate at,i(t) without
assuming a priori that at,i(t) = 0 as in (65). Consequently the obtained problem is different from (65).
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It gives rise to the following problem:







(a)

(
M(q) −∇hstn,b(q)

∇hstn,b(q) 0

)

︸ ︷︷ ︸

∆
=M

st/sl
b (q)

(
q̈(t)
λstn,b(t)

)

+

(
F (q, q̇, t)

d
dt ((∇hstn,b)⊤)q̇)

)

=

(∇hstn,u(q)λstn,u +Hst
t,u(q)λ

st
t,u +Hst

t,b(q)λ
st
t,b

0

)

(b) λstn,u ∈ −NR
mu
+

(∇hstn,u(q)⊤q̈(t) + d
dt ((∇hstn,u)⊤)q̇)

(c) Λst
t,b,i ∈ ∂ψ⋆

D(λst
n,b,i,µi)

(Hst
t,b,i(q)

⊤q̈(t) + d
dt (H

st
t,b,i(q)

⊤)q̇), 1 6 i 6 mb,

(d) Λst
t,u,i ∈ ∂ψ⋆

D(λst
n,u,i,µi)

(Hst
t,u,i(q)

⊤q̈(t) + d
dt (H

st
t,u,i(q)

⊤)q̇), mb + 1 6 i 6 m.

(69)
The variables q̈(t) and λstn,b(t) are the primary unknowns of the generalized equation in (69) (the other
multipliers are “eliminated” inserting the inclusions (b) (c) (d) into the right-hand side of (a)). The major
difficulty in analyzing and solving (69) lies in the fact that the convex sets D(λstn,u,i, µi) and D(λstn,b,i, µi)

depend on the unknowns λstn,u,i and λstn,b,i. It is noteworthy that due to the virtual work principle, all
three terms in the right-hand side of (69) possess a structure which allows one to apply the chain rule of
Convex Analysis, provided some constraints qualifications hold. If the normal components of the reaction
force are known, this allows one to rewrite (69) in the form of a generalized equation with unknowns q̈(t)
and λstn,b(t), involving maximal monotone set-valued terms as follows:

(
M(q) −∇hstn,b(q)

∇hstn,b(q) 0

)(
q̈(t)
λstn,b(t)

)

+

(
F (q, q̇, t)

d
dt ((∇hstn,b)⊤)q̇)

)

∈
(
−NΦst

n,u(q,q̇)
(q̈(t)) + ∂f

t,u
q,q̇ (q̈(t)) + ∂f

t,b
q,q̇(q̈(t))

0

)

(70)
where Φst

n,u(q, q̇) = {w ∈ R
n | ∇hstn,u(q)⊤q̈(t) + d

dt ((∇hstn,u)⊤)q̇ ∈ R
mu
+ }, f t,uq,q̇,i(q̈(t)) = ψ⋆

D(λst
n,u,i,µi)

◦
(
Hst

t,u,i(q)
⊤q̈(t) + d

dt (H
st
t,u,i(q)

⊤)q̇
)
and f t,bq,q̇,i(q̈(t)) = ψ⋆

D(λst
n,b,i,µi)

◦
(

Hst
t,b,i(q)

⊤q̈(t) + d
dt (H

st
t,b,i(q)

⊤)q̇
)

(us-

ing [35, Theorem 4.2.1]). When the normal components are known, this generalized equation could be

analyzed using the material in section B. The kernel of M
st/sl
b (q) is once again central in the analysis,

similarly as in the previous results (see Propositions 1 and 8). We do not analyze further the stick/slip
problem, see [53] for a complete study (with unilateral constraints only).

5 Systems with 3D sticking and sliding unilateral contacts

Let us outline the problem which consists of 3-dimensional contacts, some of which are sticking, the other
ones are sliding. To simplify the presentation we restrict ourselves to unilateral contacts, i.e., Ib = ∅,
Iu = Iµ,st

u ∪ Iµ,sl
u , and I0

u = ∅. The contact problem in its index-1 formulation is:







(a)M(q)q̈(t) + F (q, q̇, t) = ∇hstn,u(q)λstn,u +Hst
t,u(q)λ

st
t,u +∇hsln,u(q)λsln,u +Hsl

t,u(q)λ
sl
t,u

(b) Hst
t,u(q)

⊤q̈(t) + d
dt (H

st
t,u(q)

⊤)q̇ = 0

(c) 0 6

(
λstn,u
λsln,u

)

⊥
(
∇hstn,u(q)⊤q̈(t) + d

dt (∇hstn,u(q)⊤)q̇
∇hsln,u(q)⊤q̈(t) + d

dt (∇hsln,u(q)⊤)q̇

)

> 0

(d) Λst
t,u,i ∈ D(µi, λ

st
n,u,i), i ∈ Iµ,st

u .

(71)

Let us write λslt,u = −[µsl
u ][sgn(v

sl
t,u)]λ

sl
n,u, where the equality holds because sliding is assumed for these

contact points, and for x ∈ R
n, [x]

∆
= diag(xi). The problem in (71) (a) (b) (c) is equivalent to the
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generalized equation (time argument is dropped):

(
M(q) −Hst

t,u(q)
Hst

t,u(q)
⊤ 0

)(
q̈

λstt,u

)

+

(
F (q, q̇, t)

0

)

=




(∇hstn,u(q) ∇hsln,u(q)−Hsl

t,u(q)[µ
sl
u ][sgn(v

sl
t,u)])

(
λstn,u
λsln,u

)

0





(
λstn,u
λsln,u

)

∈ −NR
mu
+

((
∇hstn,u(q)⊤
∇hsln,u(q)⊤

)

q̈ +

(
d
dt (∇hstn,u(q)⊤)q̇
d
dt (∇hsln,u(q)⊤)q̇

))

,

(72)
which is obviously more complex than previous problems, due to sliding friction which introduces a
distortion in the gradient in the right-hand side of the first equality in (72). This problem is close to the
frictional bilaterally/unilaterally constrained contact problem studied in [15, section 3.4, Proposition 13],
and could be analysed in a similar way. Due to space limitations this is not tackled here. It is interesting
to observe how the basic KKT problem gets more complex when starting from (26), then (43), (61), (65),
(69) and finally (72).

The problem may be simplified as follows. From (71), assuming M(q) ≻ 0 and disregarding for the
moment the friction disk inclusion in (71) (d), one eliminates q̈(t) using (71) (a) and constructs the
following MLCP with unknowns λstn,u, λ

st
t,u, λ

sl
n,u:

(a) W st
t,u(q)λ

st
t,u +Hst

t,u(q)M(q)−1∇hstn,u(q)λstn,u +A
st,sl
t,u (q)λsln,u − F st

t,u(q, q̇, t) = 0

(b) 0 6









λstn,u

λsln,u

λstt,u









⊥









W st
n,u(q) Ast,sl

n,u (q) ∇hstn,u(q)⊤M(q)−1Hst
t,u(q)

∇hsln,u(q)⊤M(q)−1∇hstn,u(q) Asl,sl
n,u (q) ∇hstn,u(q)⊤M(q)−1Hst

t,u(q)

0 0 0

















λstn,u

λsln,u

λstt,u









−









F st
n,u(q, q̇, t)

F sl
n,u(q, q̇, t)

0









> 0,

(73)
with:

F st
t,u(q, q̇, t) = Hst

t,u(q)
⊤M(q)−1F (q, q̇, t)− d

dt (H
st
t,u(q)

⊤)q̇
F sl
n,u(q, q̇, t) = ∇hsln,u(q)⊤M(q)−1F (q, q̇, t)− d

dt (∇hsln,u(q)⊤)q̇
F st
n,u(q, q̇, t) = ∇hstn,u(q)⊤M(q)−1F (q, q̇, t)− d

dt (∇hstn,u(q)⊤)q̇
A

st,sl
t,u (q) = Hst

t,u(q)
⊤M(q)−1(∇hsln,u(q)−Hsl

t,u(q)[µ
sl
u ][sgn(v

sl
t,u)])

W st
t,u(q) = Hst

t,u(q)
⊤M(q)−1Hst

t,u(q) < 0
W st

n,u(q) = ∇hstn,u(q)M(q)−1∇hstn,u(q) < 0
Ast,sl

n,u (q) = ∇hstn,u(q)⊤M(q)−1(∇hsln,u(q)−Hsl
t,u(q)[µ

sl
u ][sgn(v

sl
t,u)])

Asl,sl
n,u (q) = ∇hsln,u(q)⊤M(q)−1(∇hsln,u(q)−Hsl

t,u(q)[µ
sl
u ][sgn(v

sl
t,u)]).

(74)

Let us state the following propositions.
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Proposition 13 Let M(q) ≻ 0 and d
dt (H

st
t,u(q)

⊤)q̇ ∈ ker⊥(Hst
t,u(q)). Then the MLCP in (71) (a) (b) (c)

with the Coulomb’s disk constraint reduces to the problem of existence of λstn,u, λ
sl
n,u and λstt,u such that:

(a) 0 6





λstn,u

λsln,u



 ⊥





∇hstn,u(q)⊤(z + y) + d
dt (∇hstn,u(q)⊤)q̇

∇hsln,u(q)⊤(z + y) + d
dt (∇hsln,u(q)⊤)q̇



 > 0

(b) λstt,u ∈ D(µst
u , λ

st
n,u)

(c) Hst
t,u(q)λ

st
t,u +∇hstn,u(q)λstn,u + (∇hsln,u(q)−Hsl

t,u(q)[µ
sl
u ][sgn(v

sl
t,u)])λ

sl
n,u − F (q, q̇, t) +M(q)(z + y) = 0

(75)
for some z ∈ R

n and y ∈ Im⊥(Hst
t,u(q)).

Proof The proof follows from [15, Proposition 8], noting the similarity between (71) (a) (b) (c) and [15,
equation (16)]. �

The degenerated complementarity problem in (75) (a) has a solution if and only if





∇hstn,u(q)⊤[z + y] + d
dt (∇hstn,u(q)⊤)q̇

∇hsln,u(q)⊤[z + y] + d
dt (∇hsln,u(q)⊤)q̇



 > 0 (76)

for some z ∈ R
n and y ∈ Im⊥(Hst

t,u(q)). This can be used as a test to eliminate systems which do not
verify such necessary condition. Using the proposition’s assumption and (75) (b) (c), one finds that λstn,u
and λsln,u have to satisfy:

(∇hstn,u(q) ∇hsln,u(q)−Hsl
t,u(q)[µ

sl
u ][sgn(v

sl
t,u)])





λstn,u

λsln,u



− F (q, q̇, t)−M(q)[z + y]

∈ −Hst
t,u(q)D(µst

u , λ
st
n,u)

(77)

for the same z and y. Intuitively, small µsl
i and large µst

i could be needed for (77) to be solvable, which
complies with the fact that sliding friction usually has to be small enough to guarantee existence of
solutions [15] [19, Section 5.6]. Let us now focus on the MLCP in (73). The first thing to look at is the
well-posednees of the LCP in (73) (b). Various sufficient conditions may be stated to guarantee that this
LCP possesses solutions. Conditions may be imposed that guarantee that the LCP matrix is positive
semi-definite (that is, it is also copositive), using Corollary 5. Then Theorem 1 in Appendix C can be
applied. Roughly speaking, this will imply that sliding contacts have small enough friction coefficients
so that Asl,sl

n,u (q) < 0, while friction coefficients at sticking contact be large enough so that (71) (d) is
verified.

Remark 6 The above problems in (65) and (71) (or (73)), are related to the so-called force and form
closure in dexterous manipulation and grasp analysis [14,62,10,33,68]. As Example 6 shows, the All-
Sticking Bilateral/Unilateral Contact Algorithm could be used to determine if force or form closure hold.
The criteria that are proposed all along this article, supply general ways to numerically solve the all-
sticking or mixed sticking/sliding (Proposition 13) problems, see the algorithm in section 4.2. It seems
difficult to get more precise results in terms of simple-to-use analytical criteria using the above generic
formulations, without specifying further the data.

Remark 7 Several results and criteria presented in this article, use full-rank assumptions and matrix
inversion. It is noteworthy that the same problem (consider for instance (14) or (43) with M(q) ≻ 0 or
M(q) < 0) can be solved numerically either after a transformation using matrix inversion (see the LCP
in (37)), or solving directly the MLCP in (43) (or its bilateral counterpart in (14)) with suitable methods
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like interior point algorithms. Nevertheless matrix inversion can be used if dimensions are low, or just for
the sake of analysis (as in Propositions 6 and 7, Corollary 2, Corollary 4, Lemma 2). Whether or not the
proposed criteria could be used in on-line implementations for checking stability or form closure, is yet
unanswered to.

6 Conclusion

This article analyses multibody systems undergoing possibly redundant bilateral and/or unilateral con-
tacts with Coulomb’s set-valued friction, with a possibly singular mass matrix and redundant constraints,
when the contacts are sticking in both the normal and tangential directions. Various results are given,
which state under which conditions the problem has at least one solution. The cases with pure bilateral,
pure unilateral, and mixed bilateral/unilateral constraints, are treated, as well as mixed sticking/sliding
contacts. Complementarity theory (in particular mixed linear complementarity problems) as well as vari-
ational inequalities, are used for the analysis. The results provide criteria which should, in principle, be
verifiable numerically. An algorithm is proposed which paves the way to force and form closure verifica-
tion, for object manipulation. Several examples illustrate the theoretical findings. One major future task
is to develop complete, non-academic examples, and efficient numerical solvers.

A Useful results from Linear Algebra

The first part of this lemma is taken from [59], the second part is [12, Fact 6.4.29], see also [67, equation (1.5)].

Lemma 3 Let M =

(

A C

C⊤ B

)

be symmetric and positive semidefinite. Assume that Q = B − C⊤A†C is nonsingular.

Then the Moore-Penrose generalized inverse of M is given by:

M† =

(

A† +A†CQ†C⊤A† −A†CQ†

−Q†C⊤A† Q†

)

. (78)

When B = 0 one obtains with E = A+ CC⊤ and D = C⊤E†C:

M† =

(

E† − E†CD†C⊤E† E†CD†

(E†CD†)⊤ DD† −D†

)

. (79)

Proposition 14 [12, Proposition 6.1.7] Let A ∈ R
n×m and b ∈ R

n. Then the two statements are equivalent:

– (i) There exists a vector x ∈ R
m satisfying Ax = b.

– (ii) AA†b = b.

If (i) or (ii) is satisfied, then for all y ∈ R
m, x = A†b+ (I −A†A)y satisfies Ax = b, and y = 0 minimizes x⊤x.

B Well-posedness of Variational Inequalities

The next results use the notions of recession functions and cones, which we briefly introduce now (see [20,32] for illustrating

examples). Let f : Rn → R ∪ {+∞} be a proper convex and lower semi-continuous function, we denote by dom(f)
∆
= {x ∈

R
n| f(x) < +∞} the domain of the function f(·). The epigraph of f(·) is the set epi(f)

∆
= {(x, α) ∈ R

n ×R| α > f(x)}. The
Fenchel transform f⋆(·) of f(·) is the proper, convex and lower semi-continuous function defined by

(∀z ∈ R
n)| f⋆(z) = sup

x∈ dom(f)
{〈x, z〉 − f(x)}. (80)

The subdifferential ∂f(x) of f(·) at x ∈ R
n is defined by

∂f(x) = {ω ∈ R
n| f(v)− f(x) > 〈ω, v − x〉, ∀v ∈ R

n}.

We denote by Dom(∂f)
∆
= {x ∈ R

n|∂f(x) 6= ∅} the domain of the subdifferential operator ∂f : Rn → R
n. Recall that (see

e.g. Theorem 2, Chapter 10, Section 3 in [8]): Dom(∂f) ⊂ dom(f).
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Let x0 be any element in the domain dom(f) of f(·), the recession function f∞(·) of f(·) is defined by

(∀x ∈ R
n) : f∞(x) = lim

λ→+∞

1

λ
f(x0 + λx).

The function f∞ : Rn → R ∪ {+∞} is a proper convex and lower semi-continuous function which describes the asymptotic
behavior of f(·).

Let K ⊂ R
n be a nonempty closed convex set. Let x0 be any element in K. The recession cone of K is defined by

K∞ =
⋂

λ>0

1

λ
(K − x0) = {u ∈ R

n|x+ λu ∈ K, ∀ λ > 0, ∀x ∈ K}.

The set K∞ is a nonempty closed convex cone that is described in terms of the directions which recede from K. The
indicator function of a set K ⊆ R

n is ψK(x) = 0 if x ∈ K, ψK(x) = +∞ if x 6∈ K. If K is closed non empty convex, we
have ∂ψK(x) = NK(x), the so-called normal cone to K at x, defined as NK(x) = {v ∈ R

n | v⊤(s − x) 6 0 for all s ∈ K}.
When K is finitely represented, i.e., K = {x ∈ R

n | ki(x) > 0, 1 6 i 6 m}, and if the functions ki(·) satisfy some constraint
qualification (like, independency, or extensions like the MFCQ, see Appendix C), then NK(x) is generated by the outwards
normals at the active constraints ki(x) = 0, i.e., NK(x) = {v ∈ R

n | v = −λi∇ki(x), ki(x) = 0, λi > 0}.

Let us here recall some important properties of the recession function and recession cone (see e.g. [13, Proposition 1.4.8]:

Proposition 15 The following statements hold:

a) Let f1 : Rn → R∪{+∞} and f2 : Rn → R∪{+∞} be two proper, convex and lower semi-continuous functions. Suppose
that f1 + f2 is proper. Then for all x ∈ R

n: (f1 + f2)∞(x) = (f1)∞(x) + (f2)∞(x).

b) Let f : R
n → R ∪ {+∞} be a proper, convex and lower semi-continuous function and let K be a nonempty closed

convex set, such that f + ΨK is proper (equivalently dom(f) ∩ K is non empty). Then for all x ∈ R
n: (f + ΨK)∞(x) =

f∞(x) + (ΨK)∞(x).

c) Let K ⊂ R
n be a nonempty, closed and convex set. Then for all x ∈ R

n: (ΨK)∞(x) = ΨK∞
(x). Moreover for all x ∈ K

and e ∈ K∞: x+ e ∈ K.

d) If K ⊂ R
n is a nonempty closed and convex cone, then K∞ = K.

e) Let K = P (a, b)
∆
= {x ∈ R

n|Ax > b} for A ∈ R
m×n and b ∈ R

m. If K 6= ∅ then K∞ = P (A, 0) = {x ∈ R
n|Ax > 0}.

f) K ⊂ R
n is a non-empty closed convex bounded set if and only if K∞ = {0n}.

Let us now concatenate [3, Theorem 3, Corollaries 3 and 4]. They concern variational inequalities of the form: Find
u ∈ R

n such that
〈Mu+ q, v − u〉+ ϕ(v)− ϕ(u) > 0, ∀v ∈ R

n (81)

where M ∈ R
n×n is a real matrix, q ∈ R

n a vector and ϕ : Rn → R ∪ {+∞} a proper convex and lower semicontinuous
function. The analogy with the generalized equation in (46) is clear taking ϕ(·) = Ψ

K̃
(·), thus restricting the variation of v

to K̃, q = F (q, q̇, t) and M =M(q).

The problem in (81) is denoted as V I(M,q, ϕ) in the next proposition. We also set:

K(M, ϕ) = {x ∈ R
n|Mx ∈ (dom(ϕ∞))⋆}. (82)

Note that (dom(ϕ∞))⋆ is the dual cone of the domain of the recession function ϕ∞ while (dom(ϕ))∞ is the recession cone
of dom(ϕ).

Proposition 16 [3] Let ϕ : Rn → R ∪ {+∞} be a proper, convex and lower semicontinuous function with closed domain,
and suppose that M ∈ R

n×n is positive semi-definite (not necessarily symmetric).

a) If (dom(ϕ))∞ ∩ ker{M+M⊤} ∩ K(M, ϕ) = {0} then for each q ∈ R
n, problem V I(M,q, ϕ) has at least one solution.

b) Suppose that (dom(ϕ))∞ ∩ ker{M+M⊤} ∩ K(M, ϕ) 6= {0}. If there exists x0 ∈ dom(ϕ) such that

〈q−M⊤x0, v〉+ ϕ∞(v) > 0, ∀v ∈ dom(ϕ)∞ ∩ ker{M+M⊤} ∩ K(M, ϕ), v 6= 0, (83)

then problem V I(M,q, ϕ) has at least one solution.

b’) If M = M⊤ then one can take x0 = 0 in b).

c) If u1 and u2 denote two solutions of problem V I(M,q, ϕ) then u1 − u2 ∈ ker{M+M⊤}.

d) If M = M⊤ and u1 and u2 denote two solutions of problem V I(M,q, ϕ), then 〈q, u1 − u2〉 = ϕ(u2)− ϕ(u1).

e) If M = M⊤ and ϕ(x + z) = ϕ(x) for all x ∈ dom(ϕ) and z ∈ ker{M} and 〈q, e〉 6= 0 for all e ∈ ker{M}, e 6= 0, then
problem V I(M,q, ϕ) has at most one solution.

Notice that the function ϕ(·) will never be strictly convex in our case (it is an indicator function) so that the strict convexity
argument of [3, Theorem 5] which applies when M is a P0-matrix never holds.
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C Some Convex Analysis and Complementarity Theory tools

Theorem 1 [25, Theorem 3.8.6] Let M ∈ R
n×n be copositive and let q ∈ R

n be given. If the implication: 0 6 v ⊥ Mv >

0 ⇒ v⊤q > 0 is valid, then the LCP(M, q) is solvable.

Let QM denote the solution set of the homogeneous LCP. This theorem can be restated equivalently as: v ∈ QM ⇒ q ∈ Q⋆
M .

The next corollary is proved in [18], and is a consequence of results in [23].

Corollary 5 Let D = P +N , where D, P and N are n× n real matrices, and P ≻ 0, not necessarily symmetric. If

||N ||2 <
1

‖
(

P+P⊤

2

)−1
‖2

(84)

then D ≻ 0.

If K ⊂ R
n is a set, then K⋆ = {z ∈ R

n|〈z, x〉 > 0 for all x ∈ K} is its dual cone. Let K be a closed convex cone, then:

K⋆ ∋ x ⊥ y ∈ K ⇔ x ∈ −NK(y) ⇐⇒ y ∈ −NK⋆(x). (85)

Let M =M⊤ ≻ 0, x and y two vectors, then

M(x− y) ∈ −NK(x) ⇔ x = projM [K; y] ⇔ x = min
z∈K

1

2
(z − y)⊤M(z − y). (86)

We note that this is a particular case of (81), so that Proposition 16 can be considered as the characterization of a generalized
projection operator V I(M,q, ϕ).

In this paper we deal with non convex sets, for which it is needed to define suitable notions of normal and tangent cones.
The so-called Mangasarian-Fromovitz constraint qualification (MFCQ) [26, p.17, 252] is also used.

Definition 1 (The MFCQ) Let K be a finitely represented set, i.e. K = {x ∈ R
n|hi(x) > 0, 1 6 i 6 m}, and let

J (x) = {i ∈ {1,m}|hi(x) = 0} be the set of active constraints indices. The continuously differentiable functions hi : R
n → R,

satisfy the MFCQ at x if there exists a vector v ∈ R
n such that ∇hi(x)⊤v > 0 for all i ∈ J (x).

Under the MFCQ, Clarke’s normal cone of prox-regular sets which are finitely represented by inequalities, can be expressed
in the so-called linearized form, using the normals to the constraint at the active points, as follows. LetK = {x ∈ R

n | h(x) >
0}. Suppose that the functions hi : R

n → R , are continuously differentiable and satisfy the MFCQ. Then Clarke’s normal
cone to K at x is equal to NK = {w ∈ R

n|w = −
∑

i∈J (x) λi∇hi(x), λi > 0} = − (TK(x))⋆, with Clarke’s tangent cone

equal to TK = {z ∈ R
n | zT∇hi(x) > 0, for all i ∈ J (x)}. In the case of the set Sst

n,u in section 3.2, NSst
n,u

(q) is the cone

generated by −∇hstn,u,i(q) for active constraints hstn,u,i(q) = 0. If K is closed convex this coincides with the definitions of
Convex Analysis.

D Dynamics of the RB+pendulum system

The kinetic energy is given by:

T (q, q̇) =
1

2
mẋ2 +

1

2
mẏ2 +

1

2
IGθ̇

2 +
1

2
Ipα̇

2 +
1

2
m̄ẋ2p +

1

2
m̄ẏ2p, (87)

where Ip is the pendulum moment of inertia at its gravity center (supposed to be at the middle of the bar), m̄ is its mass.
From the Lagrange equations (the potential energy is supposed to be null, hence the Lagrangian function is the kinetic

energy), the term d
dt

(

∂T
∂q̇

)

yields the inertia matrix:

M(q) =























m+ m̄ 0 − m̄
2
(a sin(α+ θ) + l cos(θ)) − m̄a

2
sin(θ + α)

0 m+ m̄ m̄
2
(a cos(θ + α)− l sin(θ)) m̄a

2
cos(θ + α)

− m̄
2
(a sin(α+ θ) + l cos(θ)) m̄

2
(a cos(θ + α)− l sin(θ)) IG + a2+l2

2
+ al

2
cos(α) m̄a

4
(a+ l cos(α))

− m̄a
2

sin(θ + α) m̄a
2

cos(θ + α) m̄a
4

(a+ l cos(α)) m̄a2

4
+ Ip























(88)
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The Coriolis and centripetal forces C(q, q̇)q̇ can be computed from the remaining terms in d
dt

(

∂T
∂q̇

)

and in − ∂T
∂q

, such that

C(q, q̇) + C⊤(q, q̇) = d
dt
M(q) =

(

∂mij(q)

∂q
q̇
)

ij
if the Christoffel’s symbols are used. One has:

∂T
∂x

= 0, ∂T
∂y

= 0

∂T
∂θ

= m̄
2

{

−a(α̇+ θ̇) (ẋ cos(α+ θ) + ẏ sin(θ + α)) + lθ̇ (ẋ sin(θ)− ẏ cos(θ))
}

∂T
∂α

= m̄
2

{

−a(α̇+ θ̇) (ẋ cos(α+ θ) + ẏ sin(θ + α)) + al
2
θ̇(α̇+ θ̇) cos(α)

}

.

(89)

We therefore deduce the vector of inertial plus external generalized forces:

Fx(q, q̇, t) = − m̄
2

{

a(α̇+ θ̇) cos(α+ θ)− lθ̇ sin(θ)
}

θ̇ − m̄a
2

(α̇+ θ̇)α̇ cos(α+ θ) + Fx
ext

F y(q, q̇, t) = m̄
2

{

−a(α̇+ θ̇) sin(α+ θ)− lθ̇ cos(θ)
}

θ̇ − m̄a
2

(α̇+ θ̇)α̇ sin(α+ θ) + F
y
ext

F θ(q, q̇, t) = − m̄
2

{

a(α̇+ θ̇) cos(α+ θ)− lθ̇ sin(θ)
}

ẋ− m̄
2

{

−a(α̇+ θ̇) sin(α+ θ)− lθ̇ cos(θ)
}

ẏ

− m̄al
4
α̇θ̇ sin(α)− m̄al

4
α̇2 sin(α)

− m̄
2

{

−a(α̇+ θ̇) (ẋ cos(α+ θ) + ẏ sin(θ + α)) + lθ̇ (ẋ sin(θ)− ẏ cos(θ))
}

Fα(q, q̇, t) = − m̄a
2

(α̇+ θ̇)ẋ cos(α+ θ)− m̄a
2

(α̇+ θ̇)ẏ sin(α+ θ)− m̄al
4
α̇θ̇ sin(θ)

(90)
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