N

N
N

HAL

open science

Compressed cache layout aware prefetching

Niloofar Charmchi, Caroline Collange, André Seznec

» To cite this version:

Niloofar Charmchi, Caroline Collange, André Seznec. Compressed cache layout aware prefetching.
SBAC-PAD 2019 - International Symposium on Computer Architecture and High Performance Com-

puting, Oct 2019, Campo Grande, MS, Brazil. pp.1-4. hal-02316773

HAL Id: hal-02316773
https://inria.hal.science/hal-02316773
Submitted on 15 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/hal-02316773
https://hal.archives-ouvertes.fr

Compressed cache layout aware prefetching

Niloofar Charmchi, Caroline Collange, and André Seznec
Inria, Univ Rennes, CNRS, IRISA
Rennes, France
firstname.lastname @inria.fr

Abstract—The speed gap between CPU and memory is impair-
ing performance. Cache compression and hardware prefetching
are two techniques that could confront this bottleneck by decreas-
ing last level cache misses. However, compression and prefetching
have positive interactions, as prefetching benefits from higher
cache capacity and compression increases the effective cache size.
This paper proposes Compressed cache Layout Aware Prefetching
(CLAP) to leverage the recently proposed sector-based com-
pressed cache layouts such as SCC or YACC to create a synergy
between compressed cache and prefetching. The idea of this
approach is to prefetch contiguous blocks that can be compressed
and co-allocated together with the requested block on a miss
access. Prefetched blocks that share storage with existing blocks
do not need to evict a valid existing entry; therefore, CLAP avoids
cache pollution. In order to decide the co-allocatable blocks to
prefetch, we propose a compression predictor. Based on our
experimental evaluations, CLAP reduces the number of cache
misses by 12% and improves performance by 4% on average,
comparing to a compressed cache.

Index Terms—cache compression, hardware

prefetching

compaction,

I. INTRODUCTION

One of the major challenges for computers is the speed
gap between processor and main memory that affects the
computer performance. In order to reduce this speed gap
between off-chip memory and processor, on-chip memory,
referred to as cache, is adopted. Since off-chip memory latency
is high, finding techniques to minimize off-chip memory
accesses is of essence. Methods such as cache compression
and hardware prefetching can decrease the number of last level
cache (LLC) misses [13], [6]. Prefetching, however, increases
the workload’s working set size; it can evict useful data.

Our proposed compressed cache layout aware prefetcher
(CLAP) finds a trade-off between the utility of prefetched
data and the cache capacity. This positive interaction between
hardware prefetching and cache compression results in perfor-
mance improvement. Therefore, prefetching and compression
can take advantage of each other. Compression can overcome
the eviction of useful data by increasing effective cache size.

In this work we rely on the potentials of sector-based
compressed caches for prefetching without causing cache
pollution. To the best of our knowledge, this is the first
prefetching technique that takes into account the layout of a
compressed cache.

This paper makes the following contributions:

« We show that a substantial portion of the cache misses in

compressed caches occur in blocks that could be allocated
and compacted in a super-block that is already present in

the cache. These misses could be avoided at no cost in
cache capacity by bringing these blocks in the cache in
advance (Section III).

o Leveraging this opportunity, we propose CLAP, a unified
system that benefits from prefetching and cache compres-
sion cooperatively (Section IV).

o In order to identify which blocks should be prefetched,
we propose a compression predictor (Section IV).

o We evaluate the benefits of CLAP compared to a com-
pressed cache without prefetching. Our proposed mecha-
nism improves performance (4% on average) and reduces
number of LLC misses (12% on average). Moreover, we
show that our proposed strategy is also applicable to other
prefetchers, such as next-line and stride (Section V).

II. CACHE COMPRESSION AND PREFETCHING

Cache compression is an important approach for perfor-
mance enhancement in processors [1], [11], [3]. The key idea
of cache compression algorithms is to obtain the benefit of
larger caches, while retaining the area and power of smaller
caches. Compressed caches use compression techniques [9],
[7] to reduce the size of the cache blocks and compaction
methods [13], [14], [12] to allocate compressed blocks to-
gether into one data entry.

Hardware prefetching is an approach to reduce the number
of cache misses. Multiple approaches have been proposed for
hardware prefetching, such as stride prefetcher [4], next-line
prefetcher [15] and offset prefetcher [6].

Raghavendra et al. [10] propose prefetched blocks com-
paction that can only compress and compact blocks that
are prefetched, whereas our work applies compression and
compaction techniques on all data in last level cache and it
decides prefetching based on the compressiblity of a block.
Patel et al. [8] improve the STeMS prefetcher by taking
advantage of compression, though the compressed cache does
not directly benefit from prefetching.

Yet Another Compressed Cache (YACC) [13] and Skewed
Compressed Cache (SCC) [12] are among the cost-effective
compressed cache layouts. Their objective is to pack the
contiguous blocks of a single memory super-block in a single
cache location. When all blocks in the super-block are com-
pressible, a cache entry must be allocated for the first block,
but the subsequent blocks do not require any extra cache space.
The objective of this study is to exploit this opportunity to
enable prefetching without pollution.

A sectored cache [5] is a set-associative cache that is de-
signed using a shared tag among contiguous cache blocks. The

YACC architecture considers a compressed cache as a sectored
cache with variable number of sub-blocks per super-block
depending on the compression ratio. Moreover, the address
splitting of a conventional cache and a sectored/compressed
cache are not the same. These two caches have different
hash functions and, therefore, they generate different access
patterns.

Dictionary Sharing (DISH) [7] is a compression technique
that takes advantage of the YACC layout. A common com-
pression dictionary is shared among all sub-blocks of each
super-block. In the remainder of the paper, we assume that
DISH is used as the compression algorithm.

III. THE COMPRESSED CACHE UNDERUTILIZATION
PROBLEM

A. Evaluating an LLC compressed cache

We have simulated an LLC compressed cache using DISH,
for 27 benchmarks, following the evaluation methodology that
will be described in Section V. In these settings, cache com-
pression yields only modest improvements (maximum of 13%
reduction in number of LLC misses for soplex benchmark),
or may even cause more misses due to having consecutive
uncompressed blocks compete for entries in the same set.
Indeed, the potential capacity of the compressed cache may
be underutilized due to factors such as non-compressibility or
non-compactability of a block, lack of spatial locality and bulk
evictions. Bulk eviction, which is the focus of this work, may
happen in a compressed cache as replacement is performed
at the granularity of super-blocks and all sub-blocks of a
compressible super-block are evicted at once. However, it will
take multiple misses to refill the compressible super-block. If
we had prefetched these neighbor blocks in advance, we could
have avoided the extra misses on the compressed super-block.

B. Opportunities for compressed cache layout aware prefetch-
ing

super-block tag found?
sub-block valid? replace super-block
sub-block co-allocatable?

evict other sub-
co-allocate sub-bloc blocks

potential block for prefetching

decompress and

read sub-block

Fig. 1: Cache operations on read access

Figure 1 shows the decision diagram of compressed cache
operations on an access. The cache checks all super-blocks of
the set for a tag match. If no match is found, the access is a

miss. Otherwise, it checks the valid bit of the corresponding
sub-block for each matching entry. Finding no such valid sub-
block also results in a miss.

In order to evaluate the potential of CLAP, we count the
prefetching opportunities. As it is shown in Figure 1, the
misses that occur on a super-block hit and sub-block miss
are potential candidates for prefetching. If such block is co-
allocatable with the ones that are already present in the super-
block, it could have been prefetched at no expense of capacity
and the miss could have been avoided. Hence, we don’t need
to wait for miss accesses for each sub-block to refill the
compressed super-block, thereby bulk evictions become less
harmful for the cache.

We measure the percentage of misses that could be avoided
by taking advantage of CLAP. Figure 2 shows the percentage
of LLC misses that occur on blocks that are co-allocatable
within an existing super-block blocks that are already present.
We could reduce the number of misses by up to 28%, by
prefetching compressed blocks before they are requested by
the processor, without evicting any data from the cache.

Percentage of Avoidable Misses

100%
80%
60%
40%
20%

0%

wrf

perlbench
bzip2
bwaves
gamess
milc
zeusmp
gromacs
cactusADM
leslie3d
namd
gobmk
dealll
soplex
povray
calculix
hmmer
sjeng
GemsFDTD
libquantum
h264ref
tonto

Ibm
omnetpp
astar
sphinx3
xalancbmk
Average

avoidable replacements total replacements

Fig. 2: Percentage of avoidable misses with CLAP

This study suggests that there is a potential for a synergistic
interaction of prefetching and cache compression in processor
architecture. Thus, by prefetching compressible blocks to L3,
we seek the reduction in number of LLC misses.

IV. COMPRESSED CACHE LAYOUT AWARE PREFETCHING

In order to enhance cache compression and diminish un-
derutilization of compressed cache, we propose CLAP, a
compressed cache layout aware prefetcher. The goal is to avoid
misses that happen on a co-allocatable block on a super-block
hit and sub-block miss. In other words, if there is an access to
a sub-block that is co-allocatable in the super-block, we could
have prefetched it beforehand without any cache pollution.
Thus, we could avoid this sub-block miss in the cache. In
order to steer the prefetcher, we design a predictor that decides
whether neighbor sub-blocks are compressible. By applying
CLAP on miss accesses, we can prefetch the contiguous blocks
if the block is predicted to be compressible.

A. Predicting compression

In order to find which blocks are co-allocatable and are
candidate for prefetching before their content is available, we
need a predictor. To achieve this goal, we implemented a
compression predictor. As the predictor needs to predict the

TABLE I: Simulation parameters

Processor ARMVS, 6-issue out-of-order at 4GHz
L1 cache 32kB, 4-way, 2 cycles

L2 cache 256kB, 8-way, 12 cycles

L3 cache IMB, 16-way, 20 cycles

Cache line size
Replacement policy
DRAM

64-byte
LRU
DDR4 2400 MHz, bandwidth 12.8GB/s

compressibility of blocks that have not been accessed recently
or never accessed, a prediction based solely on the block
address is not practical. Instead, we predict the compressibility
of a stream of memory reads, where a stream corresponds to all
accesses performed by a given load instruction in the program.

The key idea of stream-based prediction is that all memory
locations accessed by a given load instruction are likely to
share the same data-type and similar characteristics. Thus,
whether prior blocks accessed by a load instruction were
compressible is a good indicator of the compressibility of
future blocks loaded from the same instruction.

We use a table indexed by a hash of the PC to store the
compressibility likelihood of each load instruction and update
it after every read miss. The PC table has 256 sets and 4
ways, using LRU replacement policy. Each entry in this table
has a 4-bit saturating counter, a compression bit and a validity
bit. The saturating counter and compression bit get updated
after every refill response from the memory. Whenever the
block is compressible, the saturating counter gets incremented;
otherwise, it gets decremented. On every access, the predictor
predicts whether a block is compressible, based on the counter.
Accessing to the PC table is based on each PC that is carried
in the request.

B. Compressed cache layout aware prefetcher

By means of the compression predictor and taking advan-
tage of prefetching, we proposed a compressed cache layout
aware prefetcher. Whenever a read request causes a super-
block miss, the compression predictor is invoked. Based on
the predictor’s decision, the prefetcher pre-fetches either three
blocks or no block: If it predicts the block is compressible, the
cache sends three requests to prefetch the three neighbor sub-
blocks in a super-block. In case the predictor predicts the block
is not compressible, the system does not prefetch anything.

V. EVALUATION

We have implemented the DISH compression algorithm in
the last level cache within the gem5 simulator [2]. We use
SPEC CPU 2006 benchmarks. The statistics for the bench-
marks are collected for 100M simulated instructions after a
warm-up period of S0M instructions for 15 different execution
snapshots. Table I shows the baseline configuration parameters
with a conventional uncompressed cache. We consider a cache
slice of 1MB, corresponding to the L3 cache share of a
single core. Caches are non-inclusive, non-exclusive and have
a write-back policy.

As it is illustrated in Figure 3, CLAP outperforms com-
pressed cache. On average, it improves the performance by 4%

comparing to compressed cache. Furthermore, CLAP reduces
LLC misses of all applications by 12% on average.

A. Compression predictor

In order to implement CLAP, we propose a predictor to
predict whether a sub-block is compressible. We have im-
plemented an ideal compaction predictor which knows the
future by accessing the memory beforehand to see whether
the neighbor sub-blocks are co-allocatable. It predicts com-
pactability based on the content of individual blocks, using
their addresses and it only considers super-blocks that have
4 sub-blocks. However, our compression predictor prefetches
all compressible blocks, regardless of compactability, which
allows taking into account super-blocks that can hold 2, 3 or
4 sub-blocks.

The number of LLC misses obtained using our proposed
compression predictor is within 3% on average (21% in the
worst case for zeusmp benchmark) of the ideal compaction
predictor. Therefore, our compression predictor is accurate
enough to be employed to CLAP. Hence, we can prefetch even
the blocks that are not co-allocatable (but only compressible),
without increasing the number of misses, and they will be
useful in the program.

B. Effective cache capacity

Cache compression increases the effective cache capacity,
which can also be increased by taking advantage of prefetch-
ing. The effective cache capacity metric is defined as the
average number of valid sub-blocks per valid super-block.
Figure 4 shows the effective cache capacity for the compressed
cache (DISH) and CLAP.

C. Interactions with other prefetchers

Our approach is orthogonal to other prefetching methods.
We have employed the CLAP strategy to stride and next-
line. Figure 5 shows the comparison between a compressed
cache with stride prefetcher and a compressed cache with
CLAP. In this configuration of CLAP, we do stride prefetching
(with prefetch degree 16) on every cache access and when the
compression predictor predicts a block is compressible, we
prefetch three neighbor sub-blocks in the same super-block.
Using this configuration, we manage to reduce the number of
LLC misses by up to 31%. Moreover, we can take benefit of
CLAP in a system with next-line prefetching and reduce LLC
misses up to 29%.

D. Hardware overhead

The overhead of CLAP over the baseline prefetcher is the
compression predictor table that is addressed by PC. The table
has 256 x 4 entries and each entry has 46 bits (40-bit PC tag,
4-bit saturating counter, 1-bit compression bit, 1-bit validity
bit). Hence, the table requires less than 6kB of memory, which
is 0.56% of the IMB LLC slice we consider. Increasing the
cache size by this amount is unlikely to affect performance.

IPC at LLC
35

2,5

15

3

2

1||

0 I n n] ull Il n nll

— o . . ~
'5'?:.‘$ﬁé’ESEEEEﬁﬁ?éwE"EgQEE%SEQE%’a
SNacEfRes5s58cs53E%02385§2g8>EscC
v 9 SESS- 283032 gwe €0 8 e © £ 0 g
Eel B 6 %992 53 28w Y g 529
= 8 w NE 22 o < £ > < £ »©
@ % g g ° 3=
e 5] o =2 3
B compressed cache B CLAP

(a) Instructions per cycle (IPC)

MPKI at LLC
60
50
40
30
20
2 I | ' " L
0 (1] | | - I - - n Il I
£N Y 9NO2YSTTX= X2X5¥a gy QEQSSED XL
3 82 = E] 1]]

oS i EEROREET S LSS ES58ES S8 3EER
b o £ £ 2 @9 Q > 3 L0 2 o ? 9~ £ o
8825 353TCESREGEYEEES £° fE¢g
T o w S g2 o0 o < gs< £ &8z
g % G @ g ° ©

@

S o =2 =

B compressed cache M CLAP

(b) LLC misses per 1000 instructions (MPKI)

Fig. 3: Comparison of CLAP against compressed cache without prefetching

Effective Cache Capacity

15
1
> || ||| || ||| || || || || ||
0
SN v v o an T T X = X > X - WA % O a5t mX c
§2 88228823 eES8FSEPREE2ESEERES
N © E a <2 oL 90 >0 2o & $ 6~ 0 @ £ o
o 9 8 € S8 3032w c o 8 © E 0 E
2 2 o 697 [53 23 ® G 5 o~ < s 25
T 538 yg2se S] £ 259
g_ o o g © T O
8 o =2 <
M compressed cache M CLAP

Fig. 4: Effective cache capacity relative to an uncompressed
cache

Normalized Reductionin MPKI

1,2

1

0,8

0,6

0,4

~ il [|| il || I il

0 n nom u I [[]
N Y v o awv T T xXx = X > X + AN “ 0o a St mx c
e e RS Z0EESECcs 502 EE 52 ES
CNNEEm Q css090>0E8a2gS6=%8% 09 S5 9
2883L " 2353552888 38sEvgEg R € EUE
=T &a®& Y222 o0 3 < gse £ a5 9
g ®5 3 g S T O

o O = x

B stride Mstride+ CLAP

Fig. 5: Comparison of compressed cache with only stride
prefetcher vs. stride and CLAP, as the number of LLC misses
normalized to compressed cache without prefetching

VI. CONCLUSION

This paper proposes CLAP, a hardware prefetcher that
is adapted to sector-based compressed cache layouts. Such
compressed caches that packs neighbor blocks together are
subject to underutilization; therefore, there is a potential to
enhance cache compression in systems. For this purpose, we
proposed a compression predictor that predicts whether neigh-
bor sub-blocks will be co-allocatable in the same super-block.
By applying CLAP on miss accesses, we can prefetch the
contiguous blocks if the block is predicted to be compressible.
Based on our experiments, CLAP outperforms compressed
cache in terms of MPKI (up to 33%) and IPC (up to 24%).
Furthermore, we show that our proposed technique can be
added to other prefetchers such as stride and next-line.

VII. ACKNOWLEDGEMENTS

This project was partially supported by Région Bretagne
and an Intel Research Grant. We would like to thank Daniel R.
Carvalho for his help and also the reviewers for their insightful
comments.

REFERENCES

[11 A. R Alameldeen and D. A Wood. Adaptive cache compression for
high-performance processors. ACM SIGARCH Computer Architecture
News, 32(2):212, 2004.

[2] N. Binkert et al. The gem5 simulator.
Architecture News, 39(2):1-7, 2011.

[3] X. Chen, L. Yang, R. P Dick, L. Shang, and H. Lekatsas. C-pack: A

high-performance microprocessor cache compression algorithm. [EEE

transactions on very large scale integration (VLSI) systems, 18(8):1196—

1208, 2009.

J. WC Fu, J. H Patel, and B. L Janssens. Stride directed prefetching in

scalar processors. ACM SIGMICRO Newsletter, 23(1-2):102-110, 1992.

J. S. Liptay. Structural aspects of the system/360 model 85, ii: The

cache. IBM Systems Journal, 7(1):15-21, 1968.

P. Michaud. Best-offset hardware prefetching. In HPCA, pages 469—480.

IEEE, 2016.

[7] B. Panda and A. Seznec. Dictionary sharing: An efficient cache
compression scheme for compressed caches. In MICRO, pages 1-12.
IEEE, 2016.

[8] B. Patel, N. Hardavellas, and G. Memik. Scp: Synergistic cache
compression and prefetching. In /CCD, pages 164-171. IEEE, 2015.

[9] G. Pekhimenko et al. Base-delta-immediate compression: practical data

compression for on-chip caches. In Proceedings of the 21st international

conference on Parallel architectures and compilation techniques, pages

377-388. ACM, 2012.

K. Raghavendra, B. Panda, and M. Mutyam. Pbc: Prefetched blocks

compaction. [EEE Transactions on Computers, 65(8):2534-2547, 2016.

S. Sardashti, A. Arelakis, P. Stenstrom, and D. A Wood. A primer on

compression in the memory hierarchy. Synthesis Lectures on Computer

Architecture, 10(5):1-86, 2015.

S. Sardashti, A. Seznec, and D. A Wood. Skewed compressed caches.

In MICRO, pages 331-342. IEEE Computer Society, 2014.

S. Sardashti, A. Seznec, and D. A Wood. Yet another compressed cache:

A low-cost yet effective compressed cache. TACO, 13(3):27, 2016.

S. Sardashti and D. A Wood. Decoupled compressed cache: Exploiting

spatial locality for energy-optimized compressed caching. In MICRO,

pages 62-73. ACM, 2013.

A. J Smith. Cache memories.

14(3):473-530, 1982.

ACM SIGARCH Computer

[4

=

[5

=

[6

—

[10]

(11]

[12]
[13]

[14]

[15] ACM Computing Surveys (CSUR),

